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1. Introduction

The curve smoothing (approximation) is the fundamental problem in mathematics,
practical statistics and data analysis. The development of effective methods and algo-
rithms of smoothing is an issue of modern technologies. The efficiency of the algo-
rithm includes such main properties, as simplicity of calculations, stability to noises
and backgrounds, accuracy of a curve estimation, adaptability of algorithm.

Non-parametric linear regression methods have been developed intensively in recent
decades. The well-known techniques such as kernel smoothing, nearest neighbor
smoothing, spline smoothing, local regression and wavelet analysis [1,2,8] are widely
used in data analysis. The curve smoothing is used in several applications areas [3-7],
such as digital signal processing, track finding, image processing, system identifica-
tion and so on. Data analysis in such systems is usually carried out in a real-time
mode. Classical methods, such as the high orders recursive least squares method
(RLSM) or kalman estimation [3] are poorly suitable due to their computing com-
plexity and instability.

The proposed method is based on a new approach to smoothing the curve, named as
the 4-point transforms or DPT (discrete projective transforms) [9]. A simple iterative
procedure for estimation of a parameter of a three-point cubic model (TPS) has been
derived using DPT and the first order RLSM. A rate of convergence of iterations is
controlled by parameters and a process in itself is similar to the Robbins-Monroe
procedure known in stochastic approximation [10]. A smoother using this method is
stable to random errors and very simple in computing. It obtains fitted values in an
adaptive mode and can work in the data inflow regime. The curve segment is esti-
mated as a continuous cubic curve.

In the proposed approach the relationship between points (samples) is determined by
weight functions, equal to cross-ratio (CR) functions of four points {0,4,L,z }, located
on the real axisX[9]. There are two kinds of CR-functions: {p,=p,(r;4,L)} and
{d;=d;(z;4,1)}, i=1,2,3. The functions {p,} are used as effective noise-suppressing
tools for simplification of the curve shape. Functions {d;} and cubic monospline
O(7;4,L) are used as building units of the curve. 3D vectors Y7 =[y,,,,7,] (obser-
vation ) and P” =[p,, p,,p,]1, D' =[d,,d,,d;] (weight vectors ) are used for operations

with an arbitrary point of the curve y, .

A three point cubic spline [9,11] is taken as a basic model of the curve (TPS-model).
Main parameters of the TPS-model are: three fixed points on the curve presented as vec-

tor R} =[R,,R,,R,], one free parameter @, a number of samples n, and boundary
knots x,,x, of the interval, for which the cubic model shapes the curve within a given
threshold of accuracy. An arbitrary ordinate of the cubic curve is obtained by summa-
tion of a "fixed quadratic parabola" II[7z;1,L;Ry]= (R,,D) and a cubic parabola
&)(z;4,L), where 0 is a free parameter.

For o2<o estimates 6 and R, are determined in two stages. First, the estimate 6, ng
and x,,x, are calculated in a recurrent way using R and then R, is found using output
of the first stage and the simple least squares method (LSM).



The TPS-model differs from the standard cubic model in which all four parameters are
free. The parameters R allow easily to be fixed on a curve using its three points whereas
the shape of the curve can be determined by variation of the free parameter. In addition,
abscisses of the fixed points are used as parameters of weight functions that give such a
construction a property of self-consistency.

This paper presents new methods and algorithms for a local cubic curve approxima-
tion and the smoothing, using DPT and TPS-model. A new effective recursive proce-
dure and the algorithm of the local cubic smoother (LOCUS) are developed.

An efficiency of the LOCUS is proved by mathematical tools and by examples of
using this algorithm for a piecewise cubic approximation, and the smoothing of an arbi-
trary function f(x) = f(x)+e(x), f(x)cC, xe[a,b], given by a set of consecutive

points (samples) {x,,7%,}, k=12,.,N, (N >>4), where e(x)~N(0,07) for
definiteness. An estimate of the function is given as a sum of M local cubic splines
S;(x; C:)) (I(x) is an indicator function) in the following form

{ 1, x e[xbl S Xe, ]

0, x e[xbj ,xg/] >

M
=Y 1(98,(x:0)) , I;(x)=
=1
provided the smoothing (approximation) error does not exceed a given threshold of accu-
racy T

[xp, %, 1< (@,b], M1, (1)

max lf—Sj|<Tf, )

xel[x,;,x,;]
where x;,and x, are left and right knots and 0 ; is mean-square estimates of R and 6

for S ;. The knots are determined automatically using the criterion (2).

As we know, an optimum choice of knots in representation of f(x) by a global spline is
the difficult problem [12]. In use of LSM, a choice of knots for estimation of an approxi-
mating polynomial is determined, as a rule, by a trial and error method.

LOCUS can be used for a tabulated curve as a tool for recovering some features or pa-
rameters from values {ﬂ} and as data compression as well. If f(x) is defined by a for-
mula, then practical use of LOCUS has interest from the computing point of view, for
example, in searching a local extreme, or initial values of roots. Mention must be made
that solving task (1)-(2) by LOCUS has a very simple computing circuit and uses a small
size of memory as compared with the traditional linear regression algorithms.

Section 2 gives the basic conception of the 4-point transforms, the TPS-model and
demonstrates a stability of DPT to random errors. Section 3 describes the recursive pro-
cedure of the cubic smoother based on DPT and the first order RLSM. A passage to com-
putation on parameters and algorithm LOCUS is described in Section 4. Sections 5 and 6
contains examples of the curve smoothing and results of comparison of LOCUS with
other smoothers.

2. The 4-point transforms and the cubic model

This section considers the main properties of the 4-point transforms and construction of
the TPS-model.



2.1. DPT or 4-point transforms

Let points { (x,, f,) }, k=1,2,..., K., be arranged in series on the noise curve
Fe=rfx)+e, x, €la,b], e(x)~ N(0,072), where f(x) c C, x € [a,b].

