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Theoretical investigation of 2D Bose gas is of interest not only in itself but
also from the point of view of its experimental applications. Indeed, the exper-
imental observation of the Bose-Einstein quasicondensate in the Bose gas of
hydrogen atoms was claimed [1]. On the other hand, the discovery of the Bose-
Einstein condensation in magnetically trapped alkali-metal atoms [2] stimu-
lated rapid progress in optical cooling and trapping of atoms. This progress
gives us hope that an experimental observation of 2D quasicondensation in
the trapped atoms is a matter of near future (see some experiments along
this line in Ref. [3]). Theoretically, the Bose-Einstein condensation is associ-
ated with the off-diagonal long-range order, i.e., the non-zero asymptotic at
r = |r; — ra] = oo (from the physical point of view at r > 1/4/n) for the
one-body density matrix

@ (e1)d(ra)) = @ (r1)) (W (x2)) # 0. (1)

Here ! (r) and +(r) are the Bose field operators, (---) stands for the statis-
tical average, and (i)(r)) = ¢(r) is the order parameter. As was shown by
Hohenberg [4] from the Bogoliubov “1/¢?” theorem [5], in 2D case there is
no off-diagonal long-range order at finite temperatures due to the temperature
long-range fluctuations of the phase, and the limit (1) is equal to zero. In spite
of this fact, a phase transition is possible to a superfluid state at sufficiently
low temperature T, [6]. At this temperature, the asymptotic behaviour of the
one-body density matrix at r — oo is changed from an exponentional decay
(above T¢) to a power decay (below T.) with respect to r. Thus one can speak
about the phenomenon' of the quasicondensation in two dimensions. For zero
temperature, the limit (1) differs from zero, and, hence, there exists the true
Bose-Einstein condensate. Assuming that the condensate does exist at T' = 0,
in this paper we consider low-density expansions for 2D homogeneous Bose gas
with respect to the gas parameter na?, where n = N/S is the density (a num-
ber of particles per unit area), and a stands for the two-dimensional scattering
length (see Appendix A). Note that the density expansion for the chemical
potential is intimately related to a form of the Gross-Pitaevskii equation, a
powerful tool for investigating a dilute inhomogeneous system of Bose parti-
cles [7]. As the chemical potential is a continuous function of temperature, one
can expect that our results, obtained for zero temperature, are valid also for
finite temperatures T' < T,. Below we consider the case of zero temperature
only.

The leading term of the energy expansion in na? for a gas of hard discs
was first obtained by Schick [8], who made use of the Beliaev method [9],
developed for 3D Bose gas. Recently the Schick asymptotic formula has been
proved rigorously [10]. To the best of our knowledge, there is only one paper,
by Hines et al. [11], where the next-to-leading terms were evaluated. However,
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the authors of Ref. [11] employed the first-order Beliaev approximation for
obtaining the nezt-to-leading terms, while in three dimensions the second-order
Beliaev approximation is needed for the same purpose. Following Schick, they
ignored the imaginary part of the Beliaev equation for the chemical potential
(compare Eq. (4.3) in Ref. [9] with Eq. (1) in Ref. [11]). It is the unphysical
imaginary correction to the chemical potential that determines the range of
validity of the first-order approximation itself. One can easily demonstrate that
in 2D case the correction is of the order of n/In*(na?); therefore, that method
can not yield correct terms of the expansion in this order and higher. At the
same time, our method [12] successfully reproduces in 3D case the famous
next-to-leading term for the chemical potential, which ensures that our results
are valid also in two dimensions. Thus it becomes clear why only the first two
terms involved in our expansion [see Egs. (18), (24) below] coincide with those
of the corresponding expansion from Ref. [11]: the correct coefficient even for
the third term is beyond the approximation used in Ref. [11].

