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1 Preamble

Usually, the perturbative QCD part of the theoretical contribution to ob-
servables in both the space— and time-like channels is presented in the
form of two— or three—term power expansion

O(z)
Oo

=1+r(x); r@)=ca(r)+cai+cai+...; r=0Q* or =s

(1)
(our coefficients are normalized ¢, = C 7% differently from the commonly
adopted Cy, like in Refs.[1, 2, 3]) over powers of the effective QCD coupling
& which is supposed ad hoc to be of the same form as in both the channels,
e.g., in the massless three-loop case
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Here, L = In(z/A?), and for the beta-function coefficients we use the
normalization

[zﬁ <—ln3L+gln2L+21nL— -;-) = 3hibyInL+ 3 bs

Bla)=—Bya’ = pia® = Brat+...==Fpa? (1+ba+ba’+...),
that is also free of m powers. Numerically, they all are of an order of unity
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Bo(f) = bi(f) =

Bo(4£1) =0.875£0.005; by(4+1)=0.4907305.

Meanwhile, the RG notion of invariant coupling was first introduced
in QED [4] in the space-like region in terms of a real constant z3 of the
finite Dyson renormalization transformation. Just this QED Euclidean
invariant charge €(Q) is the Fourier transform of the space distribution
e(r) of electric charge (arising due to vacuum fluctuations around a point
“bare” electron) discussed by Dirac [5] in 30s — see Appendix IX in the
textbook [6].

Generally, in the RG formalism (for details, see, e.g., the chapter
“Renormalization group” in the monograph [7] and/or Section 1 in Ref.[8])
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the notion of invariant coupling §(Q) is defined only in the space-like do-
main.

In particular, this means that if some observable is physically a function
of one kinematic Lorentz—invariant space-like argument Q?, then, due to
its renormalization invariance, it should be a function of RG invariants
only. E.g., in the one—coupling massless case

O(Q*/1?, gu) = F (3(Q*/p, gu)) with  F(g) =0(1.9).

Due to this important property, in the weak coupling case we deal with
the functional expansion of F' in powers of invariant coupling . This is
a real foundation of QCD power expansion (1) in the Euclidean case with
x = Q%. At the same time, inside the RG formalism, there is no natural
means for defining invariant coupling §(s) and perturbative expansion for
an observable O(s) in the time-like region.

Nevertheless, in modern practice, people commonly use the same sin-
gular expression for the QCD effective coupling @, , like (2), in both the
space— and time-like domains. The only price usually paid for this transfer-
ring from the Euclidean to Minkowskian region is the change of numerical
expansion coefficients. The time-like ones c;>3 = di — & include negative
“r2 terms” proportional to 72 and lower c;

2
@:@cl, b= (nfo)? (e + 2 brea) . 3)
These (rather essential, as far as 7243(4 £ 1) = 4.3407%53) structures d;
arise [9] — [12] in the course of analytic continuation from the Euclidean
to Minkowskian region. The coefficients dj should be treated as genuine
k th—order ones. Just they have to be calculated with the help of the
relevant Feynman diagrams.

Table 1

Expansion coefficients in the Euclidean d; and
Minkowskian ¢, regions and their differences.

| Process | f [ ci/di|e/da] ¢ ds | 63 | &4 |
7 decay |3 | 1/7 53 10852 1.39 | 0.54 | 5.01
ete” 4 .318 16 | -0.35 ] 0.11 | 0.46 | 2.45
ete” 5| .318 14 1-0411-0.02]0.39|1.75
Zg decay | 5| .318 09 |-0481-0.09]0.39|1.58
with d3 = c3 + 03



To demonstrate the importance of “7? terms”, we have considered the
three—flavor case for 7—decay, the f = 4,5 cases for ete~ — hadron anni-
hilation and the Z; decay (with f = 5) — see Table 1 in which we also give
values for the m2~terms. In the normalization (1), all coefficients ¢, dy
and dy are of an order of unity. In the f = 4,5 region the contribution d;
prevails in c3 and |d3| < |c3| (see also Table II in Bjorken’s review [11]).

Concerning the fundamental inconsistency of current perturbative QCD
practice connected with unphysical singularities, take the well-known rela-
tion between the so—called Adler function D and total cross—section ratio
R of a related process

o _ 2 [ R(s)ds
D@)=¢ [ i (1

In the case of inclusive ete™ annihilation into hadrons, R(s) is the ratio
of cross—sections presented in the form R(s) = 1+ r(s) with a function
r expandable in powers of a,(s) like in Eq.(1). At the same time, the
Adler function is also used to be presented in the form D =1+ d with d
expanded in powers of &,(Q?) .

Here, we face two paradoxes. First, @,(Q?) (and its powers) and. hence,
the perturbative D(Q?) obeys non-physical singularity at Q2 = A? in
evident contradiction with representation (4). Second, the integrand R(s) .
being expressed via powers of a;(s), obeys non-integrable singularities at
s = A? , which makes the r.h.s. of eq.(4) senseless.