Let us take three non-coinciding points x, ,x, ,x, €{x,} and fix on the curve three
points as a mark R: (O Ro s (v s R )5 (2, s R, Ry Ry R € (i) -
Using x; ,x, ,X, one can define three parameters: x, = x,, (the basic point) and two
pole points A=x, -x, and L=x, -x, .For simplification we shall transfer the origin at
the basic point

T =% =% = Ty -k,
and denote three fixed parameters of the curve as follows
g;:‘, =R,; 54 E¢~A =E}._§o§ 9~L Eg[, =EL—E0'
Using the fixed parameters and { 7, }, we can form the observation vectors as
Y =16,.6,.4,]1, k=12,...K,,..
Following [9], let us compute weight vectors at the point 7,
P =[Py Pos D], (k% k, #k,) and D] =[dy.d,, . dy, ],

where the functions p,, = p,(r;;4,L) and d,, =d,(7,;A,L) are defined by means of a
cross-ratio ﬁ : f} of four points {0,4,L,7,}, k=12,...,K, ., i=123 (Fig. 1). In
what follows we shall use CRw as the abbreviation for the "cross-ratio weights".
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Fig. 1. Shapes of CRw functions for various values of 4 and L.
Then the direct 4-point transform of §(r) at point 7, (k=12,... K., k#k, #k,)

for given R is defined as three-point convolution of the observation vector ?,l with the

weight vector P, [9]
F =07 R = (Y. Py ©)



The inverse 4-point transformation is defined as
3T =4 (i R) = (Z,,D,), )
where Z! =[0,,0,,8,'], k=12,..,K,_,.
The calculations of p, at 7, are carried out in accordance with above cross-ratio of four
points {0,7;,4,L }. One can see that CRw-functions make up a system of functions with
threefold symmetry. The properties of such functions is given in [9, 13]. To obtaining
CRw at 7, we use the basic "generating" function p, :
p,(rk;ﬂ,L)=ﬁa_—1‘),l¢L¢rk,l,L¢0. %)
Using (5) one can easily to calculate all other weight functions. So, p,, and p,, are ob-
tained by means of rearrangements A <> 7,and L <> 7, in p,, respectively. In view of

Py #0 and Zi Py =1, the functions d,, can be expressed through p,, as
dy =(py) 1Py, J=Bi=i)/2, Z,. dy=1,1i=123. (5a)
If f(x) is assigned with a step of grid %, then CRw depend only from indices k& owing
to scale invariance of Eq. (5), i.e.
Pu = pilkky k), dy =d(kky k), k), #k, .
In what follows, values k, = A/h and k, = L/h are labeled as u and m pro tanto.

2.2. The TPS-model

In ref. [9] the formula for approximation of f(x) < C, x €[a,b] was offered as the
sum of the square-law parabola I1(7;R) fixed by the mark R and by the set of N,
(N, 2 3) monosplines S,(z;4,L) of the k -th order ensuring a uniform approximation
of f(x) on the segment [x,,x,]:

N
F(x)~ (3 R) + . @, (A,L)S, (134, L), ©)

k=3
where a, (A, L) is unknown parameters, and 7 = x — x,.

From (6) at N, =3 we obtain the model of the local three-point cubic spline (TPS) as
S(7;0) = 8,(r;R) = (R,,D)+0Q(r;1,L), @
where © denotes a set of parameters R, and 6. 6 is the unknown free parameter,
O(r;4,L)=7(z = A)(r — L) - the "zeroed" cubic parabola, R} =[R,,R,,R,] - the
vector of the pivot ordinates. In terms of the vectors R, and D, the equation of "the
pivot parabola" looks as Il(z;R) = (R, ,D) (Fig. 2). For the given R the model (7) de-

pends only upon the unknown parameter 6 . Fig. 3 shows changing the shapes of the
cubic curves (7), depending upon choice of 6,,, m=1,...,7 for fixed A,L and R,. When

f(x) is defined by formula, then 6 is determined exactly [9]:

0=—§7[f'(x1)+f'<xL>—§(RL—Rl)], H=L-2. ®)



Thus, it follows from Eqgs. (7) and (8) that using the TPS-model for the cubic approxi-
mation of f(x),xe[x,,x,] we only use a first derivative of the function at points

x,and x, and the coordinates of three points (for comparison: Taylor formula uses one
point and three values of derivatives at the point x, ). In this case we emphasize that the
TPS-model provides a uniformed character of the approximation error on the segment

[x,,%,]

at x, <x, <x,.
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Fig. 2. The TPS-model.
This property of the TPS-model is very useful in smoothing a noise tabulated function
given at a discrete grid. As it was noted in [9] the LSM - estimation of the parameter

in smoothing a cubic curve by the TPS-model has the following simple form:
n

0 =LY, e})'Y 1.4, ©
k=1

k=1

where notation q?,f sets the 4-point transform of function @ at the point 7, (Eq.3). To
avoid a "gross error" of the transformed value, the point 7, should be taken out of the
"noisy zones" defined by the threshold T, : |7, — A |<T,and |7, — L |<T,.
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Fig. 3. Changing shapes of cubic curves depending upon chose of 6,,, m=1,..,7.

The stability of the 4-point transforms to a random noise plays an important role for
their using in data analysis. Let us consider this property in more detail.

2.3. Stability of DPT to random errors

Transformation (3) is stable to random errors. This property has been used in develop-
ment of adaptive projective filters for track finding (APF) [13] and other algorithms for
function approximation and smoothing [15-17].



The 4-point transform has a number of properties useful for applications. For example,
if f(x) is a polynomial of a degree 7, then f“(x;R) will be a polynomial of degree
n — 2. The square-law parabola and the straight line are transformed to a constant and the
constant is transformed to itself. Using of the 4-point transform to the TPS-model gives
us:

SY(7;R,0) =1T"(r;R)+ 80" (734, L) = S, + OALt, (10)
i.e. the cubic parabola is transformed to the straight line with parameters GAL and S,,.
For the noise cubic parabola, the observed vector S looks as a sum of two vectors
S= S+E, where ST =[S,,5;,5,] and E” = [e;,e;,e.] is the error vector. The four-
point transformation of the noise cubic curve S(x;R) gives the following result:
S%(x;R) = (S,P) = (S,P) + (E,P)=5, + OAL7 + ¢,
i.e. error e, is transformed as
e; =(E,P)=¢,. (11)
This error equation shows that the 4-point transformation of {§k} suppresses a random
error by a square-law form since e, is transformed through a denominator of p, (5).

