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Oscillons are localised two-dimensional oscillating structures
which have recently been detected in experiments on vertically vi-
brated layers of granular material [1], Newtonian fluids and suspen-
sions [2, 3]. Numerical simulations established the existence of stable
oscillons in a variety of pattern-forming systems, including the Swift-
Hohenberg and Ginsburg-Landau equations, period-doubling maps
with continuous spatial coupling, semicontinuum theories and hydro-
dynamic models [4, 3]. Although these simulations provided a great
deal of insight into the phenomenology of the oscillons (in particu-
lar, demarcated their existence area on the corresponding phase dia-
grams), little is known about the mechanism by which they acquire
or loose their stability.

In this Letter, we consider a model equation which has ezact
oscillon solutions and allows an accurate characterisation of their ex-
istence and stability domains. The main purpose of this work is to
understand how the oscillons manage to resist the general tenden-
cies toward nonlinearity-induced blow-up or dispersive decay which
are characteristic for localised excitations in two-dimensional media.
Our model admits a straightforward generalisation to three dimen-
sions and we use this opportunity to explore the existence of stable
oscillons in 3D as well.

The model consists of a D-dimensional lattice of parametrically
driven nonlinear oscillators (e.g. pendula) [5] with the nearest-
neighbour coupling:

d? d
W‘ﬁ“ +a d—Tqﬁk +2kD ¢y — K |m—zk|:1 bm
+(1+ pcos2wt)singx = 0; k= (ki,...,kp). (1)

Assuming that the coupling is strong: & = e~ '; that the damping
and driving are weak: a = ve2, p = 2he?; and that the driving half-
frequency is just below the edge of the linear spectrum gap: w?
1 — €2, the oscillators execute small-amplitude librations of the form
b = 2ep(t, X1 )e" T + c.c. + O(€®), where t = €27/2, xik = ¢3/?k and
the slowly varying amplitude satisfies

i + V2 + 20 — p = hp* — i, (2)



the parametrically driven damped nonlinear Schrédinger (NLS) equa-
tion. In 2D, this equation was invoked as a phenomenological model
of nonlinear Faraday resonance in water [3]. It also describes an
optical resonator with different losses for the two polarisation com-
ponents of the field [6]. In the absence of the damping and driving, all
localised initial conditions in the 2D and 3D NLS equation are known
to either disperse or blow-up in finite time [7, 8, 9]. Surprisingly, nu-
merical simulations of (2) with sufficiently large h and «y revealed the
occurrence of stable (or possibly long-lived) stationary localised exci-
tations [3]. However no analytic solutions were found, and a possible
stabilisation mechanism remained unclear.

In fact there are two exact (though not explicit) stationary
radially-symmetric solutions given by

YF = Ase % Ro(Asr); (¥ = af + ... + 2D), (3)

where A3 = 1+ \/h? =12, 6, = farcsin(y/h), - = T — 6, and
Ro(r) is the bell-shaped nodeless solution of

VIR - R+2R*=0; R,(0)=R(c0) = 0. (4)

(Below we simply write R for Rg.) In (4), V2 =82+ (D — 1)r~14,.
Solutions of Eq.(4) in D = 2 and 3 are well documented in literature.
(See e.g. [7] and refs therein.) One advantage of having an explicit
dependence on h and 7, is that the existence domain is characterised
by an explicit formula. The soliton 1 exists for all h > +y; the 1)~
exists for v < h < y/1+~2. It is pertinent to add here that for
h < 7y, all initial conditions decay to zero. This follows from the rate
equation

Ol = E[r (e[ )rlr + 20 (hsin2x — ), ()

where 1 = |hle”™X. Defining N = [ |¢|?dx, Eq.(5) implies N; <
2(h —y)N whence N(t) — 0 as t — oo.

