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1 Introduction

Narrow-gap multiwire proportional chambers were first suggested as detectors for
electromagnetic calorimeters in Ref. [1]. In this paper considerable attention was
given to investigation of the amplitude characteristics, which is of crucial importance
for the calorimetric measurements. Coordinate detectors with a spatial resolution
of ~1 mm and that can operate in the high rate environment were studied in Ref.
[2]. Moreover, in this paper the use of a gas mixture of C'Fy with hydrocarbons was
suggested. This made it possible to obtain a very narrow time jitter together with
a high registration efficiency for minimum ionizing particles. Somewhat later [3, 4]
it was shown that the gas mixture with C'F; slows down the ageing of the chamber,
which is very important when chambers are operated in a high rate environment.
Nevertheless, it should be noted that the use of such chambers in experiments comes
across considerable difficulties associated with the formation of induced discharges
as well as with wire instabilities.

Such chambers were first used in an experimental study of rare K-meson decays
at the ISTRA setup as beam chambers [5]. Because of the new frameless technology
of construction and special measures to provide precision of the wire positioning
[6], it was possible to achieve a stable performance of the chamber with a sensitive
area of 140x130 mm?. At the same time, the plateau was 1400 V and the achieved
coordinate resolution amounted to 320 pm (r.m.s). These chambers showed stable
performance during a long period of time without any noticeable deterioration of the
characteristics despite high counting rates. Similar chambers with a sensitive area
several times larger are also used as coordinate detectors of the forward spectrometer
at the ANKE setup working on the internal beam of the COSY synchrotron [7].

New experiments aimed at investigating rare processes as well as experiments
being conducted and planned on internal beams impose heavy demands on the em-
ployed track detectors. In particular, proportional chambers must show stable per-
formance for an appreciable length of time in the high rate environment, have small
dead time, contain small amount of material along the path of the registered par-
ticles, at the same time provid a high registration efficiency and cover considerable
areas (21000 cm?).

This situation demands a more thorough investigation of the electro-mechanical
properties of narrow-gap chambers. It should be noted that such chambers have
a number of important distinctive features in comparison with the usual chambers
with the gap ~5-10 mm. A small gap leads to an increase in the capacity of the
wire, which makes it necessary to work at higher voltages as accounted for by the
unit of the gap length. This leads to an increased wire displacements from the
central position and, as a result, to a higher probability of breakdown by spark
development in the anode-cathode gap. In order to avoid this, the wire tension has
to be increased, which, in turn, imposes a limitation on the tolerable length of the
wires. Apart, from this, as is seen from what is given bellow, various inaccuracies
in the construction have much large influence on the characteristics of narrow-gap



chambers as compared to the characteristics of standard chambers.

The electric field potential in the multiwire proportional chamber (Fig.1) can
be found by the method of images using the complex potential theory [8, 9]. As
described in Ref. [9], for a symmetrical chamber (when the wires are centrally
located between the cathode planes) on the assumption that the wire radius rq is
very small in comparison with the distance between the wires s, one can obtain a
simple equation for the electric field in the chamber:
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where ( = z+14z. Unfortunately, this formula does not allow consideration of effects
connected with the wire displacement in the chambers, as it is applicable only to
the symmetric case.

In Ref. [10] an equation for the electric field potential was obtained in the
form of a sum over the wires, which allowed consideration of the effects connected
with the displacement of a separate wire in the chamber. This made it possible to
achieve certain limitations on possible inaccuracies in the construction of standard
chambers.

The aim of this work is i) to study the electro-mechanical properties of multiwire
narrow-gap proportional chambers; ii) investigate the stability of wires depending
on different parameters of the chamber; iii) study the influence of the inaccuracies
in construction of the chamber on the chamber’s operating characteristics.
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2 Electric field of the multiwire proportional cham-
ber

The calculation of the field strength by the method of images is possible to base
directly on the equations for the strength of the field produced by each charge, when
not the potentials but the field strengths are summed. This approach, equivalent to
that developed in Ref. [8] and applied in [10] for the case when the wire presents a
direct line, is much more convenient (in comparison with the summation over the
potentials) in calculating the fields when the wires do not form stright lines.

