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1 Introduction

Renormalization group (RG) methods have been widely used to the analysis of fully
developed 3-dimensional hydrodynamic (HD) turbulence [1, 2, 3] as well as mag-
netohydrodynamic (MHD) turbulence [4, 5]. In these investigations the randomly
forced HD an MHD equations have been used to obtain a regular expansion of scal-
ing exponents in the small parameter € = 2 — A\. It is the deviation of the power
of wave-number ) in the correlation function of the random force from the critical
value A\, = 2, at which the corresponding field theory is logarithmic.

The value of the expansion parameter ¢ has been chosen such that the only
dimensional parameters of the model are the viscosity and the energy injection rate.
From the RG equations it then follows that the asymptotic behaviour of the model at
small wave-numbers is independent on the viscosity, and the powerlike wave-number
dependence on the equal-time pair correlation function of velocity corresponds to
the famous scaling law [6] due to Kolmogorov. Therefore, the RG approach provides
a kind of mean-field description of turbulence with built-in Kolmogorov scaling, in
which various correlation functions may be calculated in the form of asymptotic
series in the parameter e.

In the RG approach to the fully developed turbulence most work has been car-
ried out for the 3-dimensional case, and only recently this approach has been applied
to the analysis of 2-dimensional turbulence [7], or in general, d-dimensional (d > 2)
turbulence [8]. The authors notice that at two dimensions an additional class of diver-
gences appears, which has to be included in the renormalization procedure. Namely,
the long-range correlation function of the random force is a power-like function of
the wave-number proportional to k~¢-2%. In general, it is a singular function of k? at
the origin supposing d = 2. At two dimensions this correlation function is renormal-
ized by counter-terms proportional to k?, which are added to the force correlation
function at the outset. In d-dimensional case one must use a two-parameter expan-
sion (double expansion) of scaling exponents and scaling functions, the parameter of
which are 2¢ and 26 =d — 2.

Existence of discrepancy on the value of inverse Prandtl number u corresponding
to nontrivial stable fixed point (FP) of RG in the limit d — 3, that has been ob-
tained in the double expansion scheme in earlier paper [9] in comparison to the usual
e-expansion scheme [4, 5], as well as corresponding values of coupling constants, was
the initial reason of the present analysis. Here we apply a modified minimal sub-
straction scheme [10] based on the fact that the tensor structure of counter-terms is
left generally d-dependent in the calculation of divergent part of Green’s functions,
and it allows us to investigate behaviour of the system under continual transition to
d = 3 beginning from d = 2. Here we attempt to restore the limit Prandtl number
for d — 3 and also to establish the stability region supposing an arbitrary dimension
d, 2<d<3.

In this paper we have carried out an analysis of the randomly forced MHD equa-
tions with the proper account of the additional UV - divergences (appeared in d = 2)



in the case of the presence of magnetic field as a passive vector field in the developed
HD turbulence. Notation the passive magnetic field means that the Lorentz force
acting on medium can be neglected at large spatial scales, so, the Lorentzian term
can be omitted in the Navier-Stokes equation. Using the double expansion approach
the procedure of minimal substraction in the renormalization of the corresponding
field-theoretic model has been applied in one loop approximation.

2 Formulation of problem

In the present paper we have studied the universal statistical features of the model
of stochastic MHD described by the system of equations for the fluctuating local
incompressible velocity field, v(z), z = (x,t), V- v = 0, and magnetic field, b(z),
[4, 5, 11]:

v+ (v -V)v—ovViv=1", (1)
8b+ (v - V)b — (b- V)v — vuV?b = f*, 2)

with V-f¥ = 0 and V- f* = 0. Transversality of f¥,fP is a consequence of the
equations V.v = V.b = 0 . It was mentioned in Introduction that Lorentz force
(b- V)b is neglected because the magnetic field is treated as a passive vector field.
The statistics of v, b is completely determined by the non-linear equations (1), (2)
and by certain assumptions about the statistics of the external large-scale random
forces fY, f®. The dissipation ¥V?v is controled by the parameter of kinematic
viscosity v, and, u denotes inverse Prandtl number.