We now examine the stability of the two solitons. Linearising
Eq.(2) in the small perturbation

Sip(x, ) = eW D05 (%) 4+ i (%)), (6)
where X = A.x, T = A%t, we get an eigenvalue problem
Liv=—(p+T)v, (Lo—e€v=(u-T)uy, (M)
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where I' = v/ A% and the operators
Lo= -V +1-2R*F), L= Lo—A4R*(7), (8)

with V2 = "7 92/872. (We are dropping tildas below.) The quan-
tity €, e = +2v/h? — 42 /A% | is positive for the 4 soliton and nega-
tive for 1)~. Each ¢ defines a “parabola” on the (h,~)-plane:

h=1/e/(2 - )2 ++2. (9)

A remarkable property of the model (1)-(2) is that the stability
analysis can be reduced to a one-parameter eigenvalue problem. In-
troducing A\? = p? — T'? and changing v(x) — (u + D)A~1v(x) [10],
Eq.(7) is brought to

(Lo —€)v = Au, Lju=—\v. (10)

Since Ro(r) is nodeless in 0 < 7 < oo, and LyRg = 0, the operator
Ly — € is positive definite for ¢ < 0. In this case the eigenvalue can
be found as a minimum of the Rayleigh quotient:

e (wlLuw)
A= el (Zo — O Tw)

(11)

The operator L; has D zero eigenvalues associated with the transla-
tion eigenfunctions 6;R(r), ¢ = 1,2,...D; hence it also has a negative
eigenvalue with a radial-symmetric eigenfunction wy(r). Substituting
wo into the quotient in (11), we get —A? < 0 whence p > I'. Thus
the soliton 1)~ is unstable (against a nonoscillatory mode) for all D,
h and vy, and may be safely disregarded.

Before proceeding to the stability of 1) (for which we have € > 0),
we make a remark on the undamped, undriven case (¢ = 0.) In 3D,
the eigenvalue problem (10) has a zero eigenvalue associated with the
phase invariance of the unperturbed NLS equation (2) and another
one, associated with the scaling symmetry:

Ly 0 R 0
(52 ) (i )=(2) e

Both the eigenvector (R,0)” and the rank-2 generalised eigenvector
(0,=3(rR),)T are radially-symmetric. In 2D the number of repeated

3



zero eigenvalues associated with radially-symmetric invariances is
four; in addition to those in (12) we have a two-parameter group
of the lens transformations [7, 8] giving rise to

g7 —L(r
( I(*)O I?l ) ( 8 gR > — ( 2%(7.27;21" >’ (13)

with some g(r). When h2—~2 (or, equivalently, ¢) deviates from zero,

all the above invariances break down and the two (respectively, four)

eigenvalues move away from the origin on the plane of complex .

The directions of their motion are crucial for the stability properties.
We can calculate A(e) perturbatively, assuming

A= Ar€ef + Aot + Nged + ..., (14)
U = ule% + uze% +., v=R+ vle% + vge% + ...,
where v; = vi(r), u; = wui(r). Substituting into (10), the or-

der €'/* gives uy = —\ L7'R. Using (12), u; is found explicitly:
up = (M/2)(rR)r. At the order €¥/* we get ug = —AL7'R and
equation Lovy = Aju;. Since Ly has a null eigenvector, R(r), this
equation is only solvable if

A1 /R(r)ul(r)dx = -\ %/RQ(r)dx = 0. (15)

In the two-dimensional case the condition (15) is satisfied for any A\,
whereas in D = 3 we have to set A; = 0. Next, at the orders €3/4 and
€*/4 we obtain, respectively,

Lovz = doup + Aug = )\1)\2(7“72)7-, (16)
Lovy = R+ Aus + Aoug + Aguq. (17)

Eq.(16) is solvable both in 2D and 3D. The solvability condition for
(17) reduces to

. (RIR) . JR%x
M= (RILT'L'LTYR) [ R*r2dx’ (18)
o _(RIR) _
S wew -t W
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in two and three dimensions, respectively.