In this paper we adopt the method developed and described in detail in our
previous publications [12]. Only basic notations and some important points
are discussed here. For a homogeneous system, the one-body density ma-
trix (4f(r1)y(r2)) depends on r = r; — ry, and, hence, its eigenfunctions
and eigenvalues are the plane. waves exp(ip - r)/+/S and the occupation num-
bers n, = (d{,&p), respéctively. The Bose-Einstein condensate corresponds to
the macroscopic occupation number Ny, and the order parameter is (1/3(r)) =
(a0)/V'S = \/rgeX (ng stands for the density of the condensate). In turn, the
eigenfunctions of the two-body density matrix (zﬁf(rl)zﬁf(rz)lﬁ(r'z)zﬁ(r’l)) can
be naturally classified as follows. The maximum eigenvalue No(No — 1) ~ N
corresponds to the state of two particles in the condensate; its eigenfunction
¢(r)/S can be interpreted as a pair wave function in medium of the condensate-
condensate type. The other macroscopic eigenvalues 2Non, correspond to the
two-body states with one particle in the condensate and another one beyond
the condensate; its eigenfunctions ¢q/5(r) expliq - (r; + r2)/2]/S are of the
condensate-supracondensate type, where Aq is the total momentum of the
pair of bosons. The residuary non-macroscopic eigenvalues are related to the
supracondensate-supracondensate pairs and to bound ones provided the latter
exist. The functions ¢(r) and @q/5(r) can be chosen as real quantities given

by (p # 0)
@(r) =1+ 9(r), vp(r) = v2cos(p - 1) + Pp(r) (2)

with the boundary conditions ¥(r), ¥p(r) — 0 at r — co. The Fourier trans-
forms of the scattering parts can be expressed in terms of the Bose operators:

Y(k) = mka—k), Yp(k) = _S_(agpdrﬁkdp—k)

No 2n0 n2p
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With the help of the in-medium scattering amplitudes U (k) = [ d*r o(r)V (r) x
exp[—ik - r] and Up(k) = [ d*r p(r)V (r) exp[—ik - r], the chemical potential
reads

2
w=noU(0) + V2 [ i apa(a/2), ()

Here we introduce a pairwise interaction potential V'(r). It should be empha-
sized that the formulas (3) and (4), derived [12] within the Bogoliubov principle
of the correlation weakening [5], are ezact. For a Bose gas, a system with a
small condensate depletion (n — ng)/n < 1, the pair distribution function is
expressed as

ng\ 2 n d*q n
o) = (12) ety +252 [ ZTe0 e, (5)
where the contribution of the supracondensate-supracondensate pair wave func-
tions can be neglected. Another restriction for this representation is the as-
sumption that there are no bound pair states [12]. In order to fulfil the latter
condition, it is sufficient to require V(r) > 0, and, as usually, V(r) — 0 for
r — 00. In the framework of our scheme, the following equations are valid at
sufficiently low densities [12]:

Lo DernUR) ©
k e\ /IZ+anuk) )’
o0 1 U (k)

2\/T? + 2nT U (k) @)
with T = h?k?/(2m). Equations (6) and (7) look like those of the modified
Bogoliubov model where the “bare” pairwise potential V (k) is replaced by the
effective one U (k) that is determined from the two-body Schrédinger equation.
However, in our method there exists a key difference, which is of particular
importance in two dimensions: Eq. (7) is a self-consistent equation for the in-
medium scattering amplitude U (k). Indeed, using the definition of the latter,
Eq. (7) can be represented in the Lippmann-Schwinger form

v 1 [ &g V(k-dq)Ul)
Uk) =V (k) - 5 (27)2 qu+zanU(q). Y

Besides, one can make use of the limiting relation [see Eq. (2)] limp_,0 ¢p(r) =
V2¢(r), which allows one to simplify Eqs. (4) and (5)

p = nUQO)1+(n—no)/n+--], 9)
g(r) = (N1 +2(n—no)/n+--]. (10)
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Thus, our scheme is reduced to the following. First, one should solve Eq. (8)
and find U(0) [and ¢(r)] as a function of the density at n — 0. Second, the
condensate depletion (n—mng)/n should be determined from Eq. (6). Third, em-
ploying these results, one should obtain the density expansion for the chemical
potential (9) and the short-range behaviour for the pair distribution function
(10). Note that in three dimensions this scheme is in excellent agreement with
the data of Monte-Carlo calculations for hard spheres (see the last paper in
Ref. [12]).