Let us consider a multiwire proportional chamber with the standard geometry
as depicted in Fig. 1. Let the linear density of the charge on the wire be equal to
7. The electric field strength of the linear charge is equal to
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Figure 1: Configuration of a standard proportional chamber.
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Figure 2: Configuration of charges and their reflections for which the field is calcu-

lated.



When the method of images is employed, the task reduces to the calculation
of the electric fields of the charges located in the sites of the rectangular lattice
(Fig. 2), as each wire placed between conducting planes causes an infinite number
of reflections of the alternating signs. In what follows the reflections of the wires
in each other are disregarded, that is it is assumed that the diameter of the wire is
much less than the distance between the wires.

Let the central wire of the chamber be located at a point with the coordinates
z = z = 0. Then, the equation for the electric field in the chamber will have the
form of a double sum, where each component represents the field produced by the
corresponding charge at the point (z, 2).

lc_n:m n-—-(;oo ( l)n( ) (4)
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where 2m + 1 is the number of the wires in the chamber.

As was indicated in Ref. [10], two orders of summing these series are possible:
first they are summed over the number of the image, then over the number of the
wire, and vice versa. But if the aim is to study the changes in the field in the
chamber, which are connected with the displacements of separate signal wires in the
chamber, the first order of summing the series should be chosen as the most suitable
one. In this case for the components of the electric field the following equations are
obtained

g Z sinh([7(z — ks)/z] cosmz/ 2
T €2 o cosh[27(z — ks)/zy] — cos2mz/zy’
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Now it is necessary to express the unknown linear density of the charge on the
wire in terms of the value of the potential at the cathode of the chamber. Let the
potential at the cathode be equal to Uy, the potential of a wire with the radius r¢ be
equal to 0. On the line connecting the wire with one of the cathodes and parallel to
the axis Z, E, = 0. Then the condition connecting the linear density of the charge
n with the potential of the cathode will take the following form
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Calculating the integral on the right of eq. (6) (see Ref. [11]) for the linear
density of the charge, we obtain

n = 2melp Z arctanh[ cosro/ } (7)

et osh ks /zy

Now for the components of the electric field, we obtain:

_ 21l Z sinh[r(z — ks)/zo) cosmz/2
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It should be noted that the value 2mey/Cy represents the capacity of the wire.

Formulas (8) and (9) allow one to compare the distributions of the electric field
as well as the corresponding geometry of avalanche formation areas in standard and
narrow-gap chambers. With this purpose let us consider the following characteristic
configurations of the electrodes:

1. 20/2 =8 mm, s =2 mm, 7y = 10 um;
2. 20/2=15mm, s=1mm, ro = 10 pmy;
3. 20/2=2mm, s =2 mm, ro = 10 pm.

From here on these configurations will be referred to as ”chamber 1”7, ”chamber 2”
and ”chamber 3”.

The electric field distribution along the line with z = 0 is shown in Fig. 3,a and
Fig. 4,a. The calculations have shown that the given value E/p averaged over the
drift path for narrow-gap chambers 2 and 3 is larger than in the standard chamber
1 factor 5 to 8. If at atmospheric pressure the value of the field is taken to be
20kV/cm as the threshold value of avalanche formation in the mixtures C'Fy and
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Figure 3: a) Avalanche formation region near the anode wire limited by the value of
field strength 20 kV/cm for three different chambers (see explanation in the text);
b) electric field distribution in the direction to the cathode: (-.-.-) - chamber 1; (—)
- chamber 2; (- - -) - chamber 3. The chamber voltage is 2500 V.



x 10?2

2500 prT T T T T T T T T T T T T T T T T T T T T T

V/icm

« 2000

E

1500

1000

500

0.14 0.16 0.18 0.2
zZ,cm

0.035

cm

N 0.03

0.025

0.02

0.015

0.01

0.005

[T ERNNE FRETE SRRV FRUTE SARN FREE

SRR RSN N R R R R EEEEEEEERERREE)

Figure 4: The same as in Fig.3, the chamber voltage is 3800 V.



iso-CyHio (this conclusion can be made based on the dependence of the Townsend
first coefficient o on the field intensity [13]), at the chamber’s voltage 3.8 kV this
field will be produced at a distance of 0.35 mm from the anode wire for chamber
2, at the distance of 0.3 mm for chamber 3 and only at 0.12 mm for chamber 1.
The corresponding form of the avalanche formation areas are shown in Fig. 3,b and
Fig. 4,b. It is evident that the avalanche formation areas in narrow-gap chambers
are substantially larger than the corresponding areas in the standard chamber.