This second problem is typical of inclusive cross—sections, e.g., for the
7 hadronic decay. Generally, in the current literature it is treated in a very
strange way — by shifting the contour of integration from the real axis
with strong singularities to a complex plane. However, such a “physical”
trick cannot be justified within the theory of complex variable.

Meanwhile, as it is known from the early 80s, the perturbation represen-
tation (1) for the Minkowskian observable with the coefficients modified by
the m?~terms is valid only at a small parameter 72/ In?(s/A?) values, that
is in the region of sufficiently high energies W = /5 > Ae™? ~ 2Ge\V .

Here, it is appropriate to remind the construction devised by Radvushkin
[9] and Krasnikov—Pivovarov [10] (RKP procedure) about 20 vears ago.
These authors used the integral transformation

t
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reverse to the Adler relation (4) (that is treated now as integral transfor-
mation)

R - DQ) =@ [ SR =D (Re) ©)
for defining modified expansion functions
A (s) = Rl (Q)] (7)
for the perturbative QCD contribution
r(s) = di21(s) + da™Aa(s) + d3As(s) (8)

to an observable in the time-like region.
At the one-loop level, with the effective coupling &!" = [Bo In(Q?/A?) ™"
one has

1 1
AV (s) =R [aV] = g AICC0S ey ~ arctan £] (9)

‘ 1 1
V L2 + = [ s T
(with L =1In(s/A?)) and for higher functions
L

) 1 (M) —
wrgmE N gmee
which are n'ot powers of 22((11)(5).
The r.h.s of (9) at L > 0 can also be presented in the form
Ql(ll)(s) = — arctan 1 (9a)

Wﬂo

convenient for the UV analysis. Just this form was discovered in the early
80s in Refs.[13] and [9], while eqs.(10) in Refs.[9] and [10]. All these papers
dealt with HE behavior and did not pay proper attention to the region
L < 0. In particular, expression (9) was first discussed only 15 years
later by Milton and Solovtsov [14]. These authors made an important
observation that expression (9) represents a continuous monotone function
without unphysical singularity at L = 0 and proposed to use it as an
effective “Minkowskian QCD coupling” @(s) = 2A;(s) in the time-like
region.
For the two-loop case, to the popular approximation

_ 1 Inl Q2
Boal, (@) =7 =N Gs L=l
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there corresponds [9, 15]

G2 (5) = APV (5) = (1+ bl ) J0(g) o VP +1

W(s) —
pop L? 4 72 Bo L2 4 72

(11)

At L > 7, by expanding this expression and 2, from (10) in powers of
72/ L? we arrive at the 7°~terms (3).

Both the functions (9) and (11) are monotonically decreasing with a
finite IR value @(0) = 1/8o(f = 3) ~ 1.4. They have no singularity at
L = 0. Higher functions go to zero 2(0) = 0 in the IR limit.

As it has first been noticed in [16, 17], by applying the transformation
D (6) to functions A (s), instead of a;(Q?) powers, we obtain expressions
D[ (s)] = Ax(Q?) that are also free of unphysical singularities. These
functions have been discussed recently [18] — [23] in the context of the
so—called “Analytic approach” to perturbative QCD.

Therefore, this Analytic approach in the Euclidean region and the
RKP formulation for Minkowskian observables can be united in the single
scheme, the “Analytic Perturbation Theory” — APT, that has been for-
mulated quite recently in our papers [16] and [17]. In the next Section, we
give a short resume of this APT construction and then, in Sections 3 and
4, present the results of its practical applications.

2 The APT — a closed theoretical scheme

The APT scheme closely relates two ghost—free formulations of modified
perturbation expansion for observables.

2.1 Relation between Euclidean and Minkowskian

The first one, that was initiated in the early eighties [9, 10] and outlined
above, changes the standard power expansion (1) in the time-like region
into the nonpower one (8). It uses operation Eq.(5), that is reverse R =
[D]7! to the one defined by the “Adler relation” (6) and transforms a
real function R(s) of a positive (time-like) argument into a real function
D(Q?) of a positive (space-like) argument.

By operation R, one can define [14] the RG-invariant Minkowskian
coupling @(s) = Ra,], and its “effective powers” (7) that are free of
ghost singularities. Some examples are given by expressions (9), (10) and



(11). At the one-loop level, they are related by the differential recursion
relation kﬁlegcl_zl = —(d/dL)Ql;cl) and are not powers of A |

By applying D to (s), one can “try to return” to the Euclidean
domain. However, instead of «, powers, we arrive at some other functions

Ak(@*) =D (2] , (12)

analytic in the cut Q2-plane and free of ghost singularities. At the one-loop

case )
1 A

In(Q2/A%) Q% A%’

1 Q?A?

2AM(Q%) = + . 13

IBO 2 (Q ) ln2(Q2/A\2) (Q2 _ ‘\2)2 ’ ( )

These expressions have been originally obtained by other means [18, 19]

in the mid-90s. The first function A; = @,,(Q?), an analytic invariant

Euclidean coupling, should now be treated as a counterpart of the invariant

Minkowskian coupling &(s) = 2;(s). Both a,, and & are real monotoni-

cally decreasing functions with the same maximum value

BoA(Q%) =

aan(0) = @(0) =1/5,(f =3) ~ 1.4

in the IR limit!.

