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1 Introduction
The physics of Josephson junctions is based on a known sinusoidal relation
Js (Ag) = j.sin Ag (1)

where j, is the Josephson supercurrent, the amplitude j. represents the critical Joseph-
son current, and Ay is the difference between phases on each side of the barrier.

On the other hand, it is well known that apart from an insulating tunnel structure,
any sufficiently short localized weak link, such as a very short constriction in the cross-
section of a superconductor, a point contact between two superconductors, as well
as two superconductors separated by a thin layer of normal metal, could be used as
a Josephson junction, obeying the current-phase relations, usually different from (1).
This fact forced Licharev [1] and Waldram [2] to propose a generalized definition: a
weak link is supposed to show a Josephson behavior if the supercurrent-phase relation
is a single-valued and odd analytical function which can be represented as a Fourier
series

o0
Ga (Ad) = jusin (nAg). 2)
n=1
The crossover between an ideal Josephson behavior and a uniform superconduct-
ing flow was studied in detail by solving exactly the Ginzburg-Landau (GL) equation
for a 1-D superconductor in the presence of an effective d-function potential of arbi-
trary strength [3]. Recently, a modified GL type model has been formulated [4]. This
model could be equally well applied to a boundary between different superconductors,
superconductor-insulator, and superconductor-normal metal. The purpose of our paper
is to apply this modified GL model for calculating the supercurrent-phase relation and
the crossover between a Josephson behavior and a uniform superconducting flow.
We would like to mention that the Josephson contacts in principle are discussed in
recent investigations [5] - [8].
This work represents an extensive explanation of the numerical results from [9].

2 Formulation of the Problem

We focus our attention only on current-conserving solutions of the modified GL equa-
tions [4], in which a nonzero current across the boundary is associated with a linearly
varying asymptotic phase. Let us accept a one-dimensional approximation (the de-
pendence of all relevant quantities is only on the coordinate z across the boundary).
Then the magnetic field of our uniform current density will depend at least on one of
the transverse coordinates, and in one-dimensional approximation this field could be
neglected. 5

A simple sketch of a SNS (SIS) Josephson contact is shown in Fig. 1. Here 2A is
the full length of the contact and 25 is the thickness of layer. All the sizes in Fig. 1
are in a dimensionless form (see below). We shall consider SNS contacts of finite sizes,
thus 0 < § <A < oo.
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Figure 1: Simple sketch of the Josephson contact.

Then, the order parameter ®(Z) satisfies the following equations:

2~ ~ ~ 0
—%¢,l+as¢+bs|®|2@ =0, (3)

for the superconducting domain Z € S, and
R ~ ~ = 9=
——%—q)”-{-an@-l-bnlql'ﬁq) =0, (4)

for the normal domain 7 € N. The necessary boundary conditions (BCs) at = +A
as well as the conditions at the interfaces 7 = + § will be discussed below. The GL
phenomenological coefficients satisfy the conditions a; = —|as|, a, > 0, by > 0, b, > 0.
We are free to choose the value of one of the effective masses m, and m,,. The effective
mass of superconducting electrons m; is usually chosen to be twice the electron mass.
This makes the mass m,, as a parameter depending on the layer’s material.

Let us define the coherence length & = %/+/2m|as|, as well as the dimensionless
distances z = Z/£, and the order parameter ®(z) = ®(2¢)+/bs/]as|. Thereby, A = A/¢,
§=0/¢,50 S =(=A,=6)U(6,A), N=(=60), D=[-A,A],and d = [-4,6]. In a
dimensionless form the equations (3) and (4) can be rewritten as follows:

—@"—®+|®®=0, z€S, (5)

——ni—Q)"+a0<I>+bo|<I>|2<I>=0, Z € N. (6)
0

Here we merely substitute mg = my,/ms > 1, ap = an/|as| > —1, and by = by /b, > 1.
The case ag = —1, by = 1, and my = 1 corresponds to a uniform superconductor
occupying the whole interval D.

It is advisable to write the above equations in a general form using the step functions:

1, zeS; [ -1, z€S; _J 1 z €S,
m(z):{mo’ z €d, a(z):{ao, z €d, b(z)_{bo, z €d.



In this way we formally obtain

1

) " + a(2)® + b(2)|®*® =0, z€ SUN. (8)

We note that Eq. (8) has the known first integral
%

J= 2m(z)

(29" — ®*®'), 9)

where the constant J physically represents the supercurrent density, so from now on we
substitute js = J.

