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1. A theoretical and experimental study of processes at a low energy scale is very im-
portant in QCD because it allows one to investigate effects lying beyond the framework
of the perturbative approach. At present, there is rich experimental material obtained
from hadronic 7-lepton decays. The first theoretical analysis of hadronic decays of a
heavy lepton was performed in 1971 [1] before the experimental discovery of the r-lepton
in 1975. Since then, the properties of the 7 have been studied very intensively.

In this talk we discuss the well-known ratio of hadronic to leptonic widths for the
inclusive decay of the 7-lepton, R,, which now known experimentally with high precision.
This ratio serves for extracting of the values of the QCD running coupling as at the 7
mass scale and the QCD parameter A [2].

The initial theoretical expression for R, contains an integral over timelike momentum

2 M gs s \? s

RT:; ; W(lin) (I—O—ZW)ImH(s), (1)
which extends down to small s and cannot be directly calculated in the framework of the
standard perturbation theory (PT). Indeed, the hadronic correlator I1(s) is parametrized
by the perturbative running coupling that has unphysical singularities and, therefore, is
ill-defined in the region of small momenta. To avoid this problem, one usually applies the
following procedure. The initial integral (1) is rewritten by using the Cauchy theorem
in the form of a contour integral in the complex plane with the contour running around
a circle with radius M2 [3, 4]:
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where D(z) = —z dIl(z)/dz is the Adler function [5]. This trick allows one, in principle,
to avoid the problem of a direct calculation of the R, ratio. However, it should be
noted that in order to perform this transformation self-consistently, it is necessary to
maintain correct analytic properties of the hadronic correlator, which are violated in
the framework of standard PT. The analytic approach in QCD [6] (see also [7, 8]),
which we will use here, maintains needed analytic properties and allows one to perform
self-consistently the procedure of analytic continuation.
We begin by representing the R,-ratio in the form

R = R)(1 + dqcp), (3)

where R? corresponds to the parton level description and dqcp is the QCD correction.
Also, we introduce QCD contributions to the imaginary part of the hadronic correlator,
r(s), and to the corresponding Adler function, d(z): R(s) = [Im (s + ic)/x]/R®
14+7,D o 1+d. Then, one can write dgcp as an integral over timelike momentum
(Minkowskian region)

M2 ds s \? s
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or as a contour integral in the complex plane (Euclidean region)
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2. The PT description is based on the contour representation and can be developed in
the following two ways. In the Braaten’s (Br) method [3] the quantity (5) is represented
in the form of truncated power series with the expansion a, = ag(M?)/7. In this case
the three-loop representation for dgcp is

8oep = ar +rial+read, (6)

where the coefficients 7; and r, in the MS scheme with three active flavors are r; = 5.2023
and r, = 26.366 [3].
The method proposed by Le Diberder and Pich (LP) [4] uses the PT expansion of
the d-function
d(2) = a(z) + d1 a*(2) + dy d*(2), (7)

where in the MS-scheme d¥® = 1.6398 and d} = 6.3710 [9] for three active quarks. The
PT running coupling a(z) is obtained from the renormalization group equation with the
three-loop S-function.

The substitution of Eq. (7) into Eq. (5) leads to the following non-power represen-
tation

36ep = AN (@) + di AP (a) + dp AP (a) (8)
with s
1 dz z z
AM(g) = — 1= (1+ 55 ) a*(2).
@=5m lel=m2 % ( Mf) ( " Mf) ) )

As noted above, transformation to the contour representation (5) requires the ex-
istence of certain analytic properties of the correlator: namely, it must be an analytic
function in the complex z-plane with a cut along the positive real axis. The correlator
parametrized, as usual, by the PT running coupling does not have this virtue. More-
over, the conventional renormalization group method determines the running coupling
in the spacelike region, whereas the initial expression (1) contains an integration over
timelike momentum, and there is the question of how to parametrize a quantity de-
fined for timelike momentum transfers [10]. To perform this procedure self-consistently,
it is important also to maintain correct analytic properties of the hadronic correlator
[11, 12, 13]. Because of this failure of analyticity, Eqs. (4) and (5) are not equivalent in
the framework of PT and, if one remains within PT, it is difficult to estimate the errors
introduced by this transformation. However, using the analytic theory of perturbation
(APT) approach, it is possible to resolve these problems.!