In order to solve Eq. (8) at n — 0, we employ the procedure of linearization,
which is similar to that in 3D case [12], and rewrite this equation in the form

2
()'wk—-PP/quXEJ%L()~é (11)

where P.P. denotes the Cauchy principal value, and I is given by

d’¢ | V(k-a)U(g) V(k-a)U(g)
I=PP. - :
/ [ T2 + 2nT,U(q) Ty —Tq

Here we introduce the auxiliary quantity go = c/2mnU(0)/k, where c stands
for an arbitrary dimensionless constant. Performing the “scaling” substitution

q=qv/2mnU(0)/h (12)

in the integral [U(0) is assumed to depend on n in such a manner that nU(0) —
0 when n — 0] and, then, taking the zero-density limit in the integrand, for
n — 0 we find

I=2AV(k), A=In(2c*)mU(0)/(2nh?). (13)
Then, with the help of the Fourier transformation, Eq. (11) reads

— 2
or)=1- A+4—h-§/dr'V (r")Yo(golr — r'|).
Here the Fourier representation is used Yo(pr) = 4/(2m)%P. P J d?q expliq -
r]/(p? — ¢?) for the cylindrical Bessel function of the second kind. Since only
the asymptotic of ¢(r) at n — 0 is of interest, the linear integral equation for
©(r) can be written as

p(r)=1-A+

m 2,/ ! ' I
sz [ VO nfaolr — ¥le7/2)

where the asymptotic ¥p(z) = 2In(ze7/2)/m + O(2?Inz) for z — 0 is used.
Here v ~ 0.5772 stands for the Euler constant, and O(z) denotes terms of the
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order of z or even highet. It is seen from the resulted equation that, first, (r)
obeys the Schrédinger equation (Al), and, second, its asymptotic for r — oo
is

o(r) = 1 — A +In(rgoe”/2)mU(0)/(27h?), (14)
which differs from that of Eq. (A2) only by the multiplication factor mU(0)/
(27h?). Comparing Eq. (14) with Eq. (A2) yields due to linearity of Eq. (A1)

p(r) = 2up©(r), (15)
—Ilna = 27h%(1 - A)/[mU(0)] + In(goe”/2), (16)
where we introduce the parameter u by the definition

U(0) = /d2r o(r)V(r) = (47h? /m)u. (17)

With the help of Eq. (13) and the definition of gy (see above), Eq. (16) can be
rewritten as
u=6(1+ulnu), &=—1/[In(na’r)+ 27]. (18)

Note that § — 0 at n — 0. As expected, the arbitrary constant c is cancelled
and not involved in final Eq. (18) and, hence, in the formula (15) for ¢(r).
Equation (18) has no solution for v when § > 1 and has two positive ones
when § < 1 (i.e., when na? < 0.0369...). The solution with a greater value
of u should be ignored.because of its unphysical behaviour [u ~ 1/(na?) at
n — 0]. An expansion for u is obtained from Eq. (18) by iterations

w=6+8In6+6%In26 + 8% Ind + O(6* In2 ). (19)

Using Eq. (6), one calculates the condensate depletion by means of the
substitution (12) upon integrating

n—n d?

Thus, with the help of Eqgs. (15), (17) and (20), one can rewrite Eqgs. (9) and
(10) as

(4rR*n/m)u[l + u + - -], (21)
9(r) = POl +2u+--] (22)

=
Il

Note that Eqs. (15) and (22) are the short-range approximation valid at r <
1/4/n. For this reason, the boundary condition (2) is not fulfilled for ¢(r) in
Eq. (15). In order to obtain the energy per particle €, we represent it in the form
e = (2rh?n/m) f(u) with an unknown function f(u). From Eq. (18) it follows
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that ndu/0n = u?/(1 — u), which, together with the thermodynamic relation
p = O(en)/On, yields the differential equation u?df /du+2(1—u) f = 2u(1—u?).
From this equation and the initial condition f(u = 0) = 0 we derive

e = (2rh’n/m)u+ u?/2 + O(u®)]. (23)
With Eq. (19), £ can be expanded in the parameter &
e = (2rh*n/m)[6 + 6216 + 62/2 4 03 1n® § + 26° In § + O(6°)). (24)

