E10-2001-199

A.Yu.Isupov

CONFIGURABLE DATA

AND CAMAC HARDWARE REPRESENTATIONS
FOR IMPLEMENTATION OF THE SPHERE DAQ
AND OFFLINE SYSTEMS

1 Introduction

Data acquisition system’s implementation for the SPHERE experiment [1] based
on the distributed portable data acquisition and processing system gdpb [2] now. This
paper describes code, added to the gdpb’s framework to support an experimental setup
description: experimental data and CAMAC hardware representation schemes, both
configurable for RUN! independence purposes.

Through the following text the file and software package names are highlighted as
italic text, C language constructions and reproduced “as is” literals — as typewriter
text. Reference to manual page named “qwerty” in the oth section printed as gqw-
erty (9), reference to section in this report — as 2.2.1. Subjects of substitution by actual
values are enclosed in the angle brackets: <run_name>. All mentioned trademarks are
properties of its respective owners.

2 Experimental data configuration scheme

An experimental data representation scheme is designed to provide runtime config-
urable description of such data, so allows to implement an SPHERE DAQ and offline
utilities (see, f.e., 2.4) in a RUN independent manner. It implemented on base of the
following program objects:

e universal data containers (so called cells) implementation (see 2.1),

e universal variables representation (so called knvar) (see 2.2.1).

e universal functions representation (so called knfun) (see 2.2.2).

e universal presenter objects (so called knobjs) implementation (see 2.2.3, 2.2.4).

Also provided interface for reading of so called RUN configuration file in the
RUN.conf(5) format (see 2.3).

2.1 Universal data containers — cells

The cell.conf is a configuration file in so called cell.conf(5) format for array of so
called cells, universal data containers, used by some utilities of the SPHERE DAQ and
offline systems. This file consists of zero or more lines, delimited by newline symbols.
Lines may be:

e comment lines,

e empty lines, and

e data lines,
where newline may be escaped by backslash for line continuation. Comment lines
(lines with “#” in the first position) and empty lines are ignored.

Other lines must be data lines. Data lines, concatenated with all its continuations,
contains four fields, separated by space(s) or tab(s). First three fields can’t contains
space(s) or tab(s), fourth can.

!(in the wide meaning) — accelerator run.

First field (name) of the data line is a string. It represents name, under which
respective cell will be known in DAQ or offline utility.

Second field (type) is a string (f.e. “type_UChar”), represents required type of
cell result. Types are #define’d in the pdata.h header file as follows:

#define type_UChar 1
#define type_UShort 2
#define type_ULong 4
#define type_Double 5
#define type_Float 6
#define type_Char 11
#define type_Short 12
#define type_Int 13
#define type_Long 14
#define type_String 20

Third field (fill dependence) is a string, represents event kind in form
DATA_<EVENT_KIND>?, for which cell calculations must be performed. Possible event
kinds are #define’d in the pack_types.h header file. Also permitted two special event
kinds: PROG_BEG and PROG_END.

Fourth field (program) is a string, beginning after third field and ending at end
of data line, represents “program” for cell result calculations. It is a right part of C
expression (without assignment), where operands may be a:

e constant value,

e already initialized cell (including current cell),

e known variable (see 2.2.1), or

e other valid expression.

Following operations are implemented:
unary: “+7, “=7) “7r«1”
binary: “+7, €=V, “x7, [0 Cm=r = g N = o S |7, 4<<7, 957

) >) >)
u&” ulw ar
> ’

ternary: “? :”
Calculations performed in order, defined by C operation priorities, and may be changed
by operands grouping in parentheses, “(” and “)”. Following functions are imple-
mented (with one argument, if not noted otherwise): “sin”, “cos”, “tan”, “asin”,
“acos”, “atan”, “sinh”, “cosh”, “tanh”, “asinh”, “acosh”, “atanh”, “exp”,
“expml”, “log”, “logl0”, “loglp”, “pow” (with two arguments), “sqrt”, “cbrt”,
“fabs”, “erf”, “erfc”, “j0”, “j1”, “y0”, “yl1”.

So cell.conf (5) describes for each defined calculation cell a structure cell with:

e calculation cell name;

e program of result calculation;

e required type of result;

2<EVENT_KIND> need to be substituted by uppercased name of event kind (for example, “CYC_BEG”,
“DAT.0”, “CYC_END”, etc.)

.

e cvent’s (in particular — packet’s) kind, which causes result calculation.