Thus, if errors e, e,,e,,e, of four points on the curve follow the linear-quadratic func-
tion, then using error vector E =[e, —e,,e, —¢,,¢, —¢,] we obtain
(e —e))" =(Ey,P)=0. (12)

Eq. (12) indicates the stability of transformation to such systematization. This property
allows one to apply the procedure of a simple linear
regression for smoothing {S,"} instead of initial (5.}
and then by using the inverse transform (4) to recover
the smoothed initial curve. This way gives a number
of advantages in comparison with the traditional
approach to the curve fitting using the cubic model.
The plots of the 4-point transformation over a noised
cubic curve {S,}, g =-23,m=-37,k=12,.,100 are
shown in Fig. 4.

The relation e /e, =S¢ -S)/5, -S,;) is demon-
strated in the bottom. From the plots we see that this
relation is reduced by more than 75% at the half of Fig. 4.¢"/e for §, and 5.
the interval. The stability of DPT to random errors and properties (10), (12) are very use-
ful in processing scattered data and we shall use the above results for the development of

the smoothing algorithm.
For example, in approximation of the curve the fixed points are known and we should

1.2 3 4 5 6 7 8 9 10

calculate only &, n, andx,, x,. For curve smoothing we can use, first rough estimations

of the pivot coordinates for calculation of 6 , Mg, xy, x, and then find Ry, using the ob-
tained values.

If the variance 0'5 is gross, then the initial vector ﬁo must be chosen carefully. For ex-
ample, we can correct ﬁo by ordinary averaging the pivot ordinates over three neigh-
boring points.



The main difficulty arises in finding the segment of the curve which adequates to the
shape of the TPS-model. A discrepancy between such shapes produces a deviation of
transformed points from a straight line. This discrepancy increases the error in estimation

of § and is used as a test for the interval boundary.

An additional point to emphasize is that the influence of errors in R on the precision of
smoothing (approximation) and the length of the interval [x,, x,] can be adjusted by se-
lection of parameters A and L. The actual form of the cubic model S(x;@) depends
essentially on such parameters as /,T T, ,o and on complexity of f(x) as well.

3. The recursive cubic smoothing

This section deals with the iterative procedure for finding 6. The procedure is based on
the TPS-model. It uses 4-point transforms and the first order recursive least squares

method (RLSM). The estimations of ® for S ; in (1)-(2) are found in two stages: first, the
estimate § and n, are derived. Secondly, the fixed parameters ﬁo are corrected by

means of the standard LSM-procedure using 6 and n,. A simple cubic smoother (LO-
CUS) is constructed for curve smoothing (approximation).

3.1. The iterative procedure for calculation of 0

Let the curve be represented as sequence observations in a discrete form and assigned
with a step of grid £, i.e. f, = f(x;)+e,, x; =a+ih, x; €[a,b]. For definiteness, we
suppose that e, ~ N(0,02). If o7 =0, then a set of coordinates of the curve is defined
analytically Z = f(x,),i=0,12,..,N, N >>4 and we are dealing with approximation.

Modem experiments are frequently dealt with data flows that form a temporary se-
quence and there is a need to estimate parameters at any moment of time using the infor-
mation accumulated up to this moment. In this case a recurrence calculation of the least
squares estimations is used.

When 7 is known, the estimation 8 in (7) can be obtained from a minimum condition
of a sum of squares of the deviations transformed by a direct DPT:

(&) = min .
20 oy
To derive a recurrence formula for computation é,, through én_, , we use Eq. (9). Calcu-

lating @, , at first, for n —1 points and then 8, for 7, we obtain the following relation:

0,=0,,+7,(ALY ) [~ 6, iLz,].
k=1

Let us denote the term 7,(ALY 7;)™ by ¥, = 7(z,;4,L). The expression in the

k=1
square brackets is equal to the 4-point transformation of deviations & at the point 7, :

&l =4, -8, L;O)".



Hence, at 7, = nh, A = ph, L = mh and in view of the equality

ikz _ n(n+1)(2n+1)
pe 6
we obtain
0, =0, +7,[8,°107>~0, pomn], 6, =0, n=12,..., (13)
where
B 6
= um(n+1)(2n+1) "

The value éo is taken to be equal to zero. An inequality |7, [> T, is used as the criterion

(14

of ending the iteration (13). The residual #, is calculated in the form
r,=f,~R.D,)-6,0,=4,-(V,W,), (15)
where V! =[6,,0,,6,] is the vector of the parameters and W' =[d,,,d,,,0,] is the
weight vector. Parameter T ) denotes an accuracy threshold.
At the moment the iterative process is finished, the value 7, = n defines the number of

points (samples), which has been used for obtaining the estimate 0= é,, . Afterward end-

points or knots of the local spline are defined as x,=x; and x,=xy+ngh.

Notice that Eq. (13) is well known in the stochastic approximation theory as the Rob-
bins-Monroe (RM) procedure [10], which is related to a general class of the recursive al-
gorithms used for the solving of equations of the following view

8() = E{G(y,Q)} =0,
where G is a known function of the input signal y, Q - a vector of unknown parameters
and E{} is a mean value symbol. Such algorithms are used, for example, to find roots or
extremum searching of a regression function. The standard RM-procedure for correction
of Q on the base of the sequence observations y, is

Q, =00, + 7,60y ), k=12, (16)

where y, is a special picked sequence that should satisfy the following conditions:
limy, =0, >y, = and dyi<w. (17)
ko k=1 k=1

The second condition guarantees a sufficient number of the correction steps that allows
one to approach close the required solution, whereas the third condition guarantees a fi-

niteness of the variance of the noise accumulated. G is a limited and unbiased estimation
of G: E {G} =G, i.e. Gis aregression function for stochastic process G . In the fulfill-
ment of conditions (17) the procedure (16) converges in meansquare sense [10], i.e.

lim £{(Q, - Q,)’} =0, where Q, - the root of equation G = 0.