All higher functions vanish A, (0) = A, (0) = 0 in this limit. For k > 2,
they oscillate in the IR region and form [24, 25] an asymptotic sequence a
14 Erdélyi.

INote that the transition from the usual invariant MS coupling a, to the
Minkowskian & and Euclidean a,, ones can be understood as a transformation to
new renormalization schemes. At the one-loop case

a, = al = ﬂ—l——arctan(vrﬁgas) and @, = aan'V = a, +Bi (1 - 61/500’) ' . (14)
0 0

Here, the first transition looks “quite usual” as & can be expanded in powers of «; ,
while the second one in the weak coupling case behaves like the identity transformation
as far as the second nonperturbative term e~!/%% leaves no “footsteps” in the power
expansion.

For both &) and aa,!) the corresponding 3 functions have zero at a = 1 /Bo and
are symmetric under reflection [ — 1/28] = — [a — 1/285] . Moreover, the 3 function
for @&(s) turns out to be equal to the spectral function for a,,(Q>) - see below Eq.(18)
atk=1.



The same properties remain valid for a higher-loop case. Explicit ex-
pressions for Ay and 2, at the two-loop case can be written down (see,
Refs. [26] and [27]) in terms of a special Lambert function. They are il-
lustrated below in Figs 1la and 1b. Note here that to relate Euclidean and
Minkowskian functions, instead of integral expressions (5) and (6) one can
use simpler relations, in terms of spectral functions p(o) = SA(-0),

e ¢]

oo
a@sn =1 [ 2o wen = [Cotoin). 09
0 s
equivalent to expressions Ax(Q?) = D [2;] , and i (s) = R[Ax].
Remarkably enough, the mechanism of liberation of unphysical singu-
larities is quite different. While in the space-like domain it involves nonper-
turbative, power in Q?, structures, in the time-like region it is based only
upon resummation of the “r? terms”. Figuratively, (non-perturbative !)
analyticization [18, 19, 25] in the Q*~channel can be treated as a quantita-
tively distorted reflection (under Q? — s = — Q?) of (perfectly perturba-
tive) m2-resummation in the s—channel. This effect of “distorting mirror”,
first discussed in [14] and [28], is clearly seen in the figures 1a.b mentioned
above.
This means also that introduction of nonperturbative 1/Q? structures
now has got another motivation, Eq.(12), independent of the analyticiza-
tion prescription.

2.2 Global APT

In reality, a physical domain includes regions with various “numbers of
active quarks”, i.e., with different flavor numbers f = 3,4,5 and 6. In
each of these regions, we deal with a different amount of quark quantum
fields, that is with different QFT models and different Lagrangians. To
combine them into a joint picture, the procedure of the threshold matching
is in use. It establishes relations between renormalization procedures for a
model with different f values.

For example, in the MS scheme the matching relation has a simple form

G_fs(QQ = ]\[;’ f-1= C—Ys(c22 = ‘A[?,f) . (16)
It defines a “global effective coupling”

a,(Q*) = a,(Q* f) at M;_, <Q*< M7,
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continuous in the space-like region of positive Q2 values with discontinuity
of derivatives at matching points Q* = ]\IJ?. To this global &, , there
corresponds a discontinuous spectral density

pr(0) = pr(033) + Y _ 00 = M7) {ps(o: f) = pr(o: f = 1)} (17)

f24

with pi(o; f) = S ak(—o, f) which yields [16, 17] via relations analogous
to (15)

e ]

4@ =1 [ nor we =1 [ L) 08)
0 s

the smooth global Euclidean and spline-continuous global Minkowskian
expansion functions.

02

B P :":_ &)
aZ, /|1 AT=350 MeV

Figure 1: a - Space-like and time-like global analytic couplings in a few Gel” domain
with f = 3 and A® = 350MeV; b - “Distorted mirror symmetry” for global expansion
functions. All the curves in 1b correspond to exact two-loop solutions expressed in
terms of Lambert function.

Here, in Fig.la, by the dotted line we give a usual two-loop effective
QCD coupling &,(Q?) with a singularity at @* = A2. On the other hand,
the dash-dotted curves represent the one-loop APT expressions (9) and
(13). The solid APT curves are based on the exact two-loop solutions of RG
equations and approximate three-loop solutions in the MS scheme. Their



remarkable coincidence (within the 2-4 per cent) demonstrates reduced
sensitivity of the APT approach (see, also Refs. [19, 20, 21]) with respect to
higher—loop effects in the whole Euclidean and Minkowskian regions from
IR to UV limits. Fig.1b shows higher two-loop functions in comparison
with «,, and & powers.