Thus we arrive at two different bifurcation scenarios. In 3D, where
A1 = 0 and )\ is real, two imaginary eigenvalues i|)\2[el/ 2 converge
at the origin as ¢ — 0 from the left. (This does not mean that
the 1~ soliton is stable as there still is a pair of finite real eigen-
values for € < 0.) As e grows to positive values, the imaginary pair
+|A2]€'/2 moves onto the real axis. The numerical analysis [11] of the
eigenvalue problem (10) shows that when € is further increased, the
four real eigenvalues collide, pairwise, and acquire imaginary parts.
Importantly, for all 0 < € < 1 the imaginary parts remain smaller
in magnitude than the real parts. As one can readily check, this
means that Rey remains greater than I' all the time, implying that
the three-dimensional 1™ soliton is unstable for all A and +.

The bifurcation occurring in 2D is more unusual. As € ap-
proaches zero from the left, four eigenvalues converge at the ori-
gin, two along the real and two along imaginary axis: A =~
+|\1|(—€)/4, +i| A |(—€)/4. As € moves to positive, the four eigen-
values start diverging at 45° to the real and imaginary axes. Hence
to the leading order, Im\ =~ Re), and in order to make the conclusion
about the stability, we need to calculate the higher-order corrections.

The order €5/ produces a solvability condition
: XX .
ND(RILT L5 LT R) = Z12 / R2r2dx = 0,

yielding Ay = 0. (Here we made use of (13).) Finally, the order ¢%/4
defines A3 (where g(r) is as in (13)):
L A3 [g(r)R(r)ridx

As = AL + 2 [R2(r)r2dx

(20)

Taking A; in the first quadrant, A; = ¢/ 41|, and doing the in-
tegrals in (18), (20) numerically, we conclude that A3 is in the second
quadrant, A3 = €3"/4|\3|, which implies that [Im)| > |[Re}|. In terms

of ), the stability criterion Reu < T' is written as y > ~,, where

2 ReA(€) ImA(e)

Vele) = 2—c /(Im\)? — (Re\)?Z (21)
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Figure 1. Stability diagram for two-dimensional solitons. The (v, h — v)-plane
is used for visual clarity. No localised or periodic attractors exist in the region
h <~ (below the horisontal axis). The region of stability of the soliton ;" with
n = 0,1,2, lies to the right of the corresponding solid curve. The dotted curve
gives the variational approximation to the stability boundary of the 1§ soliton:
h=(1+7%)"2 > V2.

The smallest v for which the soliton can be stable, is given by
lim 7c(e) = f|A1|3/21A 3|71/, (22)

Substituting for A;, Az their numerical values, (22) gives 7.(0) =
1.00647. For € # 0 we obtained A(e) by solving the eigenvalue prob-
lem (10) directly [11]. Here we have restricted ourselves to radially-
symmetric u(r) and v(r). Expressing € via -y, from (21) and feeding
into (9), we get the stability boundary on the (h,~y)-plane (Fig.1).

Asymmetric perturbations do not lead to any instabilities in 2D.
To show this, we factorise, in (10), u(x) = a(r)e™¥ and v(x) =
#(r)e’™?, where tan ¢ = y/z and m is an integer. The eigenproblem
(10) remains the same, with only the operators Ly and L; being
replaced by

L((]Tn,) = _v% + ’)’YLQ/T'2 + 1 — 2722’ L(lTTL) = L(()m) _ 4R2

The crucial observation now is that L(()m) with m? > 1 does not
have any (not even positive) discrete eigenvalues. We verified this



numerically for m? = 1; this rules out their appearance for all other
m. Therefore the operator L(()m) —¢ with € < 1 is positive definite, and
the eigenvalues of the problem (10) can be found from the variational
principle (11). The operator le) has a zero eigenvalue with the
eigenfunction w(")(r) = R,(r) which has no nodes for 0 < r < oo;

hence its all other eigenvalues (if exist) are positive. This also implies

that L(lm) with m? > 1 are positive definite. Thus the minimum of
the Rayleigh quotient (11) is zero for m? = 1 and positive for m? > 1.