The stochastic approximation methods are being applied in a diverse set of field, such as
engineering, biology, theory of management, training, etc. Though the convergence of the
stochastic approximation method is proved strictly mathematically, its practical applica-
tion does not always satisfy the solving of applied problems as this convergence is shown
at k —> oo. In practical calculations it is necessary to investigate some extreme vicinity
for a small number of steps [14]. Therefore, the question of choosing the amplification



factor y, determining the speed of adaptation and convergence of the procedure (16) is

rather important. As is known, the harmonic sequence {y, =1/k}, 1/2<g<1,

k =1,2,... satisfying the conditions (17) finds its wide practical application.
Turning back to the recurrence formula (13), we see that the expression in the square

brackets corresponds to the function G[y,, Q 1] from (16), i.e.
G[¢n<’én—l] = ¢n<h—3 - An—llumn N
In regards to the sequence {y,} (14), only the first and the third conditions from (17)
are strictly fulfilled for it, i.e.
limy, =0 and ) y] =

n=1

12

2
u'm?

(27* -24mIn2-3) <.

The second condition is not fulfilled because of corresponding series converges, i.e.
6 < 1 6

— Y = (2In2-1) <,

;Jm"Z:l:(n+l)(2n+l) 212D <0
However, the sum of the series achieves the limit since #n ~10°. That is really enough
for an effective practical application of the suggested method. The sequence {y,} (14)

tends to zero much faster than a harmonic sequence.
The denominator of (14) is quadratic in » and depends on indices g and m . This

gives us a possibility for accelerating the convergence and suppressing errors more effec-
tively. By suitable choice of 4 and m , one can achieve the rapid convergence which can

exceed the cubic convergence (Fig. 5).
Rewriting Eq. (13) in terms of the Eq. (3), we obtain
0, =0, +7,[(Y,, PO =0, yamn] =
Oy +7u (Y, PR =0, pimn] + 7, [(E,, )R], n=12,..., (18)

where El =[e; —ey,e; — €y,e, — €] is the vector of errors for the variable point 3, .
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Fig. 5. Lg[y,(4,L)] and Ig|y,(4,L) p;,(4,L) | (plots of 1g ™ are shown for comparison)

Hence it follows that the vector of errors in Eq. (13) is transformed through denomina-
tors of terms y,,(4,L) p;, (4,L), i=1,2,3. Graphs of these terms are presented in Fig. 5 for
various A and L in the logarithmic scale in both axes. As we see, the errors in fixed



points e; —e, and e, —e, can be effectively suppressed by choice of 4 and L values. By
this is meant that we can calculate the estimate & in spite of the noise in the pivot ordi-
nates. Mention must be made that e, —e, and e, - e, are unchanged for fixed R, .

Taking into account Egs. (5) and (14), the choice of values of 4 and L must satisfy the
following two conditions (stability conditions):
a) values of A and L must be negative numbers ( A1 <0, L<0 );
b) the greater absolute values of these parameters, the better error suppressing.

The item a) means that the pole points should lay always to the left of a basic point x,,
whereas the item b) means that these points should lay closer to each other, but as far as
possible further from the basic point.

3.2. Correction of the pivot points

As was mentioned above, an ordinary averaging on three ordinates near the pivot points
can reduce the influence of a gross error in the fixed parameters. When we use approxi-
mation, the fixed parameters are known and the correction procedure is not required.

After shifting the origin in the point (xo,]‘:)), the fixed parameters change as
671 =R L~ ﬁo , §L =R .~ Eo , and the vector R, in the equation of the reference parabola
goes in the vector C” =[4,,0,].

To correct 51 and §L we use 0, n, and the standard LSM for minimization of the fol-
lowing functional

]
20 =D @ ~U) > min,
k=1 026,
where U, = 60,d,, +0,d,,, $k = &;c —éQk and Q; = h*Q(k; ,m).
The LSM estimate of C” =[6,,6, ] is written as
CT =(ATA)'B, (19)
where A”A - a nonsingular symmetric matrix of 2x2, with Y d;, >.d;, on the di-
agonal, Zd, «d,, - off-diagonal matrix element, and the vector of the right-hand side is
equal to B" = [z 5kdllz9zakd2k]-
Afterward, we obtain the correction of the constant term R, = gx using 9:1, éL, 6 and
n, by the following form: .
1} -
0,=—> (-0, -00)d;. 20)
0 k=1

Thus, we have obtained the estimates for all four parameters of the TPS model. We can
use these results for the development of an algorithm of solving the task (1)-(2).

3.3. Algorithm LOCUS
The above-described DPT-approach to the curve approximation and the smoothing is a

good tool for construction of the local cubic smoother - LOCUS. The algorithm LOCUS
is designed using equations (7), (13-15), (19) and (20) in following steps:



Start: 90 =0;
0: ¢ =(X,,P,); 7, =6/um(n+1)2n+1)];
0, =0, 47,167 =0, pnn); 1)
7, =¢7,, —(\A’n,Wn), n=12,..;
0=0,in,=n; x,x,;
R,: ¢" =(ATA)'B; éx‘,'
The values y, , umn, d? dzzn , d,d,,, O,, and the vectors P,,D, ,n=12,...,n

1n>

are saved as a look-up table (LUT) for appropriate window.
As seen from (21), the algorithm LOCUS is carried out in two stages. At the first stage

the values 6 and n, are found using DPT, RLSM and the fixed parameters ﬁo. At the

max

second stage the values 6 and n, are used for deriving R, . The structure of the LOCUS
algorithm (21) is shown in Fig. 6.

4,, D”
Al Zn ¢ Py
> RO > [é: ]l> _’f;,

Huomn

Fig. 6. The flow chart of LOCUS

To restore f(x),xe€[x,,x,] by (7), four weight functions and nine parameters
%0,4,L,0,0,,0,,0, ,x,,x, are used. This number can be reduced using the relations be-
tween coordinates of pivot points and coefficients 8, ,6,,0, [13] in the standard cubic
form C(x) = 6, x* + 6,x° + 6,x + 6, as follows

0, =(AR, - LR,)/(ALH), 6, = ('R, - ’R))/(ALH), 6, = R, .
Then recovered by LOCUS estimations 8, =4, R, x,,x, and parameters of the weight
functions Aand L can be converted into the set of output parameters
6= {‘93’92’91"90}’
completely determining the j -t local cubic spline
S:(x:0)=0,x"+0,x* +Ox+0,, ;ce[xb,xe], j=12,..M.