Generally, functions 2, and Ay differ from the local ones with a fixed
f value. Minkowskian global functions 2, can be presented via (s, f)
by relations

a(s) = a(s; f) +e(f); Ua(s) =o(si f)+ea(f) at  M;<s<Mi,
(19)
with shift constants c(f), co(f) representable via integrals over pi(o; f +
n),n > 1 with additional reservations, like c(6) = 0, related to the
asymptotic freedom condition.
Numerical estimate performed in Ref.[17] (see also Table 6 in Ref.[26])
for traditional values of the QCD scale parameter A3z ~ 300 — 400 MeV

¢(3) ~0.02, c(4) ~3.107%, ¢(5) = 3.10™*;  c(f) = 3a(M})c(f)

reveals that these constants are essential in the f = 3,4 region at a few
per cent level for & and at ca 10% level for 2 .

Meanwhile, global Eucledean functions A;(Q?) cannot be related to
the local ones A;(Q?, f) by simple relations. Nevertheless, numerical cal-
culation shows [26, 27] that in the f = 3 region one has approximately at
M2 <s< M

0an(@%) = an(Q%3) +¢(3); A Q%) = A(Q%):3) + 2(3).  (20)

3 The APT applications

3.1 General comments

To illustrate a quantitative difference between global APT scheme and
common practice of data analysis, consider a few examples.

In the usual treatment — see, e.g., Ref. [1] — the (QCD perturbative
part of) Minkowskian observable, like e*e~ annihilation or Z, decay cross—
section ratio, is presented in the form

R(s) =Ry (1+7r(s)); rpr(s) =c1as(s)+c a2(s)+cs a(s)+.... (21

9



Here, the coefficients ¢,, ¢, and c¢3 are not diminishing numerically
— see Table 1. A rather big negative c¢3 value comes mainly from the
—c,m?32/3 term. In the APT, we have instead

rapr(s) = dia(s) + da Aa(s) + d3z As(s) + ... (22)

with reasonably decreasing coefficients dy o = ¢1 and d3 = c3+c17253/3,
the mentioned 72 term of c3 being “swallowed” by &(s).

In the Euclidean channel, instead of power expansion similar to (21),
we typically have

dapr(Q?) = d10an(Q?) + do A2(Q?) + d3 A3(Q%) + ... (23)

with the same coefficients dj . Here, the modification is related to nonper-
turbative, power in Q?, structures like in (13).

Table 2
Relative contributions (in %) of 1-, 2— and 3—-loop terms to observables
| Process Qory/s |f] PT APT |

GLSsum rule | 1.73 GeV | 4| 65 | 24 | 11 75| 21
Bjorken. s.r. | 1.73 GeV 55 | 26 | 19 80| 19
Incl. 7-decay | 0 -2 GeV 55 | 29 | 16 88 | 11
ete” — hadr. | 10 GeV 9% | 8 | 4 92| 7
Z, — hadr. 89 GeV 98.6|3.7]-2.3196.9 3.5

=1 QO o

;h'U\Hth

ot

In Table 2, we give values of the relative contribution of the first, second,
and third terms of the r.h.s. in (21),(22) and (23) for the Gross-Llywellin-
Smith [29] and Bjorken [30] sum rules, 7 — decay in the vector channel [31],
as well as for ete™ and Z; inclusive cross-sections. As it follows from this
Table, in the APT case, the three-loop (last) term is very small, and being
compared with data errors, numerically inessential. This means that, in
practice,

one can use the APT expansions (22) and (23) without the last term.

3.2 Semi—quantitative estimate

This conclusion can be valuable for the case when the three-loop contribu-
tion, i.e., d3 is unknown. Here, people use the so-called NLLA approxima-
tion, that is common practice in the f = 5 region. For the Minkowskian
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observable, e.g., in the event-shape (see, e.g., Ref. [33]) analysis there
corresponds the two-term expression

7(s) = cras(s) + cpa(s) . (24)

On the basis of the numerical estimates of Table 1, in such a case, we
recommend instead to use the two-term APT representation

rEhr(s) = did(s) + do As(s) (25)
which, at L? > 72, is equivalent to the three-term expression

7r2,33

rst(s) = d; {as - aﬁ} + dya? = c; G, + o0’ — 0382, (26)
i.e., to take into account the known predominant m? part of the next co-
efficient c3. As it follows from the comparison of the last expression with
the previous, two—term one (24), the &, numerical value extracted from
eq.(26), for the same measured value rg,, will differ mainly by a positive
quantity (e.g., in the f =5 region with @&, ~ 0.12 + 0.15)

nogad | 1.225 a3

D)3 = ——F—— = -
(B8 = T o Lo oo 1+ 0904,

~ 0.002 +0.003  (27)
that turns out to be numerically important.