3 Equilibrium configuration of the wires in a pro-
portional chamber

Problems connected with the stability of the wire configuration at given parameters
of the chamber (voltage, wire tension, etc.) are of no little importance, as their
solution allows one to optimize the construction, to determine the minimal necessary
wire tension.

In the chamber depicted in Fig. 1 charges of the same sign are induced on the
wires, with repulsive forces between them. Even when all geometrical characteristics
are absolutely precisely given in the construction of the chamber, the equilibrium
configuration of the wires will be different from the ideal configuration depicted in
Fig. 1. The wires will tend to shift from the center of the gap and will achieve an
equilibrium configuration when the electrostatic repulsion force is compensated by
the elastic deformation of the strained wire. At the same time the form of the wire
will be described by a function z = f(y), where y is the coordinate along the wire.

For the determination of the equilibrium configuration of wires a method anal-
ogous to the one described in Ref.[12] can be employed. This method consists in
minimization of the functional of the potential energy of the wires in the electro-
static field. Unlike in Ref. [12], where the equilibrium form of the wire in a drift
tube was considered, the contribution of gravitational forces can be disregarded in
the case of multiwire chambers, as wires in proportional chambers are much thinner
(which means that they have a much less weight) and much shorter in comparison
with the wires in drift tubes. Thus, the wire potential energy will include two terms

PE = PEr + PEp, (10)

where PEp is the energy of the wire elastic deformation (extension), PEg is the
electrostatic energy of the charge induced on the wire.

From symmetry considerations it is seen that all wires fall into two groups.
And if for one group of wires (let us call them ”even”) the form is described by
the function z = f(y), for the other group of wires (odd”) it is described by the
function z = —f(y). It is also evident that f(y) has to be an even function of the
variable y. Apart from this, there is no necessity to sum the energy of all the wires of
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the chamber. It is enough to consider only one wire and the chamber cell connected
with it.

Let us consider the electrostatic part of the functional. Let n(t) be the linear
charge density induced on the wire. Then the charge of the infinitesimal part of the
wire dl at the point ',y = t, 2/ = f(t) produces the field at the point z, y, z inside
the chamber:

il & (-1)(e - o)
dE,; = drco ZOO [(z— 22+ (y— 1) + (2 — nzg — (—1)"f(t))2]3/2’

_ n®)dl (=1)"(z — 2')
dEy_ drey Z [(y—y)2+(y—t)2+(z—nzo—(—l)"f(t))l’]'d/?’ (11)
n(t)dl < (=1)"(z = nzo = (=1)" /(1))

2 (€

drey @)+ (y — )2 + (2 — nzo — (=1)"f(1))*]P*

dE, =

Summing over n takes into consideration the field produced not only by the wire
but also by its images. In order to find the total field produced by all the wires,
except for the considered one, it is necessary to integrate over [ and to sum over all
the wires, except for the case n =k = 0. It is easy to see that

= 1+ [/ (@O)]dt. (12)

Then

/L/Z "z — 2 nt)\/1+ [f'(t)]2de
B v
(13)

47re
0 Ic——m n=-00

where the term with n = k = 0 is excluded from summation. Analogous expressions
can be obtained for E, and E,. The electrostatic part of the potential energy is
given by the expression

L/2 20/2
PEg —/ V14 [y E,(z =0,y, z)dzdy, (14)

L/2 zy(y)

where 2,(y) = f(y) + ro.
Clearly the minimization of such a functional with respect to the two functions

n(y) and f(y) is a difficult to realize. That is why it is necessary to make additional
assumptions simplifying the solution of the problem. From here on let us assume
that 7(t) = n = const and that the wire form is described by a parabola:
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f(t) =at* +bt+ec. (15)

According to the conditions of the task, the function f(¢) must satisfy the boundary
conditions f(L/2) = f(—L/2) = 0. This allows one to reduce f(t) to the form

f(t) = at* — al?/4. (16)

It is easy to see that a is related t0 Zmqs, the maximum displacement of the wire
from the center of the gap, 2uax = —aL?/4. Thus, there is only one free parameter a
left, with respect to which it is necessary to minimize the functional of the potential
energy.