3. In the framework of the analytic approach, the functions d(z) and r(s) are
expressed in terms of the effective spectral function p(c) [6, 12]

aazllmd”p@, r@:lfw%mw. (10)
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The spectral function is defined as the imaginary part of the perturbative? approximation
to dpt(2) on the physical cut. At the three-loop level, it is

p(0) = 00(0) + dr01(0) + da02(0) on(0) = Im[aZ (0 + de)] . (11)

!The nonperturbative a-expansion technique in QCD [14] also leads to a well-defined procedure of
analytic continuation [11].
2To distinguish APT and PT cases, we will use subscripts “an” and “pt”.
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The function go(0) in Eq. (11) defines the analytic spacelike, a.n(z), and timelike
(s-channel), @,(s), running couplings:

1 [* do ~;£°°d_00
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As has been argued from general principles, the behavior of these couplings cannot be the
same [15]. It should be stressed that, unlike the PT running coupling, the analytic run-
ning coupling has no unphysical ghost pole and, therefore, possesses the correct analytic
properties, arising from Kéllén-Lehmann analyticity reflecting the general principles of
the theory. For example, one-loop APT result is [6, 12]3

al)(z) = ai)(2) +
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Using Eq. (4) or equivalently Eq. (5), we obtain the QCD correction to the R,-ratio
in terms of p(o) as follows

1 [®do 1 M do o o \? o \?
S - Rl bR 7 . 14
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This expression can be Presented as the non-power expansion, which looks like the
Eq. (8): 0un = (5:(1?1) +dy a;) +dy 5&?1) .

The difference between the PT (LP) and APT contributions to the R, can be trans-
parently shown by the one-loop relation:

8 A?
R

where agt)(z) and By =9.

+O(A*/ MY, (15)

The additional term, which is ‘invisible’ in the perturbative expansion, turns out to be
important numerically [18, 19]. Due to the negative sign of this term A,, > Apy at the
same value of the QCD correction: 0, (Aan) = 8p(Ape) = 6%

In the case of massless quarks, the APT analysis of the inclusive 7 decay at the
three-loop level has been performed in [20]. In Table 1 we compare this result with the
perturbative calculations performed by Braaten’s and Le Diberder—Pich methods. This
table demonstrates that the APT expansion has much improved convergence properties
as compared with different PT approximations. The investigation [20] (see also [7, 21,
22]) allow us to formulate the following features of the APT method: (i) this approach
maintains the correct analytic properties and leads to a self-consistent procedure of
analytic continuation from the spacelike to the timelike region; (ii) it has much improved
convergence properties and turns out to be stable with respect to higher-loop corrections;
(iii) renormalization scheme dependence of the results obtained within this method is
reduced dramatically.

In studying a relationship between theoretical predictions and experimental data,
it is important to connect measured quantities with “simplest” theoretical objects to

3The analytic running couplings (the exact two-loop and the three-loop after an approximation) can
be written explicitly in the term of the Lambert function [16, 17].
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Table 1: Relative contributions of higher-loop terms in different methods.

Method Expansion terms
APT 1+ 6, = 1 + 0.167 + 0.021 + 0.002
PT (LP) 1 4 6F = 1 + 0.148 + 0.030 + 0.012
PT (Br) 1+ 6% =1+ 0.104 + 0.056 + 0.030

check direct consequences of the theory without using model assumptions in an essential
manner. Some single-argument functions which are directly connected with experimen-
tally measured quantities can play the role of these objects. A theoretical description of
inclusive processes can be made in terms of functions of this sort. Among them there is
the Adler D-function that can be extracted from the experimental data in the process
of ete™ annihilation into hadrons and the inclusive decay of the 7 lepton.

4. The R;-ratio can be separated experimentally in the form of three parts
RT = RT,V + RT,A + RT,S . (16)

The terms R,y and R, 4 are contributions coming from the non-strange hadronic decays
associated with vector (V) and axial-vector (A) quark currents respectively, and R, g
contains strange decays (.9).