Under this assumption we can achieve our goal to investigate the full crossover from
the Josephson effect to that of a bulk superconducting flow.

3 Variational Formulation

As usual [3] we can factorize the order parameter ®(z) = R(z) exp [ip(2)]. In that way
we can rewrite the free energy functional within norm factor 2/A in the form:

A
FIR] = / F(z, R, R) da, (10)
A
where the energy density F is given by:
_ _1_ 1 2 2 1 4 m(z) J?
F = 3 [_m(z)R +a(z)R* + 5 b(2)R 2

The necessary extremum conditions [17] for (10) within the class of sectionally
smooth for z € D functions R(z) result in the following boundary value problem (BVP):
— the Euler-Lagrange equation for the amplitude R(z)

—-T;L%R” +a(2)R + b(=) R + T%giz 0, (11)
— the boundary conditions at z = £A
R'(-A)=0, R'(A)=0, (12)
— the Weierstrass conditions at the points z = &6
R’(—é—O)z%{;R’(—5+O), %;R'(a—O):R'(MO). (13)

When mg = 1, the derivative R’(z) is continuous in whole D.
In terms of amplitude R(z) and phase ¢(z) the first integral (9) can be converted
to the form:

Rp' =, (14)



and we assume that the function ¢(z) satisfies the continuity conditions

1, , J , 1, J

mo(p (—5+0)—@(~5—0)—m, (,0((5+0) (5—0>_R2(5)

Let us introduce the vector of physical parameters p = {J,ao, by, mo}. It is clear
that apart from the space coordinate z, the virtual solutions R(z,p) of the formulated
nonlinear BVP also depend on the parameters p. We suppose that R(z,p) as well as
its space-derivatives R'(z, p) are continuous functions of all the parameters p on some
given domain P € R%. Then the functional (10) is a differentiable function F(p) of p
and it is easy to prove that:

-
™o

A
OF (p) OF :
= [ Zdz, k=1,...,4. 15
Opy, Aapk ‘ (15)

We notice that the formulated nonlinear BVP (11) - (13) has more than one solution
(see below). In the infinite case A — oo and § — 0 this fact is pointed out in [3, 9],
where analytical solutions of the above problem have been derived. The existence of
many solutions of BVP in conjunction with their dependence upon parameters p forces
us to study the stability of these solutions.

The varying of each of parameters p causes a variation of the distribution R(z,p).
This means that the primary stable solution R(z,p) can lose its stability by changing
p. In order to examine the stability of some concrete solution R(z,p), we introduce the
Sturm-Liouville problem (SLP):

LA COLEPYS (16)
P(—A) =0, ¥'(A)=0, a7)
w'<—6—0>=miow'<—5+o>, miow'(a—m:w'mo» (18)
Here P2
0(2p) = () + 30 () R2(ep) = 30

is the potential of SLP, originated from the mentioned solution R(z,p). Mathematically
SLP represents a sufficient extremum condition for the functional (10) - when A = 0
then Eq. (16) is just Jacobi’s equation [17].

In accordance with the physical sense we only shall consider the solutions satisfying
the condition 0 < R(z,J) < 1, z € D, for fixed J # 0, and assume that R(z) = 0
onto some point set can be reached only in the case J = 0. Under these assumptions,
the potential ¢(z,J) is bounded on the interval D, so SLP (16) has (see for details
the classical book [18]) counted lower bounded number of different eigenvalues Apn =
A <AL <A< ... A < ... Every eigenvalue \,, n = 0,1,2,... conforms unique
eigenfunction v, (z,p) which satisfies some norm condition, for example,

A
/d},%(z) dz=1. (19)
“a



The stability of the solution R(z,p) is determined by the sign of the minimal eigen-
value Apin(p). If the condition Apin(p) > 0 is satisfied, then the solution is stable.
Conversely, if Apnin(p) < 0, the solution is unstable. In the parametric space P the
equation

Amin(p) = 0 (20)
determines a hypersurface, whose points appear to be bifurcation points corresponding
to the solution under consideration. The cross-sections of the bifurcation hypersurface
(20), when there are chosen pairs of the parameters p for fixed values of others, are called
bifurcation curves and the respective values of the parameters - bifurcation (critical)
parameters. From a physical viewpoint the most interesting seem to be the bifurcation
curves of kind “critical current - barrier strength”:

Amin(jcv gl) = O’ (21)

for given g, and gs.