Result will be calculated, if current value of the global counter, corresponding to
cell’s event kind, is greater than saved value. Global counters, corresponds to event
kinds PROG_BEG and PROG_END, need to be incremented near begin and end of utility’s
main() function.

#include <cell.h>
int cell_cfg(char *cellfile, cell *cells, u_long *counters,

size_t cnt_len)
void *get_cell(cell *cells, char *str, int len, u_char *type)
int cell_calc(cell #*gCell)
inline u_char str2vartypes(char *tok, union pres_arg *res,

union pres_arg #*ptr)
void CELL_CALC_LOOP(void)
void CELL_DEBUG_LOOP(void)
#include <parser.h>
int scanner(char #*str, struct token *tokens, unsigned *tlen)
int exp_parser(struct token *tokens, unsigned tlen,

struct action *actions, unsigned *alen)
#include <actions.h>
double execute(struct action *actions, unsigned size)
cell_cfg, get_cell, cell_calc, str2vartypes, scanner, exp_parser, execute,
CELL_CALC_LOOP, CELL_DEBUG_LOOP, — routines intended for cell manipulations.

cell_cfqg() reads file *cellfile in the cell.conf(5) format (see above) and fills
already allocated array of cell structures, defined in the cell.h header file, pointed by
*cells, and global counters array with size cnt_len, pointed by *counters.
get_cell() searches for cell with name *str of length len in array of cell

structures, pointed by *cells, fills *type by correct type of cell result, and returns
correct pointer to cell result. Possible result types are #define’d in the pdata.h header
file.

cell_calc() calculates result of proper type for cell *gCell and stores it in
gCell->res.

str2vartypes() returns type number (#define’d in the pdata.h header file) for
string *tok, and if both pointers *res and *ptr are non equal to NULL, directs *ptr
of correct type into *res.

Macro CELL_CALC_LOOP() performs result calculation, if fill dependence is ex-
pired, for all initialized (by cell_cfg()) cells in the global array gCell of its.

Macro CELL_DEBUG_LOOP() prints cell member’s values for all initialized (by
cell_cfg()) cells in the global array gCell of its.

scanner () breaks string *str, represents C expression, stores resulted tokens in
array of token structures, defined in the parser.h header filepointed by *tokens, and
fills *tlen by obtained tokens number. '

exp_parser() reads tlen tokens from array of token structures, pointed by
*tokens, fills array of actior} structures, defined in the actions.h header file— “pro-

3

gram”, pointed by *actions accordingly, and fills *alen by total actions number
(“program” length).

execute() returns result of calculations by “program” of length size, represented
by array of action structures, pointed by *actions.

cell_cfg() returns O on success and > 0 if error occurred.

cell_calc() returns O on success and 1 if unknown type of result required.

str2vartypes() returns (u_char)(-1) if string does not correspond to any
known type.

2.2 Universal presenter object — knobj
2.2.1 Universal variables representation — knvar

#include <knvar.h>
void *get_variable(knvar *var, char *str, int len, u_char *type)
void add_variable(knvar *var, char *str, u_char type, void *ptr)
void KNVAR_INIT(knvar #*var)
get_variable, add_variable, KNVAR_INIT - routines intended for handling with
so called known variables.

get_variable() searches for known variable by its name *str of length len in
the *var array of knvar structures, defined in the knvar.h header file as follows:
typedef struct {

char *tvar; /* pointer to name for exp. data variable */
u_char type; /* value type */
void *ptr; /* pointer to value itself */

} knvar;
fills *type by known variable type (#define’d in the pdata.h header file), and returns
pointer to corresponding knvar value. *var must be terminated properly (i.e. tvar
in the first unused knvar structure must be equals to NULL).

add_variable() adds variable of type type with name *str and value, pointed
by *ptr, into tail of array of knvar structures, pointed by *var, and NULL terminates
*var properly.

Macro KNVAR_INIT() terminates var properly (see above).

get_variable() returns NULL if variable not found.

So, provided tools for: any variable in DAQ or offline utility be registered in the
knvar structure (as so called “known variable”, see above).