As usually, statistical properties of the Gaussian forcing with zero mean values
of (fV) =0, (f*) = 0 are determined by relations:

(f(m)fi(z2)) = O,
(f;(lj)f:(rﬂ) = u? Djs (371 _z2;[17gv179u2])
(f;(xl)ff(@) ) u?v? D, (z1 — xo5 [aygbIO; gb20]) (3)

where the correlation matrix
dék .
Dj, (z;[a,91,9]) = 6(t1 —12) / W Pjs(k) exp [ik.x]

X [91 k2—25—2a5 + g0 kZ] (4)

with transverse second-rank projector Pj,(k) = dj; — k;k,/k?, is determined by
constants gi, go, and, the relation d = 2 + 26 was used in exponent of k. The
free parameter a controls the power form of magnetic forcing. The necessity to
introduce a combined forcing and also to include the additional couplings (gy2, gs2)
for obtaining of multiplicatively renormalizable two dimensional stochastic MHD, is

2



absent in traditional formulation of stochastic hydrodymamics. The definition (4)
includes two principal - low- and high-wave number — scale kinetic forcing separated
by a transition region at the vicinity of the characteristic wave-number of order
O([gv10/9v20] %). In language of classical hydrodynamics the forcing contribution o k?
corresponds to the appearence of large eddies convected by small and active ones and
it is represented by the local term of v'V2v'. In its analogy the term b'V?b' is added
to the magnetic forcing. So, our stochastic MHD system can be described by the
field-theoretical action

S = %/dxl/dxz

{uo V3 (1) Djq (21 — 225 [1, gu10, Guao]) v (22) +
+ udm® b(21) Djs (31 — 233 @, Goro, Gomo]) By (32) | +
+ /dxv’ . (—Btv +1y Vv —(v- V)v)
+ b (~8b+unV?b+ (b V)v— (v-V)b) . (5)

All dimensional constants gy10, gs10, gu20 and gsz0, Which control the amount of ran-
domly injected energy given by (3), (4), play the role of coupling constants of the
perturbative expansion. Their universal values have been determined after the para-
meters €, 8 have been choosen to give the desired power form of forcing and desired
dimension.

For the convenience of further calculations the factors v§uo and vjuj including
the "bare” (molecular) viscosity v, and the ”bare” (molecular or microscopic) mag-
netic inverse Prandt] number uo have been extracted. The bare (non-renormalized)
quantities are denoted by subscript ”0”.

3 One loop order renormalization

The most important measurable quantities in the study of a fully developed tur-
bulence are considered to be the statistical objects represented by correlation and
response functions of the fields. They are equivalent to functional averages — Green
functions commonly expressed as a terms of Taylor series in A’s about A = 0 by
means of generating functional

G (AY,AY, AP, AY) = / Dy Dv Db Db oS4 H47 443041 ] (6)
where A; are source fields, Dv Dv' Db Db’ denotes the measure of functional inte-
gration. One can derive unlimited number of identities for Green functions from
this expression, so the developed turbulence problem can be formulated such as the
calculation of functional integral. Such functional formulation is advantageous since
the Green functions of the Fourier-decomposed stochastic MHD can be calculated
by means of Feynman diagrammatic technique.
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So, we apply usual RG procedure and corresponding pertubative techniques de-
scribed elsewhere in details [12]. The model (5) is renormalizable by the standard
power-counting rules, and for limits € — 0, & — 0 possesses the ultraviolet (UV)
divergences which are present in one-particle irreducible two-point Green functions
e , Fu’v, ]_'\bb” I‘b’b’ a4 , 'Y

Free propagators A can be calculated from the quadratic part of (5) written in
the form of —(1/2)@)@@, ® = {v,b,Vv',b'}, using the relationship KA=1,1is
the unit matrix. One obtains in result,

A% 0 A% 0
Js ,
0 e @
Afy 00 0
0 A o0 o0

>
Il

js

with the elements

-,

w' (T vy e P k
AR () = AYo(F ) = L,
Py (F)

b (1 Vb7 _
Ajs (k,W) Ajs (—k7 —UJ) - m )
k.—25—2e -

k2 Gui10 : +2gu220 -Pjs(k') ,
| — iw + v k2|

910 k2972 + gigg

| — w + uo vp k2|2

A;{f(k,w) = wuv

A% (E,w) Py(k). 8)

ugvg k?