4 Numerical Modelling

The Generalized Continuous Analogue of Newton’s Method (see the survey by L.V.
Puzynin et al. [10]) for solving the nonlinear differential equation (11) on the interval
z € SU N with zero Neumann conditions (12) at boundaries z = +A and continuity
conditions (13) at the interfaces z = £6, is applied.

At each iteration the corresponding linear boundary value problem is solved nu-
merically using the finite elements method on a nonuniform grid, condensed to the
boundaries z = &4 of the layer. Then the corresponding phase ¢(z, J) is calculated by
means of the integral (14).

We calculate the first three eigenvalues of SLP using the sub-space iterations method
[11].

Obviously, the trivial method to calculate the bifurcation curves is through the point
by point construct them using BVP (11) - (13). In order to calculate the bifurcation
curves directly we consider the system of equations (11) - (13), together with SLP (16)
- (18) and the norm condition (19) as well, as a closed nonlinear eigenvalue problem
with respect to the amplitude R(z), eigenfunction 1(z) and one of the parameters p,
for example, J, while the other parameters, and the eigenvalue A as well, supposed to
be given. Fixing A > 0 to be small enough (for example A = 0.001+0.01), we guarantee
a stable solution to be obtained. We note that the derivative 9\/0J — oo when J
approaches its critical (bifurcation) value j., so, the solutions of the above system with
a priori prescribed accuracy belong to the small vicinity of the sought bifurcation curve.

This method has been applied to solve various physical problems [12] - [16].

In order to make further comparison with paper [3], we introduce the parameters
9]

g1 =2(1+moag)d, g2 =2(1—moby)d, gs=2(1—mj)6.
Clearly for very thin normal layers, when § — +0, the parameters g;, (i = 1,2,3),
scaling like § should be small too. This limiting case corresponds to a uniform super-
conducting flow and to small deviations from this state. However, if the value of ¢ is



fixed for a relatively thin layer (for example, § = 0.2 in our numerical study), the situa-
tion is quite different. For example, for normal materials possessing very low electrical
conductivity, the effective mass m,, can take very large values as compared to mg, so
that we can have mgy > 1. Thus, for a finite size layer the parameter’s domains of

definition are
g1 S [07 00)7 92 € (—00,6], g3 € (_OO,O}-
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Figure 2: Two basic solutions for J =0.1,¢; = 1,9, =0 and g3 = 0.

All numerical results from now on were obtained for A = 16 and the width of the
layer 6 = 0.2.

Fig. 2 demonstrates the two basic solutions R(z,J) we found numerically (in this
case J = 0.2,9; = 1,90 = 0,93 = 0). The first solution (marked by A, A ~ 1.14
and full energy F' &~ —1.05) is a smooth function of J in the closed interval [—j,, jc,
where j. is the critical current (see below). For the second solution (marked by v,
Amin & —3.09, and F' &~ —1.02) the definition domain is J € [—7., 0) U (0, 7]
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Figure 3: Chains of solitons: A: N =3,F ~ —-0.51; V: N =5,F ~ —0.47.

The inset displays the corresponding phase differences ¢(z). Since R(z, J) — const
<1 when z — £A, the phase asymptotically is a linear function of z.



It is necessary to note that except the mentioned basic solutions, there exists a
number of multi-soliton solutions, some of which are demonstrated in Fig. 3. These
solutions can be considered as chains of N > 1 solitons and the corresponding energy
increases when the number N increases.

The graphics in Fig. 4 represent the J(A¢p) curves obtained numerically for four
different values of g; at g, =0 and g3 = 0.

For each curve in this figure we denote j. = maxJ(Ayp) when Ap/7m € [0,1),
so J'(Agp.) = 0. If the effective barrier strength g = 0 (the corresponding curve is
marked by J), the extreme points B = (£j., £A¢p,/7) are achieved at jgep = +2/3v/3 ~
+0.385. The value jgp is the depairing current density in a uniform superconductor,
so if g1 > 0 then j. < jg4ep. For large values of g1 (ap > —1) we found results close to
the ideal Josephson relation (1). We note that the numerical results displayed in Fig.
5 are in a good agreement with Fig. 2 in paper [3].
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Figure 4: Some typical curves J(Ap/m) for g, = 0 and g3 = 0.
The dependence of the free energy F'(J) on the current density J for these two

solutions is represented graphically in Fig. 5 for different values of g;. Such a behaviour
of curves F'(J) can be qualitatively explained by means of formula (15). In fact,

where x = ¢(A) — ¢(—A) is the total phase difference [3]. It follows that if J > 0
then F'(J) < 0, so the energy decreases, and vice versa - if J < 0 then F'(J) < 0,
and function F'(J) increases. For J = 0 the energy connected with the solution under
consideration has a maximum.