2.2.2 Universal functions representation — knfun

#include <knfun.h>

knfun *get_func(knfun *funcs, char *str, int len)

void add_func(knfun *funcs, char *str, func_t create, func_t fill,
func_t clean, func_t remove)

void KNFUN_INIT(knfun *funcs)

get_func, add_func, KNFUN_INIT - routines intended for handling with so called
known functions.
get_func() searches for known function member by its name *str of length len
in the *funcs array of knfun structures, defined in the knfun.h header file as follows:
typedef struct {
#define FUNNAME_LEN 32
char name[FUNNAME_LEN] ;
func_t create;
func_t £fill;
func_t clean;
func_t remove;
} knfun;
(for func_t definition see 2.2.4), and returns pointer to corresponding knfun structure.
*funcs must be terminated properly (i.e. name in the first unused knfun structure
must be an empty string, "").
add_func() adds known function with name *str into tail of array of knfun
structures, pointed by *funcs, fills this member by set of functions create, £ill,
clean, remove, and NULL terminates *funcs properly.
Macro KNFUN_INIT() terminates funcs properly (see above).
get_func() returns NULL if function not found.
So, provided tools for: any function in DAQ or offline utility be registered in the
knfun structure (as so called “known function”, see above).

2.2.3 Knobjs configuration files

The knobj.conf(5) is a configuration file for array of so called known objects
(knobjs), universal presenter objects, used by some utilities of the SPHERE DAQ and
offline systems. This file consists of zero or more lines, delimited by newline symbols.
Lines may be a:

e .comment lines,

e empty lines, and

e data lines,
where newline may be escaped by backslash for line continuation. Comment lines
(lines with “#” in the first position) and empty lines are ignored.

Other lines must be data lines. Data lines, concatenated with all its continuations,
contains nine fields, separated by space(s) or tab(s) and not contains it.

First field (name) of the data line is a string. It represents name, under which
respective object will be known in DAQ or offline utility.

Second field (creator parameters) is a string, represents one or more parameters for
create function of such known object. Parameters separated.by “;”. Each parameter
is a:

e constant value (in particular C string without surrounding double quotes

with mandatory type type_String definition),

5

o

and

e known variable (see below), or

e initialized cell name (see 2.1),
optionally followed by “,” and its type in a string representation (possible types
the same as for second field of data line of the cell.conf(5), see 2.1). Here is an
example of the second field, contains all mentioned parameter flavours, respectively:
“13;9qq,type_String;aaa,type_UShort;Cell0001”. Field of kind “-” or “-,-”
means parameters not required.

Third field (type) is a string, represents type of respective known object. Knobj
type dictates the knobj functionality. Names (knfun[].name) of creator, filler, cleaner
and remover known functions are constructed from knobj type (see below).

Fourth field (filler parameters) is a string, represents one or more parameters for
fill function of such known object. Syntax the same as for second field, see above.

Fifth field (fill dependence) is a string, represents event kind in form
DATA_<EVENT_KIND>, for which £ill function of respective known object must be
called. Possible event kinds are #define’d in the pack_types.h header file.

Sixth field (fill condition) is a string, represents fill condition of such known object.
Syntax the same as for second field (see above), but sixth field can contain only one
parameter, which can’t be constant value, f.e. “flag,type_UChar”.

Seventh field (clean dependence) is a string, represents event kind in form
DATA_<EVENT_KIND>, for which clean function of respective known object must be
called. Syntax the same as for fifth field (see above). Also permitted one special event
kind: NEVERMORE, which means clean need not at all.

Eighth field (cleaner parameters) is a string, represents one or more parameters for
clean function of such known object. Syntax the same as for second field, see above.

Ninth field (remover parameters) is a string, represents one or more parameters
for remove function of such known object. Syntax the same as for second field, see
above.

Second, fourth, sixth, eighth and ninth fields are optional, so may be omitted at the
end of data line and replaced by “~” within it.

So knobj.conf(5) describes for each defined known object a structure knobj with:

e known object name;

e known object type;

e parameters for known object’s creator, filler, cleaner, and remover;

e event’s (in particular — packet’s) kinds, which causes known object’s fill and

clean;

o fill condition.

Creator, filler, cleaner, and remover function names constructed by catenating the
known object type and strings “create”, “fill”, “clean”, and “remove”, respec-
tively, so ones can be founded in array of knfun structures.

The clean.conf(5) is a cleaning list for array of known objects, used by some
utilities of the SPHERE DAQ and offline systems. This file consists of zero or more
lines, delimited by newline symbols. Lines may be a:

e comment lines, ‘

e empty lines, and

e data lines,
where newline may be escaped by backslash for line continuation. Comment lines
(lines with “#” in the first position) and empty lines are ignored.

Other lines must be data lines. Data lines contains one field, not contains space(s)
or tab(s).

First field (name) of the data line is a string. It represents name of already initialized
known object, which need to be cleaned, within DAQ or offline utility.