Within the perturbative approximation with massless quarks the vector and axial-
vector contributions to R, coincide with each other

3
RT,V = RT,A - EIVudP(l + 6QCD)’ (17)

where |V,q| denotes the CKM matrix element. However, the experimental measure-
ments [23, 24] shown that these components are not equal to each other. The corre-
sponding difference is associated with non-perturbative QCD effects which are usually
described in the form of power corrections [3, 23, 24]. The experimental data for the
isovector spectral function [23, 24] have been used in [25] to extract the Adler Dy-
function which we show as the dashed line in Fig. 1. The experimental D-function
turns out to be a smooth function without any traces of resonance structure.t One can
expect that this object more precisely reflects the quark-hadron duality and, therefore,
is convenient for comparing theoretical predictions with experimental data.® Note here
that any finite order of the operator product expansion fails to describe the infrared
tail of the D-function. We will apply the analytic approach and study the role of quark
masses and threshold effects by comparing our results with experimental data for the
light Adler function corresponding to the non-strange vector channel of 7 decay data.
This function defined in the Euclidean region is a convenient proving ground to test
theoretical methods.

“The D-function obtained in [26] from the data for electron-positron annihilation into hadrons has
a similar property.

5The Minkowskian and Euclidean characteristics of the process of electron-positron annihilation into
hadrons have been considered in {27].



5. To incorporate effects connected with quark masses for the process of the 7 decay
occurring by the vector current via W~ — d, we take the approximation from [28, 29,
which can be written as follows

R(s)=T@) [1 + g(v)r(s)] (s — 4m?), (18)
where
T(v):v3_2v , glv) = 4;[%_3:1}(%;%)]’1}: l—fh;i, (19)

and m = m,, = my denotes the effective mass of u and d quarks which we take here to
be equal each other.

Further, we take into account, that the region of integration in Eq. (1) includes the
vicinity of the quark-antiquark threshold. The perturbative expansion breaks down in
this vicinity due to singularities at s = (m, + mg)* [28, 29]. Thus any finite order
of perturbative expansion is unreliable near quark threshold and, therefore, all singular
terms of the (g /v)™ type have to be summarized. Note, this problem cannot be avoided,
if instead of Eq. (1) one uses the contour representation (2), because these expressions
should be equivalent to each other in the framework of a systematic method. For
heavy quark systems one usually uses the nonrelativistic resummation factor obtained
by using the Schrédinger equation with the Coulomb potential, which is known as the
Sommerfeld-Sakharov factor [30, 31]. For systematic description of the threshold region
in the system of light quarks it is essential from the very beginning to have a relativistic
generalization of this factor. Moreover, it is important to take into account the difference
between the Coulomb potential in the case of QED and the quark-antiquark potential
in the case of QCD. This QCD relativistic factor has been proposed in [32] to have the

form X( )
X _
e X0 0=

where x is the rapidity which related to s by 2m cosh x = 1/s. The relativistic resumma-
tion factor (20) reproduces both the expected nonrelativistic and ultrarelativistic limits
and corresponds to a QCD-like quark-antiquark potential.

The threshold resummation factor leads to the following modification of the expres-
sion (18)

47 ag

S(x) = (20)

3sinhy’

Ru(s) = 7(0) [0 = 500 + 5(0)r(9)] 0 — 4, 1)

which we use to calculate the vector part of R,

Ry = 3SewlV, |2/M3ﬁ‘i =Y (14 2 ) e (22)
mv = 3ewlVul” | 5 Ve ) ®

where Sgw denotes the electroweak factor [3].
By using a dispersion relation for the hadronic correlator, the Adler function corre-
sponding to the non-strange vector current can be represented as

o / ds Q2 (233
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Figure 1: The vector D-function for the T decay. The solid curve is the APT result. The
experimental curve (dashed line) corresponding to the ALEPH data and the perturbative
result with power corrections (dotted line) are taken from [25].