Taking into account the above mentioned allowances, the electrostatic part of
the functional can be presented in the following form:

/L/z /L/2 20/2

—m n=—00 L/2 L/2 Jzy(y)

(=1)™(z — nzo — (—=1)"*(at? — aL?/4))V1 + 4a%2\/1 + 4a’y?
[(ks)? + (y — 1)? + (2 — nzo — (—1)"*+*(at? — aL?/4))?]/2

47re
’ k~ (17)

dzdtdy,

where 2,(y) = ay? — aL?/4 + 1y and the term is excluded from the summation with
k=n=0.
For the calculation of n a formula analogous to eq. (6) can be employed:

Zo/2
~Up = / E.(z =0,y =0,z2)dz. (18)
25(0)
As is known, the energy of elastic deformation of the wire is determined by the
expression

PET :TO vV 1 + dt — T()L To/ V14 4a2t2dt - T()L =
-L/2 L/2 19
(L\/l—l—azL?_l_ ln[aL—l—\/1+a2L2 ]—L) (19)
40 l—aL ++/1+ a2L2 '

The integration over z in the expression for PEg is can be carried out analyti-
cally. The other two integration over ¢ and over y was calculated numerically.

The results of the calculation of the dependence of the functional of the wire
potential energy on the displacement of z,,, are shown in Fig. 5 for two cases. In
the first case (Fig.5.a) the minimum is observed at zpmq, ~0.085 mm, which testifies
to the stability of the wire in the chamber with the geometrical parameters indicated
in the Fig. 5.a In the case of higher voltage applied to the chamber (Fig. 5.b), a
minimum of the potential energy of the wire is not observed and that means that
wire will be unstable.

10
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Figure 5: The potential energy of the wire as a function of the value of the wire
maximum displacement from the center of the gap zq, for the chamber with 20/2 =
2.0mm, s = 2.0 mm, Ty = 0.5 N, 7 = 10 pn, L = 50 cm: a) stable configuration
at the cathode voltage U = 2700 V; b) unstable configuration at the voltage U =
3000 V.
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In Fig. 6 the limits of the wire stability are illustrated for different chambers.
It is necessary to note that a given results refer only to the mechanical stability of
the wires and not to the stability with respect to electric discharges between wires
and cathode. Thus, for example, the wires in the chamber with s = 1.0 mm and
20/2 = 1.5 mm will be mechanically stable at the chamber’s length L = 25 cm
and voltage U = 6000 V, but at this voltage an electric discharge between the
wire and the cathode is bound to arise. As far as the chambers with a large gap
(20/2 > 5 mm) are concerned, the wires are mechanically stable in a very wide
voltage range (certainly providing sufficient amplification) as well as in a wide length
range exceeding 1.5 — 2 m. It should be noted that for wires of such a length
gravitational forces will play an important role, except when the wires are oriented
vertically.

4  Influence of the spatial shift of the wires on
the value of gas amplification in the chamber

One of the most important characteristics of a chamber is the homogeneity of gas
amplification, that is its independence of the primary electron cluster formation.
The formulas presented above allow calculation of the field at any point of the
chamber as well as, given the dependence of the Townsend first coefficient o on the
electric field strength, an evaluation of the dependence of the amplification on the
maximum displacement of the wire zy,44.

For the evaluation of gas amplification the data for « for C'F}y given in Ref. [13]
were used. The amplification was calculated according to the formula

G = exp( / o(E)dl), (20)

where integration was carried out along the electron path of motion. This for-
mula does not take into account the influence of the avalanche space charge, which
becomes noticeable at large amplification (> 10°), as well as the influence of the
avalanche diffusion and the statistic character of the cluster formation along the
particle trajectory. Nevertheless, this formula is suitable for calculations if it is con-
sidered as an approximation which allows evaluation of the effect of different factors
on the amplification in the chamber.