Besides the nodeless solution Ry(r), the “master” equation (4)
has solutions Ry (r) with n nodes, n = 1,2,.... These give rise to a
sequence of nodal solutions of the damped-driven NLS (2), defined
by Eq.(3) with Ry — R,. It is easy to realise that the solitons
%, are unstable for all A, v and D. Indeed, since LyR, = 0, the
operator Ly has (n — 1) negative eigenvalues, with eigenfunctions
zk(r). For € < 0 we can search for eigenvalues of (10) as minima of
the quotient (11) on the subspace of functions orthogonal to all z,
k =1,..,n—1. Since L; has D null eigenfunctions 8;R,, it also
has a negative eigenvalue with a radially-symmetric eigenfunction
wp—1(r) having (n — 1) nodes, and hence it has (n — 1) more negative
eigenvalues with eigenfunctions wo(r),w(r), ..., wn—2(r). Therefore
we can set up a linear combination Cywg + ... + Cp—1wn—1 such that
it belongs to the subspace in question and at the same time renders
the quotient in (11) negative.

To examine the stability of the 1,7 soliton, we solved the eigen-
value problem (10) numerically, in the class of radially-symmetric
eigenfunctions. In 3D, positive real eigenvalues are present in the
spectrum for all ¢; thus the three-dimensional nodal solitons are al-
ways unstable. In 2D, for ¢ = 0 the spectrum consists of n complex
quadruplets £, £} and four zero eigenvalues. As e grows to pos-
itive values, the trajectories of the four eigenvalues diverging from
the origin can be described by formulas (14), (18), (20) where now
R stands for R,. Importantly, the imaginary parts of these eigen-
values — as well as of the other complex quadruplets — are greater
in absolute value than their real parts. Therefore the nodal 1 solu-
tions are stable for sufficiently large . Calculating ~y.(¢) for each of
the quadruplets from (21), choosing the largest of these n + 1 values,
and substituting into (9), we obtained the stability boundary on the
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(h,7)-plane for the 1;" and 43 solitons (Fig.1).

Lastly, we need to understand the stabilisation mechanism in
qualitative terms. To this end, we use the variational approach. The
equation (2) is derivable from the stationary action principle with the
Lagrangian

£=eRe [ (ipas” = Vo = [92 + [9l" ~ h?)dx.

Choosing the ansatz ¢ = VAe= 0~ (Btio)r? [12, 13] with A, B,6,0
functions of ¢, this reduces, in 2D, to
AT o 2B A
L= 27"_[ -4
¢ B9 +2B cosz¢+2
— hcos(¢ + 26) cos qﬁ] ; tan¢ = o/B. (23)

The 4-dimensional dynamical system defined by (23), has two sta-
tionary points representing the 4= solitons. In agreement with the
stability properties of the solitons in the full PDE, the T stationary
point is unstable for small v but stabilises for larger dampings (Fig.).
When 7 is large we can expand A = Ag + %Al +..,B =By+ ,lyBl
+.., 0 =% + 1701 +..,0= 1701 + .... Letting h = v+ 59,; where
0 <c¢ <1, defining T = }7 and matching coefficients of like powers of
“lr’ yields a 2-dimensional system

dAy/dT = Aglc + 80, — 46% + 2(01/Bo)?], (24)
dBy/dT = 801 By + 4010, + 4(0? / By), (25)
0, =5 +2By— 34y, o1 =}A¢By—2B3. (26)

Like their parent system (23), Eqgs.(24)-(26) have two fixed points, the
saddle at By = 5—+/c, Ay = 4By and a stable focus at B = $+/c,
A = 4Bf.