Remark 1. As noted above, the parameters 2and L must satisfy the stability condi-

tions a) and b) for effective suppressing of errors in the pivot ordinates (see Eq. (14)

and Fig. 5). This involves difficulties on the starting phase of the smoothing because
a few starting points at an interval (1, 0) are not processed. To avoid this difficulties,

we shall calculate the estimate by using a new approach - a passage to computation
on parameters.

11



4. A passage to computation on the parameters

The parameters 2and L in the TPS-model (7) are fixed values and ¢ is a variable
value. To underline this, we rewrite Eq. (7) in the following form:

S(7;0) = S3(7;R) = (Ry,D(r; 4", L") + 60 (r;4°, L") , (7a)
where the asterisk indicates the parameters, which remain fixed in calculations.

For this case the regression model is written as follows:

S$(r;0) = I(r;Ry) + 00 (1347, L") +e(r), @2)
A<0,L<0,7>0,A#L=#0,7=123,...,
where { e(7) } is the white noise process.

The amplification coefficient y, depends on 7,, 4* and L'. As indicated above, the
choice of 7* and L' must satisfy the stability conditions (Fig. 5), i.e. the points posi-
tioned between the right pole and the basic point 7 =0 are not used in processing on a
starting phase. To remedy this, we use (in view of continuity of the curve parametriza-
tion [9] ) a passage from variable r towards computation on the parameters 4 and L
and rewrite Eq. (22) as

S(r"34,L;RE) = Tz 3RE) + 00(c 54, L) +e(z") @3)
where 7" is fixed and 1, L are variables. Vector R keeps one variable R, and two
fixed points R} , R ,i.e. Rg=[R; ,R; R, ]". This implies that the basic point in the
quadruple becomes a moving point. Two curve points R} , R; are fixed for the star-
ting values 1, and L, and the other two points Ry =¥(0.), R, = y(r) are changed with
respect to moving the origin 0, along the axis r with a predetermined step of grid &
(Fig. 7b). In moving coordinates distances from origin to 4, and L, are variables and
the distance from the origin 0,to " remains invariable. If points 4, and L, are situ-
ated from the left of 0,, then values 4, and L, are increment at 4, when the origin
moves to the right , i.e. 2,=4,, -4, L, =L, ~h, n=123,... The weights d,(z";,L),
(z"=h, i=12,3) become the homographic functions of 4, and the cubic parabola Q
turns into a square-low function of 4,L:

_ . _ -h(h-L,) _ . _ h(h-4,)
wln = dl(h’/ln)l‘n)_ ﬂ"(Ln _/1”)’ w2n = dZ(h’ln’Ln)_ Ln(L,, —A.”) >
wsnsd3(h;zn,Ln)=M;)‘L";L"), 0, = 0Uhs 2 L) = h(h =4, )h~L,), (24)

where 4, = A, -nh, L, = Ly -nh, and Zj_]w,-,, =1.
Such a trick allows one to simplify the estimation of the parameter € in (23). In this
situation the errors e; , e; are suppressed yet on the starting phase.

Let us consider this case in detail. For the quadruple { 4,, L,, 0,, 4 }, the TPS-model
is written as follows
S, = Ry, Wy, + R Wy, + Ro,ws, +600,Fe,, n=123,.,

where " =t,, +h, 4, = A, —nh and L, = L, - nk (0, is the n-th origin shift).

12



When the origin moves to the right per #, two number consequences appear:
A =g —m)h=p,h and L, =(my —n)h=m,h, n=123,.., where u,,m, - the indices for
ALy (A < Ly <0). Substituting these expressions into Eqgs. (24) gives

-(1-m
Wi = W](:un’mn)=M!

MoHn
Won = Wz(ﬂnvmn)=w’
oMy,
- - A=) =m,)
wa, = wy(py,m,) = a)m)
Qn EQn(‘urnmn)=h3(1_lun)(l—mn)a (25)

where 7y =mg—p,. Let py=-2, my-1, ny=1. Then u, = yy—n, m, =my—n, and the
expressions for w,, and Q, are written as
(n+3) (n+3)
- s Wy, =
(n+1) (n+1)
It is interesting to note that in the passage to computing on the parameters, the cubic
parabola Q,=0Q(r,) is turned to quadratic parabola Q,=Q(n) for fixed . As it fol-

lows from (26), lim |wi| -1, i=2,3 (Fig. 7a).

Wiy, =1, wy, = , 0, = m+3)(n+2),n=123,... (26)

2

4

W3n 1
2

Mo T

0 - 04
2

Won -1
4

2 I h=10= 2, 1= -1
a b
Fig.7. Plots of w,, (a) and Q,(r) for the moving coordinates to the right (b)
(the values of Q, (ny=h*(n+3)(n+2) are signed by circles).

Let {t,,7 }bs K>>4, % =y +e4, 1y =t +At and e, ~N(0,6%). Let us take, for
example, three points ¢, <7, <z, and fix two samples Vi, = R, and it = R .
Other two points in the quadruple { 4,, L,,0,,k} ¥, = R,, and ¥, are variables with
respect to the starting origin, but they are fixed relative to 0, at 7, =0 and
t" =t,, +h= h. In this case, in order to obtain recursive formula for calculation of the
estimate 6, , we shall use Eq. (23) and a functional

D(6) = i[yk —ﬁk(RI)-GQk]Z .
k=1

Using the necessary condition of the minimum g% =0, first for n-1 and then for n

points, we obtain the following recursion:

0, =0, +7,[9,-1,-0,,0,1, 0,=0,n=123,.., @7

13



where y, = HQ_H
> o7
k=1
Let us rewrite the Eq. (27) in the following form:
9n = 9n-l + yn [7,: - (Ran 3wn) - én—lQn] s ‘90 =0,n=123,.. (28)
where W, =[wy,,w,,, w3, 1" and K, = (Y3:71,5 70, 1.