Neglecting the finite parts of the one loop Feynman diagrams, we perform the
integration over internal momentum space in an arbitrary dimension d = 2 + 26
and integration over internal frequency, and then we separate the divergent (for
¢ — 0,0 — 0) contributions proportional to 1/e,1/8, 1/(2¢+ 8), 1/(2ae + 9),
1/(€(1 + a) + 6), according to the minimal subtraction scheme [13]. After the UV
divergences have been removed, the continuation back to the original or ” physical”
values § — %, € = 2, (d — 3) is possible.

The UV divergences can be removed by adding suitable counter terms to the
basic action obtained from (5) by the substitution: gyio — #*gu1, gu20 = W gy,
gs10 = 2% g1, Gh2o — 1~ P ge2, o — v, up — u, where u is a scale setting parameter
having the same canonical dimension as the wave number.

The original form of the action S implies the counter terms

Seount = / dx[v (1-21)v'V2v +uv (1 - Z,) b'V2b +
+ % (Zy — DurPgy, p BV + % (Zs — 1) vV g =2 B'V?D'], (9)

determined to cancel the superficial UV divergences of the Green functions.



Within UV renormalization the divergences appearing in form of Laurent series
in the poles are contained in the constants Z, Z, Z4, Zs renormalizing the ”bare”
parameters ey = {gio, Yo, Yo} -

Renormalized Green functions are expressed in terms of the renormalized para-
meters

Gui = Guio B X2} Z,, G2 = Guao B 222,77,
g = Guop 2% Z\Z%, g2 = Guo p* 2123757,
v = il u = uyZ,'Z, (10)

appearing in the renormalized action S® connected with the action (5) by the rela-
tion of multiplicative renormalization: S®{e} = S{eo} . The renormalized action
SE which depends on the renormalized parameters e(y), yields renormalized Green
functions without UV divergences. The RG is mainly concerned with the prediction
of the asymptotic behavior of correlation functions expressed in terms of anomalous
dimensions ; by the use of 3 functions, both defined via differential relations

8 InZ j
’Y] - 6/11
Using the RG routine the anomalous dimensions 7;(gy1, gv2, gb1, gs2) can be ex-

tracted from one loop diagrams. The definitions (11) and expressions (10) for
d =2+ 26 yield

Og .
, Bg= Ngﬁlco , with g = {gu1, G2, g1, b2, u} . (11)

€o

Bor = Gui (—26+271+7), Bpe=002(204+271+7—m),
Bar = g (—2ae+71+272), Bgbz = gs2 (20 + M1 + 272 — 75)
Bu = u(n—m) (12)
The partial derivative with respect to p in (11) generates ¢ and € —dependent terms

which cancel some mixed poles. The calculation of UV divergences gives Z-constants
in the form

Sy g2 Gul ) Se A (gv2 gu1 )
= _Pd Jv2 _ Jvl Zo =1 _ At (G2 Gu
2 = 1 gmauds ( 2 2)° 2= Y i) \25  2e)

Sa UM 921 20v19v2 g22
Zy = 1 el —9u 13
‘ + (27m)2 g, (26+4e o 26 )° (13)
Z = 1+ Sa Az Gv1 Gb1 o1 Go2 | Gv2Gn1 _ Gv2 G
> (2m)% (u+ 1)go2 \ 26 + 2¢(1 + a) 2¢ 2ae 26 )’
and in consequence one obtains y-functions :
Sd Sd /\l Gv
= 24 A - MYy
mn (27r)du 5 Jv Y2 @r)du+1’
(14)
Sa M 2 Sa A2 gv Gb

= — U , = )
T g " BT it g



where Sy denote d-dimensional sphere, Sy = 2r%2/T'(d/2) , and

d—1 d—2
)\1=—2d—, )\2=—2d—7 9v = Gv1 T+ Gu2,
A = d? -2 A = d-—1 _ +
4_4d(d+2)’ 5—4—_—(d+2)’ gb = gb1 T Gb2 -