According to (5), the soliton’s phase x = 6+ or? controls the cre-
ation and annihilation of the soliton’s elementary constituents (whose
density is |1|?). (If Eq.(2) is used as a model equation for Faraday
resonance in granular media or fluids, [ |¢|2 dx has the meaning of
the number of grains or mass of the fluid captured in the oscillon.)
Since the creation and annihilation occurs mainly in the core of the
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soliton, the variable phase component or? plays a marginal role in
this process. Instead, the significance of the quantity o is in that it
controls the flux of the constituents between the core and the periph-
ery of the soliton — see, again, equation (5).

If we perturb the stationary point 4% in the 4-dimensional phase
space of (23), the variables § and o will zap, within a very short time
At ~ L onto the 2-dimensional subspace defined by the constraints
(26). After this short transient the evolution of § and o will be
immediately following that of the soliton’s amplitude v/A and width
B. In the case of the 9™ soliton, this provides a negative feedback:
perturbations in A and B produce only such changes in the phase
and flux that the new values of § and o stimulate the recovery of
the stationary values of A and B. (The phase 6 works to restore the
number of constituents while o rearranges them within the soliton.)
In the case of the ¢~ the feedback is positive: the perturbation-
induced phase and flux (26) strive to amplify the perturbation of
the soliton’s amplitude and width still further. Finally, for small
7 the coupling of  and ¢ to Ag and By is via differential rather
than algebraic equations. In this case the dynamics of the phase and
flux is inertial and their changes may not catch up with those of the
amplitude and width. The feedback loop is destroyed and the soliton
destabilises.

We thank Dominique Astruc, Sergei Flach, Stephano Longhi, and
Dmitry Pelinovsky for useful discussions. The work of E.Z. supported
by RFBR grant 0001-00617.
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Bapawenkos U.B., Anekceesa H.B., 3emninas E.B. E17-2001-142
ByX- 1 TpeXMepHbIE OCLIULUIOHBI
B HEJIMHEHHOM (papaieeBCKOM PE30HaHCe

HccnenyoTcs OByX- U TpeXMepHBIE JIOKATM30BaHHbIE OCLMUIMPYIOILUE CTPYK-
TYpBI B IPOCTOH MOIENbHOI CHUCTeMe, MpeCTaBIfolei HeMMHEeHHbIN apanees-
ckuil pezonaHc. IToka3aHo, 4TO COOTBETCTBYIOLLEEe HeluHelHoe ypaBHeHue Llpe-
IOUHIepa IS aMIUITMTYObl UMEET MOCIEA0BATEIbHOCTh TOYHBIX CONMTOHHBIX pellle-
HUH. JIByXMEpHBIE COJHUTOHBI SBJSIOTCA YCTOWYMBBIMH IIPU  OIPEAETICHHBIX
3HAYEHUIX [TapaMeTpOoB; ClIeNOBaTENbHO, JUCCHITALMI M NapaMeTpuYeckas HaKay-
Ka MOTYT IIPEIOTBPAaTHTh KOJIJIANC U JUCTIEPCUOHHOE 3aTyXaHHE COJTUTOHOB B IBYX-
MepHOM citydae. HanpoTus, TpexMepHbie OCLIMJUIOHBI BCETIa HEYCTOMYUBHI.

Pa6ora BrinonHena B JlabopaTopuu HH(pOpMaMOHHbBIX TexHONoruii OHAN.

INMpenpunt OGbeANHEHHOrO HHCTHTYTA SNEPHBIX MccnenoBanuii. Iy6Ha, 2001
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Two- and Three-Dimensional Oscillons
in Nonlinear Faraday Resonance

We study two- and three-dimensional localized oscillating patterns in a sim-
ple model system exhibiting nonlinear Faraday resonance. The corresponding non-
linear Schrodinger equation for the amplitude is shown to have sequences of exact
soliton solutions. The 2D solitons are found to be stable in certain parameter
ranges; hence the damping and parametric driving are capable of preventing
the nonlinear blowup and dispersive decay of solitons in two dimensions.
On the contrary, the 3D oscillons are shown to be always unstable.
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