Moreover, in the f = 4 region, where the three-loop (NNLLA) approx-
imation is commonly used in the data analysis, the 72 term d4 of the next
order turns out also to be essential. Hence, we propose there, instead of
(21), to use the APT three-term erpression

r@L o (s) = dié(s) + dy An(s) + d3 As(s) (28)

approximately equivalent to the four-term one

7'4A(3)=d1d8+d20—{f+03a§—64&:; C3=d3——-63 (29)
or to
rA(s)—d ‘_ﬁ-3_b§22—4 do {a? — 282 a4 da &3
4 = a1 0 3 (%% 167l',80as + 2{as 7"500‘3}"' I3 &

with d3 and d4 defined[9, 12] in eq.(3).
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The three— and two—term structures in braces are related to specific
expansion functions @ = 2; and U, defined above (18) and entering into
the non-power expansion (28).

To estimate roughly the numerical effect of using this last modified
expression (29), we take the e*e™ inclusive annihilation. For /s ~ 3 +
5GeV with @, ~ 0.28 = 0.22 one has

e 1.07 &
A&,), = —040%s =%~ 0,005+ 0.002
B = T sty a1+ 09744,

— an important effect on the level of ca 1 +2%.

Moreover, the (Ad), correction turns out to be noticeable even in
the lower part of the f = 5 region! Indeed, to /s ~ 10 + 40 GeV with
& ~ 0.20 + 0.15 there corresponds

(DG4l 50 qer = 0.71a8 = (1.1+0.3) - 107° (S 0.5%).

3.3 Important warning

It is essential to note that approximate expressions egs.(26) and (29)
are equivalent to the exact ones (25) and (28) only in the region L =
In (s/A?) > 7 as it is shown on Fig. 2.

One can see that the curve for approximate Minkowskian coupling

Gappr () = G(s) — (7255 /3)as3 (30)

that precisely corresponds to the popular approximation (21) (and gives
rise to the 72 term in the o coefficient) has a rather peculiar behavior. In
the region L > 7 it goes rather close to the curve for & . For instance, at
L ~ 7 the relative error of approximation is about 5 per cent. On the other
hand, below L ~ 0.87 (i.e., W ~ 1.0 — 1.4 GeV') the distance & — Gappr
between curves (error of approximation) increases and at L ~ 0.77 it
blows up (better to say “comes down”).

In particular, at s < 2GeV? it is rather desorienting to refer to a(s)
and it is erroneous to use Gqppr(s) and common expansion (21).

This means that below s = 2GeV? it is nonadequate to use common
@,(s) and power expansion eq.(21).

12



0.6 0.8 1 L/

Figure 2: Comparison of common QCD coupling &, with the APT global ones
(&, Qan ) in the @,/s < 3GeV region at Az = 400 MeV. By dash-dotted line
we give an approximate Minkowskian coupling (30). All the curves are taken (see
Tables 1,5 and 6 in Ref.[27]) for the 3-loop global case.

In other words, we claim that below s = 2GeV? it is an intricate
business to analyze data in terms of the “old good” (but singular) a; *.
Here, approximate relation (30) does not work as it is illustrated in Fig.2.

In this, low—energy Minkowskian/Euclidean region data have to be an-
alyzed in terms of nonpower expansion (22)/(23) and extracted parameter
should be a,q(s) /@(Q?) or A®) . In Table 3 we give few numerical examples
for the chain

tan(M,) & a&(M,) & A®) = AB) 5 a,(My)

2In particular, this relates to analysis of 7 decay. In this connection we would like
to attract attention to the important paper [31] that treats the 7 decay within the
APT approach with results A®) = 420 MeV that corresponds to aan(M?) = 0.32 or
a&(M?2) = 0.30. At the same time, attempts to interpret results of APT for 7 decay in
terms of as, like, e.g., in Ref.[32], needs some special precaution — see next footnote. A
more detailed comment on the 7 decay theoretical analysis will be published elsewhere.
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that allows to study the QCD theoretical compatibility of LE data with
the HE ones in the APT analysis.

Table 3 : Numerical chain related LE with HE regions
lE(AIT) | aan(AIT) ‘\(3) “ A(S) C_)‘s(]\[Z)J
0.309 | 0.332 450 MeV || 303 MeV 0.125
0.292 | 0.314 400 MeV || 260 MeV 0.121
0.278 | 0.299 350 MeV || 218 MeV 0.119
0.266 | 0.286 300 MeV || 180 MeV 0.116

Here, the main element of correlation is the chain A® <+ A® « A®) that
follows from the matching condition (16) 3.

4 Quantitative illustration

Consider now a few cases in the f =5 region.

Y decay. According to the Particle Data Group (PDG) overview (see
their Fig.9.1 on page 88 of Ref[1]), this is (with a (M%) ~ 0.170 and
@s(M2%) = 0.114) one of the most “annoying” points of their summary of
a,(M2) values. It is also singled out theoretically. The expression for the
ratio of decay widths starts with the cubic term

R(Y) =Ry} (M3)(1+ e ;) with e ~1.
Due to this, the 72 correction? is rather big here

Az =~ o (1 - 2(7fo)?al) .