One can see that all the low density expansions are series in the dimensionless
in-medium scattering amplitude u, which depends ultimately on the density
via Eq. (18) [and, hence, (19)]; therefore, u can be considered as a parameter of
low density expansions in two dimensions. The interaction energy per particle
is exactly related to the pair distribution function (22)

2 2
Eint = / &V (r mh "a[ 24 2ud 401, (25)

where we put by definition

28a

a= Crip® PV () =~ 55

h2 (26)

In the latter equation we employ the theorem (A4) with the coupling constant
A [V(r) = AV(r), and X = 1 in final formulas]. Since €j,; can be directly
evaluated via the relation (25), our approach takes accurately into account the
short-range particle correlations [12]. Note that Eq. (25) can also be obtained
from the Hellmann-Feynman theorem ejyy = A9e¢/OX with Egs. (18), (23),
and (26). Moreover, Eq. (22) can be derived in the same manner varying the
energy: g(r) = (2/n)dz/dV(r). For the kinetic energy per particle ey, =
(3> p?)/(2mN) we have

Ekin = € — Eint = 2”22n[u+(—;-——a)u2+---]. (27)

It is seen from Eq. (23), (25) and (27) that in the leading order, proportional
to nu, the total energy is purely kinetic. Thus, whatever a particular shape of
the potential V(r), at sufficiently small densities the energy becomes mostly
kinetic. By contrast, in three dimensions ey, ~ 2mh%bn/m and €jy; ~ 27h?(a—
b)n/m are of the same order, where a is the 3D scattering length and b =
a — A0a /O [12] (except for hard-spheres when a = b, see Ref. [13]).

Let us discuss the nature of the Schick approximation

€ ~ —2wh*n/(mInna?), (28)
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which is Eq. (24) in the lowest order in n/Inna®. As the energy (28) in this
order is purely kinetic, it cannot in principle be represented as a sum of the
interaction energies of two particles over all pairs of bosons by analogy with
the weak-coupling 3D Bose gas. However, as in three dimensions, we can start
from Eq. (4) and put g ~ n [d* V(r)p(r) with the in-medium pair wave
function ¢(r). It is clear that ¢(r) for r < o (here ro ~ 1/+4/n is of the order
of the correlation length) should be proportional to the wave function ¢(© (r)
of the two-body problem (A1): ¢(r) ~ Cp(®(r). The boundary condition (2)
can be fulfilled only due to in-medium effects for r 2> ro; therefore, we can
approximately put ¢(ro) ~ 1 and use for ro 3> a the asymptotic (A2). This
leads to C' ~ —2/Inna* and, by Eq. (A3), yields u ~ —47h?n/(mInna?) and,
hence, Eq. (28). The crucial difference in 3D case is the boundary condition
for the two-body problem ¢(®) (r) — 1 — a/r instead of Eq. (A2). In this case
the condition ¢(rg) ~ 1 leads to ¢(r) =~ @ (r) in the leading order, which
results in g~ n [ &®r V(r)p© (r) = 4nhna/m.

Now one easily writes 2D Gross-Pitaevskii functional for the energy using
Eq. (23) in the leading order

h2|Vo|? 2mh?
Elg1= [r (B 4 Ve 0lof + g, (20)
and 2D Gross-Pitaevskii equation

ih0g /0t = 6E/66" = [~ (K /2m)V? + Vexy (06 + (4nhPu/m)[g[6.  (30)

Here ¢ = ¢(r,t) = ((r,t)) is the order parameter with the normalization
N = [d’r|¢[?, and u is given by Eq. (18) with n = |¢|>. Upon varying in
Eq. (30), we neglect the variation of u, for |#|*6u/d¢* ~ u?|$|?>$. Note that the
sum of the first and third terms in Eq. (29) corresponds to the kinetic energy
of bosons according to Eq. (27). Equations (29) and (30) are more exact than
those of Ref. [14], based on the Schick formula (28).

In conclusion, the expansions have been derived for the condensate deple-
tion (20), the chemical potential (21), the pair distribution function (22) for
r < 1/4/n, the total (23), interaction (25) and kinetic (27) energies. The en-
ergy expansion (23) leads to the Gross-Pitaevskii functional (29) and equation
(30). This work was supported by the RFBR, grant 00-02-17181.

