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1 Introduction

The curve fitting to experimental data frequently uses information about
uncertainties in both dependent and independent variables. In a previous
paper by one of us and coauthor !, the Extended Orthonormal Polynomial
Expansion Method (EOPEM) was presented, accounting for errors in both
variables, with references to other methods and a comparative test. A biblio-
graphy for the period 1878-1974 is given in 2. Here application of EOPEM
to water energy spectrum data of a new effect is presented, which could
be useful in modeling a variety of important biological and environmental
processes. We give here a further test of EOPEM by the classical Pearson’s
3 data with York’s * errors. A numerical experiment (cf. Tables anf Figure)
demonstrates the main features of the EOPEM concerning the so called joint
error corridor?.

2 Remarks and notations concerning EOPEM

The test data consist of the experimental values z, f, oz, o f of the indepen-
dent variable z and of dependent variable f and their standard deviations
0,07 at the i—th point z = =, f = f;, ¢ = 1,2,... M. The input data
interval @ € [z1, 2] is transformed to the unit interval ¢ € [—1,1]. The
algorithm generates recursively orthonormal polynomials on the set {¢;,i =
1,2,..M} {\IIECO), k=0,1,...} and their derivatives {\II,(cm), m=1,2,...} us
ing Householder-Forsythe three-term relation for orthogonal polynomials by
Least Squares Method ®.

The generalized relation for one-dimensional generation of orthonormal
polynomials and their derivatives (m > 0), and integrals (m < 0) in our
OPEM is:

W) () = Y [(g = are) U (@) — (1= 8k0) B () + ¥V (q)] (1)
(m)

One generates ¥, (¢) recursively, where k41 is a normalizing coefficient
and Yg+1 = 1/Bk41. Coeflicients ax41, Bk are scalar products of the polyno-
mials in the test data: axy1 = (U, q¥x) and (1 — ko) Bk = (Yr—-1,9¥%).

The polynomials {\Ilfco)} satisfy the following orthogonality relations:

M
> wi " (g0) ¥ (1) = Ot
i=1
over the point set {g;,i = 1,2,... M} with weights w = 1/0'? .
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(m)a

The approximation values f¢ and f of function f and its derivatives

of f(M) are expressed as :

m)a Zak\l’(m) Zqu (2)

In a new, extended version (EOPEM) the optimal degree N of approxi-
mation polynomialsin eq. (2) is selected by the algorithm using following cri-
teria. First, the fitting curve f¢ from the n-th approximation step, n = 1, 2, ..,
should belong to the joint error corridor [f, — Sn, fn + Sk]. The corridor is
defined by the total variance ® S? at point ¢ = ¢;, f = fi,i =1,2,..., M as:

Sp = 0y% + (0f3_1/09)% 0. (3)

Note, the joint corridor depends on the respective derivatives, calculated at
the previous iteration. The function f® should be linear over each neighbor-
hood of given g, fi. Second, for each step n = 1,2, .. the following x2-

Z[fa (Iz fz wn(%) n(q) = 1/5721

should be minimal. If the first criterion is satisfied, then the search for mini-
mum of x?2 is terminated. For details we refer to ! ,5. Here we test EOPEM
by the classical Pearson 2 straight line example, with errors proposed by
York #.(The errors in z are between 0.6% and 13.5% and for y are between
0.3% and 22.7%). Our results with two iterations are: f = 5.3969 —0.4638z
, compared with York exact procedure: f = 5.463 — 0.4z and with Effective
variance method ( EVM) 278 (2 iterations) : f = 5.396—0.463z. It is evident
that our results and EVM test are comparable. They give an error about 3%
in the line slope compared to the exact York fit while the standard least
square method gives about 30% error. The objective is to use of our LSM-
EOPEM and to reduce the variables from M + N to N (instead of powerful
MINUIT algorithm).!?