We note that Fig. 5 gives a typical bifurcation diagram: at the points B where
J = j., the two branches, which correspond to the basic solutions with different energies,
coalesce and acquire a common cusp.

~



Case: g,=0,g,=0
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Figure 5: Bifurcation: the full energy F(J) has a cusp for J = j..
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Figure 6: Bifurcation: the minimal eigenvalue Ay, (jc) = 0.

This fact is corroborated in Fig. 6 which displays the relations A\, (J) for g1 = 1
and ¢g; = 2. For the solutions under consideration the corresponding curve has two
zeros (marked by ” B”), that conform to the critical current +j.. This means that the
critical Josephson current mathematically represents a bifurcation point for the basic
solutions. Because of F(J) < 0, both solutions R(z, J) guarantee the minimum of the
functional (10). Hence, the solution marked by ” A ” in Fig. 2 is still stable, whereas the
second one, marked by ” V" appears to be quasi-stable. The lifetime of the quasi-stable
solution can be estimated as (1/|Amin|) 7%

For completeness the dependence of full energy F'(Ap/m) on normalized phase dif-
ference is demonstrated in Fig. 7 for different values of g;, go = 0, and g3 = 0. The
minima B of these curves correspond to the critical current density +j. (see Fig. 5).
In fact, we have F'(Ap) = F'(J)J'(Ay), so F'(Ap.) =0 as J'(Ayp.) = 0 (see Fig. 4),
and F'(Ap = 0) = 0 in view of F'(J = 0) = 0 (see Fig. 5).
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Figure 7: The critical current j. corresponds to minimums of full energy.

Thus, we can generally conclude that each curve J(Ay) consists of three smoothly
joined branches (—m, —Ag.), (—Ap., Ap.), and (Agp,, ), corresponding to stable and
unstable states of the order parameter’s amplitude R(z). The critical Josephson current
je appears to be a bifurcation value for these states and conforms to the points of
confluence of the separated branches. The stable solution can be originated from the
stable uniform solution R(2) =1, ¢(2) = 0, Apin = 2, and F' = —1 (existing for J =0,
g1 =0, go =0, and g; = 0) via continuous change of the barrier strength g; and/or
the current J (see, for example, Fig. 8). The unstable state can not be obtained by
a continuous alternation of J from the second trivial solution R(z) = 0, ¢(z) = 0,
Amin = —1, and F' = 0 which exists if J = 0.

A simple qualitative criterion for stability of some solution R(z, J) by changing the
current J can be derived in the following way. Let us denote p(z,J) = OR/dJ. By
means of differentiation of Eqs. (11) - (13) we obtain:

—miz)p” +a(z)p = —2%%?—‘], (22)
p'(=A) =0, p'(A)=0, (23)
p'(=6—0) = miop'(—é +0), miop'(a —0) = p"(6+0). (24)

On the other hand, it is well known [18] that the eigenfunction ¢,(z, J) correspond-
ing to the minimal eigenvalue Ay, (J) is of constant signs on the whole interval D. Let
us multiply Eq. (22) by t(z) and integrate over D. Then using the conditions (23),
(24) together with SLP (16) - (18), it is easy to derive

A
Mo(J) / o(z, J)ho(z, J) dz = —2J mR3¢0 z,J) .
“a
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Figure 8: The amplitude R(0) reduces significantly when g; increase.

The last formula achieves that for a fixed value of J # 0 the necessary and suffi-
cient condition for the stability of some solution R(z,J) can be rewritten in the form
OR/0J(2,J) < 0. If 0R/DJ(2,J) > 0, then R(z,J) is unstable.

This conclusion can be graphically observed in Fig. 9. The curves demonstrated in
this figure are cross-sections of the surface R = R(z, J) with fixed plains z = const. In
view of symmetry only the case J > 0 is displayed. The dotted lines conform to the
unstable branches (=1, —Ap./7) U (Ap./m,1) on J(Ap) curve (see Fig. 4), the solid
ones correspond to the stable branch (—Aep./m, —Ap./7). The first curve at the left
(marked by ” < ) represents the trajectory of the point R(0, J) at change the current
J, while the curve marked by ” >” represents the point R(A, J). It is clearly seen that
for every dotted branch the derivative 9R/8J > 0 and OR/8J < 0 for solid branches.
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Figure 9.