If we substitute 0, from Egs. (26), then we derive the expression for ¥, :

v, = (n+2)(n+3) or

B (k+2)*(k +3)*
k=1
_ (n+2)(n+3)h~ 29
Vu Lo+ +2n+ D) + 2 (n+1)> +14(n +1)% + 182, - 387 29)
In this case, the errors in Eq. (28) are transformed as follows
gn =7nen —7n(E(-§n DW,,), n=123,.., (30)

where e, is an error of 3,, and Ej, = [ejo,eLo,eo,,]T is the error vector of the pivot

points. From Eq. (30) it follows that €;, and e; are multiplied by y,w, and y,w,,,

while €, =€,_1 and €, are multiplied by ¥,w,, and y,, respectively.
If we use Eq. (22) with variable 7 and fixed 4" and L (a general case), then Eq. (27)
gives the amplification factor in the following view

-1
Y =Q(Tn;ﬂ",L')[ZQZ(Tk;f,L‘)} :
k=1

In this case €4, and e;, are transformed by the factors d,,(z) ¥,(z). Plots 7, ()
and y, (1)d;,(x) are shown in Fig. 8b. So, the absolute values of all errors in computing
0, (Egs. 28, 29) is suppressed nearly as 1/4°, for #=1 and i=-2, L=-1 (Fig. 8a). We
see, that y,w, ~ 7,(I;A,L,), i=1,2,3, while y,(1)ds,(t) is much worse in comparison
with y,w, and y,(x) (Fig. 8). It must be underlined that at a starting phase of the
smoothing the plots of ¥, and y,w, are located below of the plot 1/#’ (for the first
five points).

0 O™
1 I/n Locus-P 5 General case
229 -2
-31
-4

-4 e,
5 A=-2; L=-1 [, A=-2; L=-1

0 02040608 1 12 14 16 T 05 08 q 12 14 16

a b

Fig. 8. Lgy,, Igly,w;, | (2) and 187, lg|7, 0d:@)] (b) -

So, using Egs. (23) - (30), we can design the algorithm LOCUS-P for estimating the
parameter &, using the first two points ( ¥y, 7, ) of the sample as the fixed parame-

ters of the model.



The passage from the variable z to the parameters 4 and L allows one to transform
the initial cubic model (22) into a more simple model (23), to increase the degree of
the error suppressing in the fixed points at the starting phase of the curve smoothing.
This approach allows one to achieve a high stability of the smoothing to random er-
rors and to simplify computations. This features of the smoother are very useful for
data analysis including a real-time mode. An empirical study of the algorithm is con-
ducted by using two data set-ups.

The first example is related to the set of scattered equidistant points of the cubic cur-
ve (31) and the second one contain the equidistant points scattered around of an ellip-
se arch (32) ,e(x) ~ N (0,0 %) (for distinctness).

7 (x)=0.5x%-42x% +6.715x - 0.63+ e(x) , 31)

F(x) ==5+4/169 -10(x —3.5)* +e(x) , x [0,7.5]. (32)

MAPLE V procedures randomize(kern) and stats[random,normald[0,sig]](1) were used for
producing the samples { 7, = f, + e, , k=1,.,K }.

Computations of the estimates 4,, R,, R, and R, have been derived for various
values 0,. The quality of estimates 7 has been assessed by relative error r, :

n 2 n 2
= EG- 1Y /377
= i=
The outcomes of these calculations for cubic curve (31) and samples {x,,7,}, h=0.1,
k=1,..,75 are shown in Table 1 and Figs. 9 . Figures 10a, 10b and 11a, 11b show plots

of input and output related to both curves (31), (32) for some of kern and o, .
Table 1.

Oe (€] R, R, Ro le
0.00 0.500000 0.000000 19.08000 -7.95600 0.000000 |56 |
0.01 0.491480 0.117536 18.92289 -7.91611 0.010714 R
0.10 0.494333 0.076368 19.00154 -7.92381 0.015651 |21
0.50 0.507013 -0.10656 19.35109 -7.95807 0.075236
0.75 0.514937 -0.22010 19.56956 -7.97948 0.113964 |16 | 2]
1.00 0.522862 -0.33531 19.78804 -8.00089 0.152407
2.00 0.554560 -0.79273 20.66192 -8.08654 0.299617 (11 -
3.00 0.586259 -1.25015 21.53580 -8.17218 0.430996
4.00 0.617958 -1.70757 22.40968 -8.25782 0.542981 | 61
5.00 0.649656 -2.16499 23.28356 -8.34347 0.635430
6.00 0.681355 -2.62241 24.15745 -8.42911 0.710272 | '
7.00 0.713054 -3.07983 25.03133 -8.51448 0.770280
8.00 0.744752 -3.53725 25.90521 -8.60040 0.818272 |*
9.00 0.776450 -3.99467 26.77910 -8.68604 0.856741
10.0 0.808150 -4.45209 27.65298 -8.77169 0.887730

Fig. 9. Estimates of the TPS-parameters for various 0.
The plots on the right of Figs. 10, 11 are shown an effect of the error suppressing in

fixed and variable actual points. Fig.10b presents a fluctuation of errors &, transfor-
med by Eq. (30), which correlate with corrections of Ad, in the iteration process of
computation of 4, by Egs. (28), (29).

Input samples are labeled as circles. The estimate f(x) is presented by the bold plot,
the true function f(x) by the thin plot. Errors distribution or residuals 7, - #(x,) are
shown in both, as histogramms and as diagram on the axes (7, 7(x;)). A dynamics
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of the errors suppressing and adaptation over the parameter 8 are shown, too. We see
that the output results are confirmed by real estimates of the curves and the high sta-
bility of LOCUS-P to random errors.