3 The experimental data fit

We apply EOPEM to fit data {z; fi} where z; are the energy values of
Hydrogen bonds in a water sample and f; are values of a random function f
called energy spectrum of the sample !!. The spectrum is proportional to the
energy probability distribution function 12 of the Hydrogen bond energy. It is
calculated as a function ! of contact angle probability distribution measured
during evaporation of water sample’s drops. Experiments 131% show that f is



influenced by various physical interactions. Here we give a polynomial data
approximation of a new effect connected with water transport influence on
water spectrum.

One measures the energy spectrum of deionized water sample before and
after its transport with velocity 3.1073m/sec through a nuclear filter. The
nuclear filter is a 10pm thin folio with holes in it, produced by heavy ions
bombarding the folio in an accelerator setup. Each hole has a diameter of
0.15pm. The energy spectrum of a water sample is shown on Fig.1. The ovals
correspond to the energy spectrum data of a deionized water sample. The
square marks correspond to data of the same sample (called treated sample)
but measured immediately after its transport through the nuclear filter.

This transport can be considered in some sense as a model of a variety
of biological processes involving biomembranes with presence of water. It al-
so presents a model discussion for changes in water spectrum after water
transport in natural filters available in the environment. One observes a sta-
tistically reliable effect of change of the spectrum data maximum to higher
energies as a result of water transport through the holes of the membrane. It
indicates the change in the distribution function of the water Hydrogen bond
energy.

In Table 1 we give the corresponding numerical values in the following
eight columns: the point number, the values of z, the errors o, the values of f,
the errors o; and the corresponding smoothed values after first approximation
fi, after second approximation f3, the deviations A fo = f§ — f and the total
errors Sy defined by the eq.(3). The approximation f{ uses errors only in f
(cf. 1), while f¢ takes into account the errors in both variables.

Table 1. Water data EOPEM fit by 11th degree polynomial

No. x O f oy bii f3 dfa S

1 0.008 0.0006 0.0 0.01 0.0 -0.04 0.04  43.1212
2 0.0085 0.0006 56 172 560 5.60 -0.0026 3.2421
3 0.009 0.0007 17.16 1.75 17.16 17.15 0.0068 2.2546
4 0.0095 0.0008 1145 244 11.48 1148 -0.032 2.6841
5 0.100 0.0006 25.51 3.51 25.23 25.23 0.28 5.2135
6 0.105 0.0006 53.26 3.36 53.49 53.49 -0.23 3.7727
7 0.110 0.0011 44.22 2.68 43.26 43.26  0.96 7.0920
8§ 0.115 0.0011 14.01 144 144 1440 -0.39 4.8377
9 0.120 0.0012 6.3 158 627 6.27 0.026 1.5804
10 0.125 0.0013 3.57 2.06 3.60 3.60 -0.030 2.5163
11 0.130 0.0013 6.50 1.26 6.47 6.48 -0.026 4.1807

12 0.135 0.0007 6.14 354 6.16 6.16 -0.015 7.0320
0.139  0.0007 858 499 853 853 0.056 36.0803
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Figure 1: Water energy spectrum transport data (squares) of the treated sam-
ple with EOPEM fits: 11-th degree polynomial (continuous line), 9-th degree
polynomial (dotted line). The ovals correspond to the untreated sample’s
spectrum data.



Already the second approximation f§ with a polynomial of 11-th degree
satisfies the first criterion. The first approximation f{ gives for the normalized
\/? the value 0. 2843 and the corresponding value f§ for second approx-
imation is more than two times smaller, equal to 0.1259. It is evident that
the deviations d f, are less than the total errors S, hence the first criterion is
satisfied. The next approximation steps n show stability of f¢ and x2 values
of up to 3-rd order after the decimal point.

To demonstrate the requirement of the first criterion,we conducted the
following calculation experiment. The approximation procedure was forced
to proceed by polynomials of lower (9-th and 10-th) degrees N than the
algorithm has chosen itself (11-th degree, cf. Table 1). When the degree N
was restricted to N < 10 then the algorithm has chosen polynomial of 9-th
degree. In this case only at point No. 8 the fitting curve lies out of the joint
error corridor while for N = 10-th degree this occurs at points No. 5,8. With
the input data x, og, f, oy from Table 1 the respective calculation outputs
are arranged in Table 2: number of point, approximating values f{(9), f5(9)
and f{(10), f5(10); deviations df5(9), 6 f5(10) and total variances S»(9),
S2(10). Here the numbers 9 and 10 in parentheses indicate the approximating
polynomial degree.