2.24 Knobjs program interface

#include <knobj.h>

int cond_check(struct pres_act *cond, u_char type)

int pres_cfg(char *presfile, knobj *knobjs, u_long *counters,
size_t cnt_len)

int clean_cfg(char *cleanfile, knobj *knobjs)

knobj *get_knobj(knobj *knobijs, char *str, int len)

void KNOBJ_CREATE_LOOP(void)

void KNOBJ_FILL_CLEAN_LOOP(void)

void KNOBJ_CLEAN_LOOP(void)

void KNOBJ_COND_CLEAN_LOOP(void)

void KNOBJ_REMOVE_LOOP(void)

cond_check, pres_cfg, clean_cfg, get_knobj, KNOBJ_CREATE_LOOP,
KNOBJ_FILL_CLEAN_LOOP, KNOBJ_CLEAN_LOOP, KNOBJ_COND_CLEAN_LOOP,
KNOBJ_REMOVE_LOOP - routines intended for handling with so called known objects.
cond_check() returns true (1) if cond->args[0] of type type is true (!0), and
false (0) if cond->args[0] of type type is false (0).
pres_cfg() reads file *presfile in the knobj.conf(5) format (see above) and
fills already allocated *knob7js array of knobj structures, defined in the knobj.h header
file as follows:
struct dependence {
u_long *curcnt; /* pointer to global packet counter */
u_long oldent; /% its previous saved value */

}i

union pres_arg {
u_char u_charv; /* u_char value */
u_char +*u_charp; /* u_char ptr */
u_short u_shortv; /* u_short value */
u_short *u_shortp; /* u_short ptr */
u_int u_intv; /* u_int value */
u_int *u_intp; /* u_int ptr */
u_long u_longv; ‘ /* u_long value */
u_long *u_longp; /* u_long ptr */

double
double
float
float
char
char
short
short
int
int
long
long

}i

typedef void *

struct pres_act
func_t

doublev;
*doublep;
floatv;
+*floatp;
charv;
*charp;
shortv;
*shortp;
intv;
*intp;
longv;
*longp;

/* double value */
/* double ptr */
/* float value */
/% float ptr */
/* char value */
/* char ptr */

/* short value */
/* short ptr */
/* int value */
/* int ptr */

/* long value */
/* long ptr */

(*func_t) (union pres_arg *, void *);

{

fun;

#define PRESARGC_MAX 32
union pres_arg args[PRESARGC_MAX];

}i

typedef struct {
u_char

#define OBJNAME_
char
struct
void
struct
struct
struct
struct
u_char
struct
struct

} knobj;

LEN 32
pres_act

pres_act
pres_act
dependence
pres_act

pres_act
dependence

/* ntfunc.c need 24 now...

flag;

name [OBIJNAME_LEN] ;
create;

*pres;

remove;

fill;

fdep;

condfill;
condtype;

clean;

rdep;

and global counters array with size cnt_len, pointed by *counters.

clean_cfg() reads file *cleanfile in the clean.conf(5) format (see 2.2.3) and
sets to (u_long)(-1) the rdep.oldent field of each initialized (by pres_cfg())

knobj structure from array of it, pointed by *knobjs.

get_knobj() searches for known object member by its name *str of length len
in the *knobjs array of knobj structures, and returns pointer to corresponding knobj
structure. *knobjs must be initialized properly (

structure must have

Macro KNOBJ_CREATE_LOOP(). calls create.fun member for all initialized (by

zero value).

pres_cfg()) known objects in the global array knobjs of its.

8

i.e. flag in the first unused knobj

Macro KNOBJ_FILL_CLEAN_LOOP() calls clean.fun member, if clean dependence
is expired, and £i11.fun member, if fill dependence is expired and fill condition check
success, for all initialized (by pres_cfg()) known objects in the global array knobjs
of its.

Macro KNOBJ_CLEAN_LOOP() unconditionally calls clean.fun member and resyn-
chronizes fill and clean dependencies for all initialized (by pres_cfg()) known objects
in the global array knobjs of its.

Macro KNOBJ_COND_CLEAN_LOOP () calls clean.fun member, if clean dependence
modified by clean_cfg(), and resynchronizes clean dependence for all initialized (by
pres_cfg()) known objects in the global array knobjs of its.

Macro KNOBJ_REMOVE_LOOP() calls remove.fun member for all initialized (by
pres_cfg()) known objects in the global array knobjs of its.

cond_check () returns —1 if requested type type is unknown.

pres_cfg() returns 0 on success and > 0 if error occurred.

clean_cfg() returns O on success and > 0 if error occurred.

get_knobj() returns NULL if known object not found.