Appendix A: Variational theorem for the two-
dimensional scattering length

In this appendix, a useful variational theorem is proved for 2D scattering
length. In this paper we deal only with the short-range potentials which go
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to zero for r — oo as V(r) — 1/r™ (m > 2), or even faster. The s-wave
function corresponding to relative motion of two particles with p = 0 obeys
the two-body Schrédinger equation in the centre-of-mass system

~(12 /m)V2 O (r) + V(r)e® (r) = 0 (A1)

with the following boundary conditions: first, |o(® (r)| < oo at r = 0, and,
second, for 7 — oo

09 (r) = In(r/a). (A2)
Since the asymptotic is chosen to be real, the solution of Eq. (A1) is also real.

The introduced positive quantity a is called 2D scattering length. Integrating
Eq. (A1) and keeping in mind Eq. (A2) yield

21h? /m = / d>r V(r)e© (r). (A3)

Let us suppose that V(r) is infinitesimally changed. Then, varying Eq. (A1),

multiplying the obtained equation by ¢(9)(r), and carrying out the integration,
one arrives at the theorem

27h? da

m a

- / &r [0 (1)]26V (r). (A4)
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UYepnsiit A.IO., Illanenko A.A. E17-2001-45
Pa3pexeHHblit AByMEpHBIN 003e-ras:
HU3KOIUIOTHOCTHBIE pa3oxXeHus u ypasHeHue I'pocca-Iluraesckoro

H3ydaercs paspeXeHHBIH IBYMEpHBIi 0o3e-ra3 npu HYJEBOH TeMIeparype
C TIIOMOIIBI0 METOAA, pa3pabOTaHHOro paHee aBTOpamu. IlojydeHBl HHU3KOIUIOT-
HOCTHBIE Pa3/0XeHHs AjI XUMUYECKOTro IIOTEHIMala, 3HEPIUH OCHOBHOIO COCTOS-
HU$1, KHHETUYECKOM U MOTeHIMaIbHOU 3Hepruii. HalineH napamerp pa3noxeHus —
Oe3pa3MepHasl CpeoBasl aMIUIMTYAA PacCesHUs U, YOOBJIETBOPSIOLIas YPaBHEHHIO
1/u+Inu=-In (nazn) - 2y, tae na’u 'Y — ra3oBblIil IapaMeTp M MOCTOsHHas Di-
Jiepa cooTBeTcTBeHHO. [oka3aHo, YTO IIPU AOCTATOYHO HU3KHX IUIOTHOCTAX DHEp-
I'dsl OCHOBHOI'O COCTOSIHHS aCUMIITOTUYECKH paBHa KMHETHYECKOH 3HEPruH; 3TOT
Pe3y/IbTaT He 3aBUCUT OT (POPMBI TOTEHLHANIA, B OTJINYHE OT TPEXMEPHOTO CiIydasl.
B pamxkax Haueil cxeMsl Takxe IpeaioxeHa HoBas hopMa JByMEPHOTO YpaBHEHHUS
I'pocca-IIuraesckoro.

Pabora BrimosiHeHa B Jlaboparopuu Teoperndeckoit ¢pusuku uM. H.H.Borosmro-
6osa OUSIN.
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Cherny A.Yu., Shanenko A.A. E17-2001-45
Dilute Bose Gas in Two Dimensions:
Density Expansions and the Gross—Pitaevskii Equation

A dilute two-dimensional (2D) Bose gas at zero temperature is studied
by the method developed earlier by the authors. Low density expansions are de-
rived for the chemical potential, ground state energy, kinetic and interaction ener-
gies. The expansion parameter is found to be a dimensionless in-medium scatter-
ing amplitude u, obeying the equation 1/u + Inu = ~In(na’r) - 2y, where na?
and vy are the gas parameter and the Euler constant, respectively. It is shown that
the ground state energy is mostly kinetic in the low density limit; this result does
not depend on a specific form of the pairwise interaction potential, contrary to 3D
case. A new form of 2D Gross—Pitaevskii equation is proposed within our scheme.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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