In Fig. 1 we plot the D-function obtained in the APT approach (solid curve) by
using the value of the quark masses m, = my = 250 MeV. Practically the same value of
the light quark masses were used in [33, 34]. These values are close to the constituent
quark masses and incorporate some nonperturbative effects. The shape of the infrared
tail of the D-function is sensitive to the value of these masses. We use A = 400 MeV
in the MS and obtain the value of R, v = 1.76 which agrees well with the experimental
data presented by the ALEPH, R" = 1.775 + 0.017 [23], and the OPAL, RJY' =
1.764 & 0.016 [24], Collaborations. The experimental curve (dashed line) and the curve
which corresponds to the perturbative result with power corrections (dotted line) are
taken from [25].

6. We have presented the description of the ‘light’ vector D-function based on the
analytic approach in QCD which is not in conflict with the general principles of the
theory. The conventional method approximating this function as a sum of perturbative
terms and power corrections cannot describe the low energy scale region. We have
shown that within the APT approach, taking into account mass and threshold effects, it
is possible to obtain good agreement with experimental data down to the lowest energy
scale. Moreover, we have found that threshold resummation is very important for the
problem considered here. The effect of the QCD relativistic S-factor is a reduction of
the value of the QCD scale parameter A extracted from the 7-data, which turned out to
be too large within the massless analysis [20] compared with high-energy data. Thus,
our analysis demonstrates the important role played in 7-lepton physics by both the
analytic properties and the threshold resummation.
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Munton K.A., Conosuos HU.JI., Conosuosa O.I1. E2-2001-16
IMoporosrie a¢hhekTs B MHKITIO3MBHOM paciiajie T-JelToHa

B pamKax aHamMTHYECKOH TEOPHH BO3MYILEHMS, KOTOpas IO3BOJIIET paspe-
HIMTh NpobeMy HepU3UYECKHX OCOOEHHOCTEl THIa IPU3PAYHOTO IONI0CA U IaTh
€aMOCOIJIaCOBAHHOE ONMCAHHE IPOLIECCOB B IIPOCTPAHCTBEHHO- U BO BPEMEHHMIIO-
no6HOM 00/1acTaX, MPOBENEH aHAIH3 HHKIIIO3UBHOTO Pacliaja T-JIETOHA B aJpOHBI
¢ ydeToM noporoBsix achcexToB. IToporooe nopeneHne KBapK-aHTHKBAPKOBOM CH-
CTEMbI OMHCAHO C IOMOIIBIO HOBOTO PENATHBHCTCKOTO (PakTopa, CYMMHPYIOLIETO
0COGEHHOCTH NEPTYPOATHBHOTO pa3ioXeHus Tuna (o.g/v)". ITokasaHo, 4T0 1OPO-

rosbie 3hheKThl IPUBONAT K YMEHBILICHHIO [IapamMeTpa A, U3BJIEKAEMOTO U3 JaHHBIX
10 T-pacmajy, a TaKXe 4YTO HPETOXEHHBIH METOl IPUBOMMUT K Pe3y/bTaTy, KOTO-
PBIi XOpOLIO COINIAcyeTcs ¢ 3KCIEPHMMEHTATBHbBIMA JaHHBIMU 115 (DYHKUMH Anjie-
pa B BEKTOPDHOM KaHaje BIUIOTh O CaMbIX HH3KHUX IHEPIHM.

Pa6ota BeimonseHa B Jlaboparopuu Teoperudeckoit ¢pusuku uM. H.H.Boromo-
6osa OUSIN.
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Milton K.A., Solovtsov 1.L., Solovtsova O.P. E2-2001-16
Threshold Effects in Inclusive t-Lepton Decay

Within the framework of the analytic perturbation theory, which allows one
to resolve the problem of unphysical singularities, like the ghost pole, and gives
a self-consistent description of both space-like and time-like regions, the inclusive
decay of the t-lepton is analyzed taking into account threshold effects. The thresh-
old behavior of a quark-antiquark system is described by using the new relativistic
factor, summing singularities of the perturbative expansion of the (ag/v)" type.

It is shown that threshold effects reduce a value of the parameter A extracted
from the t-decay data and that the method proposed leads to a good agreement
with experimental data for the vector Adler function down to the lowest energy
scale.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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