Known function may be a:

e creator,
filler,
cleaner, or

e remover
for some known object, represented by knobj structure.

2.3 RUN configuration file

The <run_name>.conf is a configuration file for SPHERE DAQ and offline systems
in so called RUN.conf(5) format, represents RUN <run_name>. It consists of zero
or more lines. Comment lines (lines with “#” in first position) and empty lines are
ignored. Other lines may be a:

e chapter header lines,

e chapter’s member lines, and

e chapter trailer lines.

All contains one or more fields, separated by space(s) or tab(s).

Chapter header line contains in the first field the event kind in a string represen-
tation: “DATA_<EVENT_KIND>”, beginning from first position. Next fields (if exists)
meaning depends on DAQ or offline utility, which interprets RUN.conf (5) file.

After chapter line must be present exactly NMEMB_<event_kind>® (#define’d in
the e<run_name>.h header file) number of member lines. First field of member line
(flag) contains ASCII string, its possible values #define’d in the pdata.h header file
as follows: :

3<event kind> need to be substituted by name of event kind (for example, “cyc.beg”, “dat_0”,
“cyc.end”, etc.)

#define S_NULL "o" /* variable not handled at all */
#define S_HANDLE "1n /% variable will be handled */

Generally nonzero means, that respective data field need to be processed, and zero
— that need not. Second field (tvar) is a string. It represents short name, under
which respective data field may be known in DAQ or offline utility (so called “known
variable” name, knvar.tvar, see 2.2.1). Next fields (if exists) meaning depends on
DAQ or offline utility, which interprets RUN.conf (5) file.

For each <event_kind> must be only one construction, beginning from chapter
header line, contains some member lines, and optionally ending by chapter trailer line.
If some kind of event does not described at RUN.conf(5) file, variables from it will
not be processed by DAQ and offline utilities.

So, RUN configuration file in the RUN.conf(5) format sets flags and names for
experimental data fields, so (partially) initializes the pdata (flag and tvar members,
see pdata.h header file), and knvar (*tvar member, see 2.2.1) structures.

The following program interface to RUN configuration file is provided
#define <run_name>
#include <eRUN.h>
#include <knvar.h>
int run_cfg(char *conffile, pdata **pdat, knvar *knvars)

run_cfg() reads RUN configuration file *conffile in the RUN.conf(5) format
(see above) and fills already allocated pdat structures (see pdata.h header file) and
array of knvar structures (see 2.2.1), pointed by *knvars, if it not equals to NULL.

run_cfg() returns 0 on success, and > 0 if error occurred.

The run_cfg() does not set errno status for its internal errors. The run_cfg()
may also fail and set errno for any of the errors, specified for the functions fopen (3)

and fgets (3).

24 offline utilities

In the current implementation of the SPHERE offline system the following utilities are
provided:

o the ufill (1) fills HBOOK/ROOT Ntuples and histograms,

o the calibtof (1) calibrates SPHERE TOF data,

e the ckdata (1) checks SPHERE experimental data consistency.

241 ufill(1) atility

ufill (1) utility destined for building HBOOK [3] Ntuples/H[12] histograms or ROOT

[5] TNtuples/TH[12] histograms from experimental data, produced by SPHERE

DAQ system in packet(3) format, see [2], or in old (pre-gdpb) formats (see also

get data(3)). .

ufill [-c{-|<runconffile>}] [-s{-|<cellconffile>}]
[-k{-|<knobjconffile>}] [-o{-|<outfile>}]

10

In the such synopsis form the ufill reads such data from standard input, fills
Ntuple(s) /histogram(s) as described in default configuration files, and writes it(s)
to HBOOK RZ file <run_name>.paw or ROOT file <run_name>.root for further anal-
ysis by PAW [4] or ROOT |[5], respectively (PAW or ROOT mode defined at compile
time).
At startup ufill reads configuration files in the RUN.conf(5) (see 2.3), cell.conf(5)
(see 2.1), and knobj.conf(5) (see 2.2.3) formats; initializes structures pdat, cell,
knvar, knfun, knobj (see pdata.h, 2.1, 2.2), performs create loop over all initialized
knobjs and generates PROG_BEG event. After that it reads experimental data stream
from standard input and for each obtained event increments the global counter, corre-
sponding to type of this event, and performs calculation loop over all initialized cells
and fill/clean loop over all initialized knobjs. At data stream EOF state obtaining ufill
generates PROG_END event.
At PROG_BEGIN and PROG_END events also performed calculation loop over all
initialized cells and fill/clean loop over all initialized knobjs.
The default behavior of ufill may be changed by following options:
-c<runconffile> Use <runconffile> as SPHERE experimental data configuration
file (see 2.3). —-c- means use compiled-in default for <runconffile> (con-
structed from <run_name> by appending “.conf” extension).