3.1 RG equations

Correlation functions of the fields are expressed in terms of scaling functions of the
variable s = f—“ s € (0,1). Then the asymptotic behaviour and the universality of
MHD statistics stem from the existence of a stable FP. The continuous RG transfor-
mation is an operation linking a sequence of invariant parameters g(s) determined
by the Gell-Mann Law equation

dg(s)
dlns

where the scaling variable s parameterizes RG flow with the initial conditions g|,—; =
g (the critical behaviour corresponds to infrared limit s — 0). The expression of the
B(g(s)) function is known in the framework of the J, € expansion (see Egs.(14) and
also (12)). The FP g*(s — 0) satisfies a system of equations 5,(g*) = 0, while a
stable FP, weakly dependent on initial conditions, is defined by positive definiteness
of the real part of the matrix Q = (88,/0g)|s~. In other words, a FP is stable if all
the trajectories g(s) in its vicinity approach the FP.

The initial conditions g|s—,1 = g of the equations (15), dictated by a micromodel,
are insufficient since our aim is the large-scale limit of statistical theory, where g* =
Fls—0- The RG fixed point is defined by the equation

A(g") =0. (16)

For g(s) close to g* we obtain a system of linearized equations

= 139 (g(s)) Wlth the a,bbreva,tion g = {gvlv §v27 gbl’ §b27 ﬁ} ) (15)

d .
(1s2-2)@-o -0 7
where I is (5 x 5) unit matrix. Solutions of this system behave like g = g* + O(sV)
if s — 0. The exponents \; are the elements of the diagonalized matrix Q%9 =
(A1, A2, A3, Mg, As) and can be obtained as roots of the characteristic polynomial
Det(Q — AI). The positive defineteness of (2 represented by the conditions Re;()) >
0,7 =1,2,...5 is the test of the infrared asymptotical stability of discussed theory.

4 Fixed points

Within the approach discussed above we have found three nontrivial fixed points
of RG equations which give g}, = gj, = 0 and nonzero universal inverse Prandtl

6



1,81 T T T 250

1,7- €=2 200
IJ1 6 15(%:l i
] u gv
1,51 L100
:d=1.89 gv !

1,4- ; 50

1,3 —— — 0
1,5 2,0 25 o 30 3,5

Figure 1: Dependence of the parameters {gi,g2,u} on the dimension d for physical
value of € = 2 in the third fized point (23).

. 1( [16+9d
u _§< 7 1). (18)

Namely, the values of the coupling parameters are:

number

(1.FP)
T d u* 3
I A )
(2.FP) )
. _ (2m) ded(d +2)(u* +1) .
I = Sy (d—1)(d+ 2+ 2du*(u* + 1))’ 2 = 0; (20)
(3.FP)
. (2n)98e(ur +1)[3d% — (9 — de)d? — 6d(e — 1) + 4]
9 = Sa 9(d — 1)2(d + 2¢ — 2) )
o = (27r)d 862(u* +1) (d2 -2) a1)

Sag 9(d—1)2(d+2e—2)"
Setting € = 2 one obtains expressions for the second and third FP,

(2.FP)
L _(@m¢ sd(d+2)(u +1)
9 = Sq (d—1)(d+2+ 2du*(u* + 1))’

9o =0; (22)
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(3.FP)

. (em)t16(ur +1)(3d® —d® —6d+8)  , _ (2m)32(u +1)(d” — 2) 03
L 9(d — 1)2(d + 2) v 92T T T d-1)2(d+2) (23)

The fixed point (19) is non-physical because of negative value of gy, in dimension
range of d > 2 . Detailed numerical calculations have shown that the region of
stability of other fixed points, (22 - 23), is limited by the value of parameter a <1
and this limiting value does not depend on the dimension d. For zero inverse Prandtl
number u = 0 the fixed point exists,

(4.FP)

* (27r)d 4ed * * *
gv1=—S¢;—m7 gu2=07 gblzov gb2=07 (24)

but it is unstable.