. Iglew]

N=75; h=0.1; 6, =3
107 kern:= 4378934730389
A CLTes f

0 60 d0 0 10 20 40 60
) . - 0
Y ot . f’”'fe L lglenynl
o % e 0.1 —h -4
. : —1.10{ fe| e
20 40 60 BT RAETS 5 o5 5 60 aw e
a
{ N=75,h=01;0,=4 En
104 kern:=54321670189 o
o L
-:;9‘?‘-’0°° - f:fe L
0 PAle s e 0 40 60
Pe S Nw % Af
A o Cad o n
' ° ° o N °°° / °
-101 . ° o °
1 r=05511 o %
20 40 60 00 0 10 0 0 1000 a4 e

b
Fig. 10. The smoothing of the cubic curves using the LOCUS-P.

001
83/ ] A6,
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4] 0
23
00130 40 60
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0-“, - Lt e 64 02; _2_\\. lg|e,-,,y,,|
6=05  r.=008752| 41 . 011 A
-2- T T T T 2 ﬁ 0 6]
20 40 60 2 4 6 8 T o0 1 T
a
0 - 001
2
) Oy I A0,
0
13
-2
37N @ 6 s s
0
' uz-f'"'/”
6=0.25 r,=0.072401| -2]
20 40 60 & 0.1
-4 T T f; 0 -
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Fig. 11. The smoothing of archs of the ellips and the circle using the LOCUS-P.
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Figure 11 shows similar plots related to the arch of ellipse (32) for 0,=0.5; 0.25. One
can see that the LOCUS-P fits the noise ellipse arch using only one cubic segment.
Section 5 considers examples of applying the LOCUS to fitting curves by cubic seg-
ments in accordance with the task (1)-(2).

5. Examples

As examples, we shall consider the use of LOCUS for smoothing (approximation)
of the arbitrary curve presented by the gross sample size (~1000 equidistant points) .
LOCUS has restored an irregular shape of the curve the seven local cubic segments
(Fig. 12). The observed sample (a) and the quality of smoothing (a, ¢, €, f, g) are
shown by plots of the input, the restored curve 7(x), residuals and deviation of 7(x)
from the true curve. The plot (d) is the number of points included in S; (N; = ng). The
example of 4-point transformations (§“) for each cubic segment and their

smoothing (87 ) is shown in window (b).

M\w _‘” (i im-.,a..ﬁ N

<I,Svf1
a 0 S o
600 800 1000 00 400 600 800 1000

3003 .
200 7 d
100

00 400 600 800

-.20 20 'k

Fig. 12. The example of the curve smoothing by the LOCUS
Input parameters: X =867 , #=0.03, 5, =0.08, T, =30,,
Output : max|f -7 0.118, K,,/K,, =18, r, =0.125
Fig. 13a shows the results of processing the new "observations" (sample size ~250),
that has been obtained for the above curve. The approximation of the test curve we
see in Fig 13b. The number of cubic segments increases because of a greater accu-
racy.
The process of adaptation of each cubic segment and the plots of amplification fac-
tors (Ig 7 ,; ) are presented in Fig. 13c.
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Fig. 13. The example of the curve smoothing and approximation by the LOCUS

Mention must be made that the LOCUS uses three fixed points situated outside the
first segment on the left. As remarked above, this difficulty is removed by using the
LOCUS-P (see Section 4).

6. Comparison of LOCUS with other smoothers

LOCUS-estimations { f 1ocus} have been compared with estimations { 7 } obtained
by other non-parametric smoothers, such as Supersmoother, Kernel, Loess, Spline,
wavelet de-noising [1, 8, 2] and the moving average filter (MAF). To compare LO-
CUS with other smoothers we use samples, dispersed around of the cubic curves
(Figs. 14, 15) and different shapes of curves, such as ellipse arcs, gauss curves.

On Fig. 14 we can see, that the LOCUS-estimates have the smaller deviations from
the true curve for both MAF and wavelets.

. ) _ Ffi

Fig.14. Comparison of LOCUS-estimates with MAF (15 points in the moving aver-
age) ; (+ - samples, dot lines - the true curve, solid lines - estimates) and wavelet de-
noising (symmlets). Deviations £ f; and £ f;, are shown on the right.
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Comparison of fitting results for cubic curve using LOCUS-P and Supersmoother is
presented in Fig. 15. Graphs of deviations (f - fiows) and (f - fs,.) are shown on the

right.
ﬁfs‘uperm +0.5
AN /R WA

- -0.5

- -1.5

Fig. 15.
The other example relates to fitting of semi-gaussian shaped pulses which used as a
signal model in radiation detectors:

f= Aexp(— _g;”l)z_] i

2(s + a(t — m))?
A=1,5=0.8, m=1325, a=0.225.
The amplitude A4 is proportional to the energy of the detected radiation, m is position
of the pulse's extremum and s and « the shape dependent parameters [18].

The sample {#,,7 }, k=1,2,....,75 has been generated with kern= 543216701819,
0,=0.075 and h=0.1 at 0<¢<7.5 (Fig. 16). Two segments of 17 and 58 points and two
sets of the estimates have been found using LOCUS-P:

RM =0.0039802822, RL] =0.7828929325, Rol =0. 8302133725, 4, =-0. 5850435980;

Rn =0.8339159463, RL2 =0.09457573661, R02 =0.00722632226, 8, =-0. 0085234840.

The values R.;, (j=1,2) are derived for 1,=-L,=8, 1,=-L,=29 with respect to midpoints
of the segments. The relative error r,=0.1481113565 assess the quality of the smooth-
ing. The dynamics of the smoothing process is shown on the right of Fig. 16.

The same samples have been processed using other smoothing procedures [1,2]. The
plot of the output £, f;, the residual histogramms r, , s and the deviations £ fsper ,

Jfi0cus are shown overhead. We see, that both outcomes are in agreement with the true
function f.

5 -&',eiksuppressx‘ng
0 4060
_(‘\'\‘ 0ikzsiimminm
0w 6
Ay

.

AG,
001 "0 a0 60
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The last example (Fig. 17) is related to comparison of the estimates obtained in proc-
essing of the noise curve (the arch ellips) (32) with o, =3, using LOCUS-P and four
other smoothers: Kernel, Spline, Loess and Supersmoother.