-s<cellconffile> Use <cellconffile> as configuration file for universal data con-
tainers, cells (see 2.1). -s- means use compiled—in default for <cellconffile>
(constructed from <program_name>* by prepending “c” and appending “.conf”).

-k<knobjconffile> Use <knobjconffile> as configuration file for universal pre-
senter objects, knobjs (see 2.2.3). -k- means use compiled—in default for
<knobjconffile> (constructed from <program_name> by prepending “p” and
appending “.conf”).

-o<outfile> Use <outfile> as name of RZ/ROOT file, to which filled Ntuple(s)
will be written.
“.paw”/“.root” extensions will be added correspondingly. -O- means use
compiled—in default for <outfile> (constructed from <run_name> by append-
ing proper extension).

The ufill utility exits O on success, and > 0 on error.

2.4.2 calibtof (1) utility

calibtof (1) utility destined for calibrating of time-of-flight (TOF) information, con-

tained in SPHERE experimental datafile(s).

calibtof [-q] [-f<listfile>] [-n<basename>] [-p[<dirname>]] [-W]
[-b<Base>] {d|p|k|pi} <Mom> [<L1> <Lh>]

4<programname> need to be substituted by name, under which this ufill (1) utility was compiled
(usually “wufill”)

11

In the such synopsis form the calibtof reads list of such datafile’s name(s) from the
file files.lst (one full filename per string), TOF initial calibration information from the
file calibtof.ini in tof (5) format (in particular, length of TOF baseline <Base>); after
that calibtof reads each datafile, calculates new calibration information for deuterons,
protons, kaons, or pions with momentum <Mom>, and writes it in files calibtof.out, and
calibtof.cal. Lower <L1> and upper <Lh> limits for the “window” in the (F'561 . T DC+
F562.TDC(C) /2 spectrum are equals by default 0 and 1100 channels, correspondingly,
if not specified in the command string. Such “window” need to separate particles of
type, by which calibration will be performed.

For more details see calibtof (1), tof (3), tof (5).

24.3 ckdata (1) utility

ckdata (1) utility destined for SPHERE experimental data consistency check.
ckdata [-c{-|<runconffile>}] [-s{-|<cellconffile>}]
[-k{-|<knobjconffile>}]

In the such synopsis form the ckdata reads such data from standard input and
checks it in accordance with default configuration files. If <knobjconffile> does
not contains any call of “ck” functions, only data format (not contents) are checked
(by get data(3) built-in checks). If <knobjconffile> contains call(s) of “dump”
functions, ckdata dumps (writes in ASCII representation) corresponding data contents
to standard error output.

The default behavior of the ckdata may be changed by some options (see ufill’s
options description above).

The ckdata exits O on success, and > 0 on error.

3 CAMAC configuration scheme

A CAMAC hardware representation scheme is designed to formalize and automatize
C coding of the software pieces deals with CAMAC (in particular CAMAC interrupt
handler (see [2]) and some DAQ utilities) for expansive CAMAC setups.

Basic idea is to provide:

1. “geography” point of view to CAMAC hardware — some kind of configuration
database, contains information about physical place of each CAMAC hardware
module, used during a some RUN. Let to name it as a global CAMAC descrip-
tion array.

2. some kind of “library”, contains C code pieces, implements for each kind of
used CAMAC hardware modules (at least) following:

e real reading data from CAMAC;
e testing corresponding CAMAC module
e data obtaining simulation without real readmg (for debug purposes).

3. “event” point of view to CAMAC hardware — experimental data representation in
terms of used CAMAC hardware modules for each event type, produced by setup.

12

4. utilities for CAMAC C code generation and CAMAC testing, based on previous
items.

5. code for control over whole DAQ system, RUN independent part (f.e. event
type recognition, start, stop, triggers enable/disable operations, etc.).

6. RUN dependent part of previous item (f.e. initialization, clean CAMAC opera-
tions, etc.).

Here we describe a RUN independent part of such idea implementation (items 2,

4, and 5 above).