S

Accordingly, )
Aa,(M2) = 3 (780)% a®(M3) ~ 0.0123,

3Generally, it is possible to use correspondence between an , & and a; as expressed
by relations (14). However, the use of a5 (u®) at pu <1 GeV' as a QCD parameter
could be misleading due to vicinity to singularity. For example, at AB®) =400 MeV one
has a,(M2) ~ 0.35 and a,(1 GeV?) ~ 0.55 to be compared with aan(M?) ~ 0.31 and
Qan(1 GeV?) ~ 0.40.

4First proposal of taking into account this effect in the Y decay was discussed[10]
more than a quarter of century ago. Nevertheless, in current practice it is completely
forgotten.
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which corresponds to

Ada,(M2) =0.006 with resulting a,(M3) = 0.120. (31)

The NNLO case. Now, let us turn to a few cases analyzed by the three-
term expansion formula (1). For the first example, take ete™ hadron anni-
hilation at /s = 42GeV and 11 GeV .

A common form (see, e.g., Eq.(15) in Ref.[2]) of theoretical presentation
of the QCD correction in our normalization looks like

Pete- (V/5) = 0.318a,(s) + 0.143 a2 — 0.413 a5 .

In the standard PT analysis, one has (see, e.g., Table 3) @,(42?) = 0.144
that corresponds to Te+e- (42) =~ 0.0476 . Along with the APT prescription,
one should use

Fere- (V/5) = 0.318a(s) + 0.143 y(s) — 0.023 As(s) . (32)

which vields @(42%) = 0.142 — «,(422) = 0.145 and a,(M3%) = 0.127 to
be compared with a,(AM2) = 0.126 under a usual analysis.

Quite analogously, with @,(11%) = 0.200 and r+.-(11) ~ 0.0661 we
obtain via (32) @(112) = 0.190 that corresponds to a,(M3) = 0.129 in-
stead of 0.130.

For the next example, take the Z; inclusive decay. The observed ratio
Rz =T(Zy — hadrons) /T (Zy — leptons) = 20.783 £ .029

can be written down as follows: Rz = Ry (1 +rz(M3)) with Ry =19.93.
A common form (see, e.g., Eq.(15) in Ref.[2]) of presenting the QCD cor-
rection rz looks like

rz(Myz) = 0.3326a, + 0.0952 a2 — 0.483 a3 .

To [rz),,, = 0.04184 there corresponds &,(M7) = 0.124 with \(\_?g =
292 MeV . In the APT case, from )

rz(Mz) = 0.3326 &(M2) + 0.0952 A (M3z) — 0.094 A5(M3) (33)

we obtain &(M2) = 0.122 and a,(M3%) = 0.124. Note that here the three-
term approximation (8) gives the same relation between the a,(M%) and
a(M%) values.
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Nevertheless, in accordance with our preliminary estimate for the (Ad;)s
role, even the so-called NNLO theory needs some 7% correction in the
W = /s < 50 GeV region.

The NLO case. Now, turn to those experiments in the HE (f = 5)
Minkowskian region (mainly with a shape analysis) that usually are con-
fronted with the two-term expression (24). As it has been shown above
(27), the main theoretical error here can be expressed in the form

(Da,(8) o 100cer = 1.225a3(s) ~ 0.002 + 0.003. (34)
An adequate expression for the equivalent shift of the as (M%) value is
[Ady(M2)]s = 1.225a4(s)a(M3)?. (35)

We give the results of our approximate APT calculations, mainly by
Eqs.(34) and (35), in the form of Table 4 and Figure 3. In the last column
of Table 3 in brackets, we indicate the difference between the APT and
usual analysis. The results of the three-loop analysis are marked by bold
figures. Dots in the lower part of the Table correspond to shape-events
data for energies W = 133,161,172 and 183 GeV with the same positive
shift 0.002 for the the extracted @&, values.

Table 4 : The APT revised® part (f = 5) of Bethke's[2] Table 6

B [/s Tloops [ @, (s) [as(m?) [ & (5) [ as(m?) |
| Process | GeV | No | ref[2] | ref ] | APT | APT |
YTdecay ? | 95 | 2 .170 .114 182 | .120 (+6)
ete~[ona] | 105 | 3 | 200 | 130 | .198 | .129(-1)
ere-[j&sh] | 220 2 | 61 | 124 | .166 | .127(+3)
te-[j&sh] [ 350 | 2 | 145 | 123 | .149 | .126(+3)
ete [Ohea) | 424 3 144 | 126 145 | .127(+1)
ete-[j&sh] | 440 | 2 | 139 | 123 | 142 | .126(+3)
ere[j&sh] | 58 | 2 | 132 | 123 | 135 | 125(+2)
Zy — had. | 91.2 3 124 124 124 .124(0)
ete[j&sh] | 912 2 || 121 | 121 || 123 | .123(+2)