In Fig. 7.a the dependence of the linear charge density as a function of the wire
displacement from the cathode is shown. The change of the charge density also
leads to the change of amplification near the wire [10]. But apart from this, the
amplification is also influenced by the change in the electron motion path at the
wire displacement. In Fig. 7.b and Fig. 7.c the gas amplification as a function of
the wire displacement is depicted, the condition being that the primary electron is
produced in the immediate vicinity of the cathode. Also it should be taken into

12
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Figure 6: The wire stability area limits for different chambers. The chamber pa-
rameters are:

e —2/2=15mm, s =10mm , Top = 0.5N , ro = 10 pm;
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Figure 7: a) The linear charge density of a wire normalized to the density of the
charge of the non-displaced wire as a function of the wire displacement; b) Relative
amplification, with the primary electron starting its motion at the cathode from
which the wire is displaced by zme; ¢) Relative amplification with the primary
electron starting its motion at the cathode to which the wire is moved by zmgz; d)
Relative amplification with the primary electron starting its motion at the cathode
depending on the horizontal coordinate Az (the coordinate of the wire corresponds
to Az = 0). The parameters of the chambers are:

e —2/2=15mm, s=10mm, Ty =0.5N, =10 um, L = 20 cm, Uy = 2500 V;
B—2/2=20mm, s =20mm,Tp =0.5N, 79 =10 um, L = 30 cm, Uy = 3000 V;
A — 2/2 =50mm, s = 2.0mm, Ty = 0.5 N, rp = 125 um, L = 70 cm,
Uy = 3000 V.
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consideration that in Fig. 7.b this dependence is shown for the case when the wire is
displaced in the direction from the cathode near which the electron was produced.
At small displacements the amplification decreases despite the growthing the wire
charge density, as the field is reduced on the side of the wire due to its removal
from the cathode. But as the displacement is further increased, the influence of the
charge density growth starts to prevail over the displacement from the cathode, and
the amplification begins to increase. In the case of the wire displacement in the
direction of the cathode, near which the electron is produced (Fig 7.c), both factors
work together; as the displacement growths, the amplification increases with much
more intensity in comparison with the opposite case.

The value of gas amplification is affected by the location of the primary electron
production. In Fig.7.d dependence of the gas amplification as a function of primary
electron position is shown (it is assumed again that the electron is produced near
the cathode). It should be noted that the maximum amplification is achieved when
the primary electron is produced at the z-coordinate of the wire itself, the minimum
amplification is achived when the production takes place near the center between
the wires.

Let us consider the case when one of the wires (let us call it "wire 0”) is dis-
placed in the direction parallel to the cathode. For the field calculations the method
analogous to the one described in Sect. 2 can be used in this case. Instead of eqgs. (5)
for the electrostatistic field we obtain

B - 1 i sinh[r(z — ks)/zo] cosmz/z
T ez Nl " cosh[2r (z — ks)/zo) — cos 22/ 2
k#0
sinh[m(z — Ax) /2] cos w2/ 2
cosh[27(z — Az)/z
. (21)
1 cosh[m(z — ks)/z]sinmz/z
E,=— Z Mk
€020 « " cosh[2m(z — ks)/zo] — cos 2mz/z

cosh[m(z — Az)/z]sinmz/ 2y
0 cosh[27(z — Az) /2
where 79 and 7 are the linear densities of the charges of displaced and non-displaced
wires, correspondingly.
In order to find 2m + 1 charge densities, let us use 2m + 1 conditions analogous
to Eq. (6):

ZO/2 20/2 .
U :/ E,.(z = Az, z)dz; —Up ‘=/ E.(x =ks,2)dz, —-m <k <m, k#0.
T T0
(22)

0
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Figure 8: a) Relative linear induced charge density as a function of the sign of the
wire, provided that the wire with the number 0 is displaced by Az = 50 pm in the
direction towards the wire with the number 0 ( 7 is the density of the charge of the
wire far away from the displaced one); b) Relative linear induced charge density on
the wire with the number 1 depending on the value of the wire 0 displacement; c)
Relative amplification of wire 1 at the wire 0 displacement. The parameters of the
chambers are the same as in Fig. 7.
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Making use of these conditions we obtain a system of 2m + 1 linear equations
with 2m + 1 unknowns n:

m
cos o/ 20 o
2megUp= E tanh 2’
TeoUy nratan I:COSh(ﬂ'(A.’L’ - ks)/zo)} + npatanh(cos o ),

m cos 70/ 20 cos o/ 20
— t
2meqUp Z natanh [cosh(w(l - k)s/zo)] + moatanh [cosh(ﬂ(ls - Ax)/zo)} ’

(23)

where m <1 < m, [ # 0. Solving this system for 7, it is possible to find the charge
densities on all wires, which means to calculate the electrostatic field.