An analogous approach is used, for example, in the theory of filtration [19)].
In order to understand the critical case J = j., we point out that in accordance
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with the Schwartz inequality and the norm condition (19) it is easy to derive

mm |/ Z, J \/2'J /R3 Z J)dZ

Therefore, when J — j. and, consequently, |Amin(J)| — 0 the condition

a 2

/ 8—R> dz —
57 0.

A

is necessary to be fulfil. Graphically the last requirement can be observed in Fig. 9:
every bifurcation point B is a maximum of the corresponding curve J(R(z)) for fixed
z, and, therefore, the envelope OR/dJ — oo when J — j.

In case J = 0 the comparison of the problem (22) - (24) with SLP (16) - (18)
leads to two possibilities. If the minimal eigenvalue of SLP originated from the solution
R(z,0), satisfies Ay (0) # 0, then the problem (22) - (24) has only a trivial solution, so
OR/DJ =0 for z € D. As it can be seen from Fig. 8, the last condition is realized for
stable (solid) branches and is not reached for unstable ones especially in the vicinity of
the center R(0, J). Formally non-trivial solutions are possible if and only if A, (0) = 0.
It means that R(z) is a bifurcation solution, and J = 0 appears to be the corresponding
bifurcation point.

3 Case: g, =1,g,=0

0.15 1
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Figure 10: The influence of the parameter gs.

Figs. 10 and 11 show the influence of the parameters g, and g3, respectively, on the
J(Agp) curve. The comparison between Fig. 10 and Fig. 4 at g; = 1 clearly indicates
the influence of the parameter g, on the current density J - with enlargement of |gs| we
have a more definitely expressed Josephson behaviour of the curve J(Ay). For large
enough values of g; the influence of g, is insignificant (see below Fig. 12, 14 and 15).

The comparison between Fig. 12 and Fig. 4 for g; = 1 shows that the variation of
the parameter g3 (mg > 1) between 0 and —4 leads to a significant reduction of the
maximum current density (approximately twice).

11
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Figure 11: The influence of the parameter gs.

These quantitative conclusions can be coupled with the Fourier decomposition of
J(Ayp) curves as given by Eq. (2). We are restricted mainly to the analysis of the ratio
Ja/ g1 of the first two Fourier coefficients. When j,/j; < 1, we have approximately a
pronounced Josephson behavior J =~ j.sin Ay, so j. & j;.

0.8
©- 2= 0,8=0

0.6 1 - &=-1,= 0
< A g= 0,g,=—4
\N ]
.50.4-
®
m 021 \

0 T T T T

0 2 4 6 8 10

Parameter g,
Figure 12: The influence of the parameter g;.

The ratio jo/j; as a function of the effective barrier strength g, is shown in Fig.
12. It is seen that for large values of the parameter g; (g; > 8), when the parameter
g3 = 0, the amplitude j; of the second harmonic is less than 5% of j;. On the contrary,
for small values of g; we have a substantial weight of higher harmonics (for example, if
g1 = 1, then the ratio j»/j; =~ 0.23).

As can be expected (see the curve marked by V), the influence of the parameter g,
(the ratio by) on the Fourier coefficients is essential for small enough values only of the
parameter g; (for example, if g1 = 1, go = —1, and g3 = 0, then j»/j; ~ 0.17). For
large values of g; the influence of the parameter by can be neglected.

On the other hand, taking into account the coefficient g3 < 0 (the ratio m > 1)

12
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Figure 14: The biffurcation curves Apin(je, g1) = 0.

leads to a significant increase of the second term in Eq. (2) even at great values of
the parameter g; (the corresponding curve js/j; is marked by A). This statement is
graphically confirmed in Fig. 13, where the ratios j;/j; and j3/j; as functions of gz for
considerable barrier strength g; = 8 and g, = 0 are displayed. Even small differences
between the effective masses caused a rapid increase of the second harmonic in 2. In the
same time the influence of the third harmonic can be neglected. Mathematically such
behavior is clear enough - the existence of discontinuity of the first derivative R'(z) at
the boundaries z = £ increases the number of higher harmonics.

These facts can be considered as arguments for applying the double SG equation
(see, for example, [20, 21]) to some Josephson contacts.