- 2 . (+2)
te-[j&sh] | 180 | 2 | 110 | 123 | 112 | 125(+2)
Averaged < &,(M?) > ;-5 values 0.121; 0.124

a4y & sh” = jets and shapes; Figures in brackets in the last column give the
difference Aas(M%) between common and APT values.
bTaken from Ref.[1].
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In Fig.3, by open and hatched circles we give two— and three-loops
data from Fig.10 of paper [2]. The only exclusion is the T decay taken
from Table X of the same paper. By crosses, we marked the “APT values”
calculated approximately by Eq.(34).

oy(s) [
? A(rf[)s/MeV as(M%)
S 270 0.1235
0.18 | k.
213 -w-e-e-- 0.1184
016 | ¥
0.14 |
012 |
! |
10 50 100 200

Vs, Gev
Figure 3: The new APT analysis for @, in the five-flavor time-like region.
Crosses (+) differ from circles by the 72 correction (34). Solid APT curve

relates to Aﬁ)s =270MeV and a&,;(M%) = 0.124. To compare, we give also the
standard (dot-and-dash curve) &, (at A®®) = 213MeV and a,(M3) = 0.118)
taken from Fig.10 of paper [2].

For clearness of the 72 effect, we skipped the error bars. They are the

same as in the mentioned Bethke’s figure and we used them for calculating

X2

Let us note that our average 0.121 over events from Table 6 of Bethke’s
review [2] nicely correlates with recent data of the same author (see Sum-
mary of Ref.[34]). The best x? fit vields &,(M3)y = 0.1214 and®

O_Ks(/‘fg)APT =0.1235.

This new x%pr is smaller X% pr/x%r =~ 0.73 than the usual one. This

5This value, corresponding to A® = 290MeV , is supported by recent analysis [31]
of 7 decay that gives A(3) = 420 MéV ; compare with Table 3.
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illustrates the effectiveness of the APT procedure in the region far enough
from the ghost singularity.

5 Conclusion

It is a common standpoint that in QCD it is legitimate to use the power
in a, expansion for observables in the low energy (low momentum trans-
fer) region. At the same time, there exist rather general (and old [35])
arguments in favor of nonanalyticity of the S matrix elements at the ori-
gin of the complex plane of the  variable, with a being an expansion
parameter(36]. This, in turn, implies that common perturbation expan-
sion has no domain of convergence. Technically, this corresponds to the
factorial growth (~ n!) of expansion coefficients (like d,, or r, ) at large
n[37, 38]. In QCD, with its “not small enough” a values in the region be-
low 10 GéV it is a popular belief that one does face an asymptotic nature
of perturbation expansion by observing approximate equality of relative
contributions of the second (a?) and the third (a?) terms into observable,
like in all PT columns of Table 2.

Our first qualitative result consists in observation that convergence
properties of the APT expansions drastically differ from the usual PT
ones.

The evidently better practical convergence of the APT series for the
Euclidean observable, as it has been demonstrated in the right part of
Table 2, probably means that essential singularity at a; = 0 is adequately
taken into account by new expansion functions Ax(Q*). On the other
hand, in the time-like region the improved approximation property of the
APT expansion over 2,(s) has a bit different nature, being related, in our
opinion, to the nonuniform convergence of the standard PT expansion for
Minkowskian observables. In any case, from a practical point of view:

1. In the APT approach one can use the nonpower expansions (22) and (23) without
the last term.

The next point, discussed in Section 3.3, refers to a more specific issue
connected with current practice of the Minkowskian observable analysis in
the low—energy (s < 3GeV?) region (like, e.g., inclusive 7 decay). As it
has been shown — see Fig. 2 —

2. Below 2 GéV? it is impossible to use the common power expansion (1) for
a time—like observable.
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Second group of our results is of a quantitative nature:

3. Effective positive shift Ad, = +0.002 in the upper half (> 50 GeV)
of the f =5 region for all time-like events that have been analyzed up to
now in the NLO mode.

4. Effective shift A@, ~ +0.003 in the lower half (10 + 50 GeV)) of the
f =5 region for all time-like events that have been analyzed in the NLO
mode.

5. The new value
as(Mz) =0.124, (36)

obtained by averaging new APT results over the f =5 region.

The quantitative results are based on the new APT nonpower expan-
sion (8) and plausible hypothesis on the 7 ~term prevalence in common
expansion coefficients for observables in the Minkowskian domain. The
hypothesis has some preliminary support — see Table 1 — but needs to
be checked in more detail.

Nevertheless, our result (36) being taken as granted raises two physical
questions:

— The issue of self-consistency of QCD invariant coupling behavior be-
tween the “medium (f = 3,4)” and “high (f = 5,6)" regions.