In Fig. 8.a the relative change in the charge densities at the wire 0 displacement
by Az = 50 pum is shown. As is seen from the Fig. 8.a, this displacement makes
the maximum influence not on the charge density of the displaced wire but on the
charge density of the neibouring wires. The charge density of wire 1 as a function
of the displacement of wire 0 is illustrated in Fig. 8.b. The amplification of wire 1
as a function of the displacement of wire 0 is depicted in Fig. 8.c.

As could be expected, the density of the charge induced on the wire as well as
the gas amplification in the chamber with a smaller spacing between the wires and
a smaller gap between the wires and the cathode turns out to be more sensitive to a
change of the wire position compared to a chamber with a larger spacing and a large
gap. This in turn imposes more rigid limitations on the precision of construction
of narrow-gap proportional chambers. For example, if we restrict ourself by the
requirement that the amplification range in the chamber should not exceed £25%,
the maximum acceptable length of the wire in the chamber with z,/2 = 1.5 mm,
s = 1.0 mm will be about 25 — 30 c¢m, which is 35 — 40 cm for a chamber with
2/2 = 2.0 mm, s = 2.0 mm, whereas for a chamber with z,/2 = 5.0 mm, s = 2.5 mm
it amounts to 90—100 cm. As far as the compliance with the wire spacing uniformity
is concerned, with the same assumptions the permissible inaccuracy amounts to
Az ~ 85 um, Az ~ 175 pm, Az ~ 2504 m for the three chambers discussed above,
correspondingly.

5 Conclusion

In the paper it was shown that unlike chambers with a large gap, limitations connect-
ed with the mechanical stability of wires are of importance for narrow-gap chambers.
An equation which allows one to evaluate the wire stability limits is obtained. The
influence of the wire displacement on the amplitude characteristics of the chamber is
considered. It is important to note that the results on the amplitude characteristics
are of the evaluative character. In order to account for various processes taking place
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in the chamber, it is necessary to proceed from a realistic model taking into account
the statistical character of the avalanche formation as well as various characteristics
of the gas discharge. At present we are developing a model based on Monte-Carlo
calculations taking into account electron-molecular cross-sections. This model will
allow us gain futher insight into the processes of the formation and development of
electron avalanches in gases.
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IMerpyc A.IO., 3anuxanos b.2XK. E13-2001-113
DnexTpoMexaHUYeCcKue CBOMCTBa
y3K03a30pHbIX MHOTOIPOBOJIOYHBIX IPONOPLUHOHATBHBIX KaMep

PaccMOTpeHBI 3/1eKTPOMEXaHHYECKHE CBOMCTBA Y3K03a30pPHBIX IPONOPIHO-
HaIbHBIX Kamep. [10J1yd4eHO COOTHOLIEHHE, TO3BOJISIOLIEEe OLIEHUTh Mpeens! pabo-
Yei 00/1aCTH [0 HANPSKEHHIO B 3aBHCUMOCTH OT T€OMETPHYECKUX XapaKTEPUCTHK
kamepbl. Takxke HCC/IENOBaHO BIUSHHE CMELICHHs IPOBOJIOK Ha aMIUTUTYIHbIE
XapaKTEePUCTUKU KaMephl.

Pa6ora BeimonneHa B Jlabopatopuu spgepHbix npoGmem um. B.I1.Ixenenosa
OWIU.

Ipenpunt O6beaUHEHHOTO HHCTUTYTA SNEPHBIX MccnenoBaHuii. y6Ha, 2001

Petrus A.Yu., Zalikhanov B.Zh. E13-2001-113
Electro-Mechanical Properties
of Narrow-Gap Multiwire Proportional Chambers

Electro-mechanical properties of narrow-gap proportional chambers are con-
sidered. An equation is obtained which allows evaluation of the working limits
of such chambers in respect to high voltage depending on their geometrical char-
acteristics. The influence of a wire shift on the chamber amplitude characteristics
is investigated.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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