As a case in point, in Fig. 14 we display some numerically obtained bifurcation
curves of kind (21) for different values of the parameters g, and g3. The curve marked
by O conforms to Fig. 2 in [3]. Regardless of the fact that the asymptotic behaviour of

13
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Figure 15: The biffurcation curves Ay (Ap, g1) = 0.

the bifurcation curves for large g; is similar when the anisotropy of the effective masses
is turned off (g3 = 0), the critical current is essentially larger (~ 4 times when g, = 8)
as compared with the case g3 = —4.
Based on dependencies J(Ay) and (21) it is easy to construct the critical curves of
kind (see Fig. 14)
/\min(A(pcygl) =0.

The importance of such curves is due to the fact that the quantity Ay, is a measure of
a deviation of dependence J(Ayp) from ideal Josephson behaviour (Ap, = £1/2 ). As
it follows from Fig. 15, the influence of the non-linearity g, can be neglected, while the
presence of different effective masses leads to a significant error even for large enough
barrier strength g;.

Concluding Remarks

In the present paper we show that by taking into account different phenomenological
coefficients in the normal and superconducting regions in SNS sandwich, many harmon-
ics exist and the dependence J(Ay) of the current as a function of the phase offset is
not sinusoidal. The usually accepted sinusoidal dependence (1) is justified only for a
restricted domain of values of the parameters my, ag, and bg.

We show that each curve J(Agp) consists of three continuously joined pieces, corre-
sponding to stable and unstable states of the order parameter’s amplitude. The critical
Josephson current j, appears to be a bifurcation value for these states.

We prove numerically that the essential deviation from sinusoidal relation is caused
by the possible anisotropy of masses (mg > 1). The numerical investigation indicates
nontrivial specific modifications of the J(Ay) curve by the introduced new parameters
g2 and g3. When the anisotropy of masses is absent (my = 1), by = 1 and the thickness
§ is very small, we recover the results given in [3].
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Bosanxues T. JI. E11-2001-248
Budypkauun pereHuit MOTUGUIMPOBAHHOTO YPaBHEHHUS
Tuu36ypra—Jlanpay wid Axko03e()COHOBCKMX KOHTAaKTOB

Ipu momoru MoxucuuMpoBaHHOro ypasHeHus I'nuzbypra—Jlanmay (IVI) pac-
CMaTpUBaeTCs 3aa4ya YUCIEHHOTO MOCTPOCHHUS KPHBHIX BUAA «CBEPXTOK—Pa3HOCTb
¢az» mnga pxo3edcoHOBCKOro KoHrakra. IlokasaHo, YTo Kaxaasd KpuBas TaKoro
BHJIa COCTOMT U3 TPEX BETBEH, COOTBETCTBYIOLIMX YCTOHYMBOMY M HEYCTOHUHBOMY
COCTOSHHSIM aMIUTUTY/BI ITapaMeTpa nopsaka. Kpuruyeckuii Tox B Iepexose cooT-
BETCTBYET TOYKe OM(pypKaLuH pelieHui (Touke «CKJIeWKu» BerBeit). IlocTpoeHs!
npuMepsl OUGYPKALHOHHBIX 3aBUCHMOCTEH, CBA3BIBAIOLIMX KPUTHYECKHH TOK
¢ (peHOMeHONMOrMYecKuMHU Koagpdpuimentamu IJI-ypaBHenud. Ilpu momoimu 4u-
CIIEHHOro (pypne-pasnoxeHus usydyeHo BausHue IJI-xoadduumeHToB Ha ¢opmy
yKa3aHHBIX KpUBBIX. B yacTHOCTH, B ciiyyae HepaBHbBIX 3(h(heKTHBHBIX MacC-HOCH-
TeJel B CJI0SX KOHTAaKTa HeJb3g NMpeHeOperaTh aMIUTMTYROH BTOPOM TapMOHHUKH.

Pa6ora BrimonHena B JlabopaTopun nHGOpMAaMOHHbBIX TexHonoruii OMSIH.

Coobienne OObeANHEHHOTO HHCTHTYTA SIEpHbIX HcciaenoBanuit. ly6Ha, 2001

Boyadjiev T. L. E11-2001-248
Bifurcations of the Solutions
of Modified Ginzburg-Landau Equation for Josephson Junctions

We investigate numerically a class of superconducting/normal/superconduct-
ing (SNS) contacts with plane boundaries on the basis of modified Ginzburg—Lan-
dau type equations.

The resulted current density-phase offset curves are constructed numerically
for different values of the phenomenological coefficients. We prove that each
curve consists of three smoothly joined branches corresponding to stable and un-
stable states of the order parameter’s amplitude. The critical Josephson current ap-
pears to be a bifurcation value for these states and conforms to the points of con-
fluence of the separated branches.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2001
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