3.1 CAMAC hardware library

Item 2 is implemented in the Awconf.c and hwconf.h files. hwconf.h declares (at least)
the following things:

typedef int (*f_read)(FILE *, char *, int %, u_short, int, int);
typedef int (*f_test)(int, int);
typedef int (*f_gen)(FILE %, char *, int *, u_short);
struct station {
char used;
enum hw_keys kf;
f_read fr;
f_test ft;
f_gen fg;
}i
struct crate {
char used;
#define CAMAC_MAX_N 23 /* last valid station N (from 1) */
struct station sts[CAMAC_MAX_N+1];
}i
used for construction of the global CAMAC description array.
hwconf.c implements the following things:
#include <hwconf.h>
int hw_search(FILE #*stream, char rbuf, enum hw_keys key,
int roffset, u_short type, int flag)
int r_<module_name>(FILE *stream, char *buf, int *offset,
u_short type, int cr, int st)
int t_<module_name>(int cr, int st)
int g_<module_name>(FILE *stream, char *buf, int *offset,
u_short type)
inline void select_crate(FILE *stream, int cr)
hw_search() searches for CAMAC crate.station combination in the CAMAC de-
scription array crs[] by key hw.keys key and executes function, corresponding
to flag (valid values #define’d in the hwconf.h header file), with stream, buf,

13

offset, type parameters. Search will either traverse entire CAMAC hardware struc-
ture, if flag == HW_TEST or flag == HW_INIT, or terminate after first match occur,
if flag == HW_READ or flag == HW_GEN.

r_<module_name>()> generates C code for dealing with CAMAC module
<module_name>, situated in the crate cr, station st, for event of type type production,
writes such code into stream stream, and increments *offset (in sizeof (u_short)
units) in accordance with amount of data, should be read from CAMAC. The *buf
points to string, used as name of the event storage in produced C code.

t_<module_name>() tests CAMAC module <module_name>, situated in the crate
cr, station st.

g_<module_name>() works like r_<module_name>(), but produced C code only
fills the piece of event storage by (some) arbitrary data instead of really read data from
CAMALC. Useful for event generator writing.

select_crate() writes C code for CAMAC crate cr selection into stream stream.

All functions returns 0 on success, and nonzero otherwise.

3.2 Command interface to CAMAC configuration scheme

Item 4 is implemented by the gen_gr (1) and ctest (1) utilities.

The gen_gr — C code generator for CAMAC kernel modules of the SPHERE DAQ
system.
gen_gr [-i] [-g] <event_kind>

In the such synopsis form the gen_gr generates C code (in the #define form by
default) for reading event <event_kind> from CAMAC in accordance with compiled-
in hardware description (see discussion about hwconf.c above), and writes it to standard
output.

The default behavior of the gen_gr may be changed by following options:
-1 Generate C code in the form of inline void function instead of #define by

default.

-g Generate C code for event generator instead of CAMAC reading by default.

The gen_gr exits 0 on success, and > 0 on error.

The ctest — CAMAC test utility for the SPHERE DAQ system.
ctest

In the such synopsis form the ctest performs CAMAC tests in accordance with
compiled—in hardware description (see discussion about hwconf.c above).

The ctest exits 0 on success, and > 0 on error.

3.3 RUN independent DAQ control code

Item 5 is implemented in the hardware.h file, contains a generic CAMAC hardware
macro definitions. In the current implementation these are:

S<module name> need to be substituted by name of a CAMAC hardware module (for example,
“4zcp397” — some ADC, “4vcp369” — some TDC, “2sc417” — some scaler, etc.)

14

DAQ_START() starts of data acquisition.

DAQ_STOP() stops of data acquisition.

TRIG_START() enables triggers.

TRIG_STOP() disables triggers.

DEADTIME_STOP() disables dead time.

CHECK_INTR(int *res) checks interrupt validity, and fills res by 0 on success,

> 0 on failure.

e IREG_READ(u_short *ireg) performs input/output register reading, and fills
ireg by obtained value.

e EVENT_TYPE(u_short ireg, u_short xh) by supplied ireg value recog-
nizes event type, calculates corresponding to it offset in type[NEVTYPES] array,
and fills h by such offset value. Valid offsets are 0—(NEVTYPES-1).

e CAMAC_INTR_ON() enables CAMAC interrupt generation.

e CAMAC_INTR_OFF() disables CAMAC interrupt generation.

e CAMAC_INTR_RESET(int *res) checks CAMAC interrupt presence and resets
it. Returns O on absence, > 0 on presence.

bRUN.h selects correct RUN dependent b<run_name>.h header file by #ifdef mech-
anism.

hRUN.h selects correct RUN dependent <run_name>hard.h header file by #ifdef
mechanism.