— The new “enlarged value” (36) can influence various physical specu-
lations in the several hundred GeV region.
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upkos JI.B. E2-2001-153
AHanutHyeckas Teopus BO3MYIIEHHH Ul aHanu3a HaOmiogaembix KXJT

PaGota nocBsiueHa NPUMEHEHHIO HEaBHO Pa3BUTOl, CBOGONHOM OT He(M3UYECKHX OCOOEHHOCTEH,
aHaJIMTHYECKOH Teopun BosMylieHui (ATB) k aHanu3y HekoTopeix Habmonaembix KXJI. OHa HaunHaeTcs
¢ obcykmeHHs IaBHOH mpo6nembl neprypbatuBHOM KXJI — HamMuuMio Npu3padyHbIX CHHIYIAPHOCTEH
U C KpaTKoro o63opa peieHus 3Toi mpoGnems! B pamkax ATB.

Ha HecKoNbKHX NpUMepax B pa3iM4HbIX 06J1acTax (¢ unucnoM apomaros f = 3, 4 U 5) 3HEpIruH u nepe-
JIAHHOTO HMITY/IbCa Mbl IEMOHCTPUPYeM 3heKT ynydIeHHoi cxonumocTh Wit ATB MonuuumpoBaHHOM
Teopun BosMymiennit B KXJI. Hame nepBoe HaG/miofieHHe COCTOUT B TOM, YTO TPeXIET/IEBOH BKJIaj (MOPsii-

Ka o ;) B ATB-pa3noxeHun, Kak NpaBujio, OKa3pIBaeTCA YHCIIEHHO HECYIECTBEHHBIM. DTO MOPOXIAET Ha-
JEeXIy Ha MPaKTHYECKOe pelieHHe U3BECTHOH MPo6IeMbl aCHMIITOTHYECKOTO XapakTepa (OTCYTCTBHS YObI-

BaHMS K03()(OHIMEHTOB) pa3fioKeHHH Teopur BoaMmyleHuii B KTTI.
BTopoii pe3ynbTar 3aKiioyaeTcsd B TOM, YTO OOBIYHBIH NepTypOaTHBHBIA aHaIM3 HaOMIOaeMbIX

BO BPEMEHHNIOZOOHOH 061acTH ¢ GONBIIMMH T 2_GoCTaBNSIOWMMY B K03t duLHeHTe NpH o 3 -YJIeHe OKa3bl-

BaeTCs HealmeKBaTHBIM npu s < 2 B 2. B 4acTHOCTH, 3TO OTHOCHTCH K T-pacnagy.

YCTaHOBIEHO, YTO B 06NIACTH «BBICOKHX» 3Hepruit (10 3B < +/s < 170 I'aB) o6menpuHATOe NpH aHa-
nm3e «npoduieit» ayxmnernesoe (NLO, NLLA) npubnuxeHue MPpHUBOJUT K CHCTEMATHYECKON TEOPETH-
YeCKO# NOrpelHoCTH B 1-2 MpoleHTa I W3BJIEKaeMBIX 3HaUYEHHH O g

Haur cu3nyeckuii pe3ynbTaT COCTOMT B TOM, 4TO yepenHeHHoe o ATB-nanHbIM B o6nact f = 5 3Ha-
yenue (a g (M Z)) ATB; f=5% 0,124 3HaYMTENBHO OTIMYAETCA OT OOLIENPHHATOrO «MHPOBOIO CpeqHe-

H
ro» (=0,118).
Pa6ota BeimonHeHa B Jlaboparopuu Teopernueckoi ¢usuku uM. H.H.Boromo6osa OMAU.
INpenpunt O6beIUHEHHOTO HHCTUTYTA SAEPHBIX HccienoBanuit. Jy6Ha, 2001

Shirkov D.V. E2-2001-153
Analytic Perturbation Theory in Analyzing Some QCD Observables

The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory
(APT) for analysis of some QCD observables. We start with the discussion of the main problem of the per-
turbative QCD — ghost singularities and with the resume of this trouble solution within the APT.

By a few examples in the various energy and momentum transfer regions (with the flavor number
f =3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative
QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order

of o 3) is as a rule numerically inessential. This raises hope for practical solving the well-known problem
of asymptotic nature of common QFT perturbation series.

The second conclusion is that a common perturbative analysis of time-like events with the big n2
term in the n 2 coefficient is not adequate at 5 <2 GeV2. In particular, this relates to © decay.

Then, for the «high» (f =5) region it is shown that the common two-loop (NLO, NLLA) perturba-
tion approximation widely used there (at 10 GeV < Vs < 170 GeV) for analysis of shape/events data con-
=)

tains a systematic negative error of a 1-2 per cent level for the extracted o ¢~/ values.

Our physical conclusion is that the c_xs(M%) value averaged over the f=5 data

(o g (M %)) APT; f=5=0.124 appreciably differs from the currently accepted «world average»

(=0.118).
The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.
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