5 Conclusions

In this paper we revised the calculations of stability ranges of developed magnetohy-
drodynamic turbulence [14] in the case when the magnetic field behaves as a passive
vector admixture, i.e. the Lorentz force acting to the conductive medium can be
neglected. We have used the modificated standard minimal substraction scheme (10}
in the dimension d > 2 up to d = 3. Stability of the Kolmogorov scaling regime,
which is governed by renormalization group fixed point, becomes for the parameter
a < 1, and is unstable for a > 1 independently on dimension d. Limit value of the
inverse Prandt] number at d = 3 restores the value of u = 1.393 which is known from
usual e-expansion, and it fluently rises to u = 1.562 at d = 2, see Fig.1. Note that
numerical solution of Gell-Mann-Low equations shows that the fixed point (22) is
local and the system tends to FP (23) in large attractive region. Stable ”magnetic”
FP with 4 = 0 [9] has not been found.

Stability of the Kolmogorov scaling regime in d-dimensional model of devel-
oped magnetohydrodynamic turbulence including back reaction of magnetic field to
medium velocity field in the present minimal substraction scheme will be analyzed
in the next preprint.
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IOpuninus M., Creruk M. E17-2001-20
D-MmepHad Monenb pa3BUTO TypOYIEHTHOCTH
C ITaCCUBHOM BEKTOPHOH IPUMECHIO

Ha ocHoBe MeToa peHOpMaJIM3aLlMOHHOM IPYIIIBI pACCMAaTPUBAETCA Pa3BUTas
MarHUTOTHAPOAMHAMUYECKas TYpOYIEHTHOCTD C IBOMHBIM pa3ioXEHHEM B OKPECT-
HOCTH JBYMEPHOIO NPOCTPAHCTBA Wi Pa3MEPHOCTH NPOCTPAHCTBA B MHTEpBajie
d =(2,3) B ciy4ae, Koraa MarHUTHOE IOJIe SABJISETCS MIaCCUBHOW BEKTOPHOM NpUMe-
CbI0, YTO O3HaYaeT NpeHeOpexeHHe BAMAHNEM cWibl JlopeHla Ha cpeny. s aHa-
JIM3a yCTOMYHMBOCTH PeXHUMa KOJIMOTOPOBCKOIO CKEIJIMHIA, KOTOPHIH ynpasisercs
PEHOPMIPYNIIOBBIMH (PHMKCHPOBaHHBIMH TOYKaMHM, ObUIa HCIIONB30BaHA HEKOTOpPas
Moau¢uKalys CTaHAApPTHOH MHUHHMMAIBHOH CXeMbl BbIYMTaHHWil. BpUto HaiimeHo
yHHBEpCaIbHOE 3HayeHHe oOpaTHOro MarHutHoro yucna Ilpanmrna u=1562
s d =2. Ilpu nepexone or d =2k d =3 ObUIO YCTAHOBJIEHO €r0 HEIpPepHIBHOE U3-
MEHEHHE K XOpOILIO U3BECTHOMY 3HauyeHHI0  =1,393 B cilyyae e-pa3noxeHus.

Pa6ora BrimonHeHa B Jlaboparopuu teoperuyeckoit ¢usuxku uM. H.H.Borosmio-
6osa OHSIN.

Coobenne O6beAHHEHHOTO HHCTHTYTA ANEPHBIX McciaenoBanuit. [Iy6Ha, 2001

Jurcisin M., Stehlik M. E17-2001-20
D-Dimensional Model of Developed Turbulence
with a Passive Vector Admixture

Developed magnetohydrodynamic turbulence near dimension d =2 up to di-
mension d =3 has been investigated by means of renormalization group approach
and double expansion regularization in the case when the magnetic field behaves
as a passive vector admixture, i.e. the Lorentz force acting to the conductive medi-
um can be neglected. Some modification of standard minimal substraction scheme
has been used to analyze the stability of the Kolmogorov scaling regime which is
governed by renormalization group fixed point. The universal value of the inverse
Prandtl number 4 =1.562 has been determined at d =2. Its continuation up to d=3
restores the value of ¥=1.393 which is known from usual e-expansion.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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