4 Software dependencies and portability

The SPHERE offline system currently uses the following third—party software:
cernlib package — HBOOK Ntuples support for the ufill (1)°.
ROOT package — ROOT TNtuples support for the ufill (1)°.

All software packages mentioned above are free distributable, so does not limits a
portability of the offline system.

All offline code written on C and C++ for more or less generic modern UNIX-like
environment. All code for user context processes expected to be easy portable to OS’s
other than FreeBSD.

Makefiles follows the BSD make’s (PMake) syntax and uses BSD system makefiles
bsd.prog.mk, bsd.lib.mk, bsd.man.mk, and bsd.subdir.mk from the /usr/share/mk . The
upper directory of the offline system source distribution contains Makefile.def, which
initializes variables, used at offline system making, to default values. It .include’d
by each Makefile in the offline source tree.

In the current implementation the offline system based on FreeBSD operating system
(4.x version at present time). offline sources are distributed as archive
offline-<yyyymmdd>.tar.gz’ (please contact isupov@moonhe.jinr.ru).

Sufill (1) can be based on the cernlib package OR on the ROOT package.
7<yyyymmdd> means some actual year, month, and day numbers.

15

Acknowledgements

Author have a pleasure to thank to S.G.Reznikov and K.I.Gritsaj for useful discus-
sions, and to A.Yu.Semenov for submitting of the calibtof (1)’s initial version.

References

[1] S.V.Afanasiev et al. Measurement of the tensor analyzing power A, in
inclusive breakup of 9 GeV/c deuterons on carbon at large transverse
momenta of protons. Physics Letters B 434, 1998, p.21.

[2] Gritsaj K.I., Isupov A.Yu. A trial of distributed portable data acquisition
and processing system implementation: the gdpb — Data Processing with
Branchpoints. Communication of JINR E10-2001-116, Dubna, 2001.

[3] Brun R., Lienart D. HBOOK Users Guide. CERN Program Library Entry Y250.
CERN, Geneva, Switzerland, 1987.

[4] Brun R., Couet O., Vandoni C., Zanarini P. PAW. Physics Analysis Workstation.
CERN Program Library Entry Q121. CERN, Geneva, Switzerland, 1990.

[5] Brun R., Buncic N., Fine V., Rademakers F. ROOT. Overview. CodeCERN,
1996.

Received by Publishing Department_
on September 26, 2001.

16

Hcynos A.IO. E10-2001-199
KoHndurypupyemsie npeacrapieHis JaHHBIX

u armmnapatypsl KAMAK s peanusauun cucreM c6opa

u o6pabotku gaHHbIX ycraHoBKH COEPA

OmnuceiBaeTcd peanu3alys KOH(PUTYPHPYEMOro MpeNCTaBICHUS SKCIEPHMEH-
TaJbHBIX JaHHBIX IJIS MCIIONb30BaHMS B cHcTeMax cOopa U 0OpabOTKHM HaHHBIX
ycranosku COEPA (JIBD® OMAH). Usnaraercs nporpaMmHasi cxeMa KOH(UIypH-
pyemoro onucanus armmapatypsl KAMAK ycranosku COEPA, npenHazHadeHHad
I peaM3alMu cOopa JaHHBIX Ha OCHOBE CHUCTeMBI qdpb.

Pa6ota BemonxeHa B Jlaboparopuu BeicOKMX dHepruit OUSIH.

Coobuenre OOGbeANHEHHOTO HHCTUTYTA SIEpPHBIX HccienoBanuit. JyGHa, 2001

Isupov A.Yu. E10-2001-199
Configurable Data and CAMAC Hardware Representations
for Implementation of the SPHERE DAQ and Offline Systems

An implementation of the experimental data configurable representation
for using in the DAQ and offline systems of the SPHERE setup at the LHE, JINR
is described. A software scheme of the SPHERE CAMAC hardware’s config-
urable description, intended to online data acquisition (DAQ) implementation
based on the qdpb system, is issued.

The investigation has been performed at the Laboratory of High Energies,
JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2001

Maker T.E.IToneko

IMopmucano B nevats 11.10.2001
@opmar 60 X 90/16. OdcerHas neyars. Yu.-u3a. 1. 1,9
Tupax 300. 3axa3 52896. Liena 1 p. 30 .

N3 natensckuii otaen OObeJMHEHHOTO HHCTUTYTA SIEPHBIX UCCIIEA0BaHUH
Hdy6Ha MockoBckoit o6mactu