The estimate £, is expressed by the following cubic curve ( 1 =-L=36):
J1ocus=2.307530363d(x; 1)-0.040161293 d,(x; 1)+7.98460627d(x; /1)+0,01609078556x(x2- A 2).

The estimates fious, fouze and the true function f (dot line) are presented on the left
and the plots of fious , fremes fioess a0d fiime are shown on the right.

~ _ — ot

€ix suppressing

1 Samples
124 t (o.73)

I T T T
(o) B4 6o

ek estimation

, . , . 37T 4 60
1: f]:ocus © [S'uper

6
4
2 f
:

0 2 4 6 8 1 0 2 4 6 8 A

00150 Ty 6o

Fig. 17. Comparison of the LOCUS-P estimate with the estimates of other smoothers
Above mentioned examples and the comparison results with other known smoothers

demonstrate the performance capabilities of proposed approach and the method for

the cubic smoothing in the adaptation mode.

7.Conclusion

The TPS-model and the iterative method for approximation and smoothing of curves by
using DPT and the first order recursive least squares method is proposed. The simple lo-
cal cubic smoother LOCUS is constructed. The algorithm is stable to the additive random
noise and has a high adaptation speed. The iterative procedure, type of Robbins-Monroe
procedure, is derived to calculate the estimate of free parameter of the TPS-model. The

amplification factor is adaptable by parameters 4, m and varies with n as y, o< 1/n°.

A concept of a successive definition of parameters is used. It has allowed one to reduce
approximately as much as twice a number of operations and it is essential to reduce size
of the working memory needed for initial and intermediate data storage.

The performances of the algorithm are investigated by the programmed way. Noise sta-
bility and efficiency of the method are confirmed by examples. Comparison of LOCUS
output with output of other smoothers is made. The algorithm is very simple in program-
ming, does not require large resources of memory and is focused on its application in
digital signal processing, contour processing, track finding and for the numerical solving
of many practical problems as well.

The distinctive features of the LOCUS are: a) third order accuracy approximation; b)
successive data processing; c¢) simple computing circuit; d) guaranteed convergence of
iterations; e) stability to random errors; f) parametrical adjustment; g) automatic knots
definition; h) weight functions are known. These properties provide such characteristics
of algorithm, as adaptability (b, d, e, f, g); accuracy (a, e, h); stability (c, €); high speed (c,
d); flexibility (a, b, f, h); efficiency (b, c, d, h).
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For example, the estimate of speed adaptation LOCUS makes approximately 18 short
arithmetic operations per one iterative cycle that twice as less than the number of opera-
tions necessary for realization of the recursive least squares algorithm of the third order. It
is required approximately 36 operations [3]. The efficiency of the algorithm is estimated
by high speed and the memory resources necessary for data storage, programs and work-
ing space. In our case these characteristics are quite good, because the calculation of the
estimations of the parameters is carried out in a data inflow mode and does not require to
storing samples in a complete size. The accuracy of the algorithm is provided by the order
of the chosen model, accuracy of weight functions as well as by optimality of the criteria
used for calculating the estimations.
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Iuxycap H.I. E10-2001-48
JlokanpHO-KyOMYecKoe CIiIaXHBaHUE KPUBBIX B PEXUME afalTalud

IpemnaraeTcs HOBBII MOAXOA K PEIIEHHIO 3a0a41 JIOKAIbHOM allipOKCUMALUK
U CDIaXUBAaHMIO KPUBbIX. OTHOLIEHHE MEXYy TOYKaMH KPHBOM OIPENENAETCS CIie-
LMaIbHBIMM BECOBHIMM (PYHKLHMSIMU CJIOXKHOTO OTHOLIEHHS 4YeThipex Toyek. Koop-
JUHATBI TPEX ONOPHBIX TOYEK KPUBOH UCIIONB3YIOTCA B KaUeCTBE IIapaMETPOB Kak
NS BeCOBBIX (PYHKUMIA, Tak U 11 KyOudeckoi mozenu crnaxusarena (TPS). Co-
30aH OPOCTOM B BHIYMCJIEHAH M YCTOHYMBBIH K CITyJailHbIM OLIMOKaM KyOMuecKuH
crnaxusaroiuil puisTp B pexkume agantauuu (LOCUS). Ouenka cBoGomHoOro na-
pamerpa TPS onpenensgercs peKypcCHBHO HE3aBHCUMO OT (hMKCHPOBAHHBIX Iapame-
TPOB C 3(p(PeKTUBHBIM TTOFABICHUEM OIIMOOK B ONOPHBLIX TOYKAX U MOXET KOHTPO-
JIMPOBATHCS C MMOMOILLBIO IIapaMeTPoB MofeH. DPheKTHBHOCT ¥ IIOMEXOYCTOMYH-
BOCTh aIIOPUTMa ITOATBEPXIEHbl INPHMEPaMHM M CPaBHEHHEM C pe3yNbTaTaMu
06pabOoTKK KPHUBBIX JPYTMMH H3BECTHBIMH HEMapaMeTPHIECKUMH CIIIAXUBAIOLIMMH
¢unsTpamu.

Pa6ora BbimonHeHa B JlabopaTopuu MH(GOpPMaLMOHHBIX TexHonoruin OMSH.

Mpenpunr O6beNUHEHHOTO HHCTUTYTA SIEPHEIX Mccnenosanuid. Iyona, 2001

Dikoussar N.D. E10-2001-48
A Local Cubic Smoothing in an Adaptation Mode

A new approach to a local curve approximation and the smoothing is pro-
posed. The relation between curve points is defined using a special cross-ratio
weight functions. The coordinates of three curve points are used as parameters
for both the weight functions and the three-point cubic model (TPS). A very sim-
ple in computing and stable to random errors cubic smoother in an adaptation
mode (LOCUS) is constructed. The free parameter of TPS is estimated indepen-
dently of the fixed parameters by recursion with the effective error suppression
and can be controlled by the cross-ratio parameters. Efficiency and the noise sta-
bility of the algorithm are confirmed by examples and by comparison with other
known non-parametric smoothers.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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