Table 2. Water data EOPEM fits by 9th and 10th degree poly-

nomials

No. Jf(9)  f5(9) fi(10) f(10) d/5(9) 4f8(10)  S»2(9)  S»(10)

1 0.0001  -0.2409 0.0001  0.8141 0.2409 -0.8141 18.6549 23.3638
2 5.5605  5.6833 5.4915  5.0178 -0.0833 0.5822 5.4956  6.2573
3 17.3975 17.1967 17.6345 17.6271 -0.0367 -0.4671  2.3893  2.6789
4 10.0668 11.0139 9.3071 10.2734 0.4361 1.1766 2.6194  2.7015
5 30.1029 29.5335 31.1248 31.3175 -4.0235 -5.8075  4.8593  4.9518
6 50.9205 50.7383 51.4879 51.1738 2.5217  2.0862 3.4844  3.4378
7 42.0634 45.4471 41.3119 43.1623 -1.2271  1.0577 5.6740  5.7460
8 16.0924 21.1762 16.0517 19.93556 -7.1662 -5.9255  5.3019  5.0329
9 3.3969  5.1999  3.8322  5.5108 1.1001  0.7892 1.6329  1.6848
10 6.9941  5.3793 -6.1697 4.4974 -1.8093 -0.9274  2.3343  2.2408
11 5.9420 5.9638 6.1158 6.3386  0.5362 0.1614 1.8401  1.4594
12 7.3318  6.8504 6.8921  6.3996 -0.7104 -0.2596  3.9441  3.6720
13 8.2103  8.0986  8.3612  8.4860 0.4814  0.0940 8.0578  5.7339




4 Concluding Remarks

A new application of the algorithm with the orthonormal polynomials of
Forsythe type involving errors in both variables is discussed. An accurate
approximation of physical data for energy spectrum of water transported
through membrane is presented. It permits to distinguish some important
physical effects.
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Borganosa H., Tonoposa JI. E11-2001-235
Hcnosnp30BaHue OPTOHOPMHPOBAHHBIX ITOJIMHOMOB

151 PUTHPOBAHUS HaHHBIX [0 SHEPreTUYECKUM CIIEKTPaM BOMIBbI,
TPAHCIIOPTHPOBAHHON 4epe3 MeMOpaHy

IpencraBneHo HOBOE NpPUMEHEHHE IOAXOAA UL ANNpPOKCHMAalUMM KPHUBBIX
C MOMOLIBI0 OPTOHOPMHUPOBAHHBIX IOJIMHOMOB, KOIZa 3aJaHbl OLIMOKH 10 06eHM
nepeMeHHbIM. ONUCHIBAIOTCA U alNIPOKCHUMHPYIOTCS JaHHbIE, CBUIETEIbCTBYIOLIME
0 HOBOM 3¢hheKTe H3MEHEHHUs CIIEKTPa BOMBI IOC/IE MMPOXOXIAEHUS Yepe3 HOPUCTYIO
MeMOpaHy.

Pa6ota BhimosnHeHa B JJaboparopuu HHGOPMALMOHHBIX TexHosoruit OVSIH.

Coobienre O6beIHHEHHOr0 HHCTHTYTA SIEPHBIX HccnenoBanui, Jybna, 2001

Bogdanova N., Todorova L. E11-2001-235
Use of Orthonormal Polynomials to Fit Energy Spectrum Data
for Water Transported through Membrane

A new application of our approach with orthonormal polynomials to curve fit-
ting is given when both variables have errors. We approximate and describe data
of a new effect due to change of water energy spectrum as a result of water trans-
port in a porous membrane.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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