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1 Introduction -

The deep inelastic scattering (DIS) leptons on hadrons is the basical process to study
the values of the parton distribution functions which are universal (after choosing
of factorization and renormalization schemes) and can be used in other processes.
The accuracy of the present data for deep inelastic structure functions (SF) reached
the level at which the Q2-dependence of logarithmic QCD-motivated and power-
like ones may be studied separately (for a review, see the recent papers [1, 2] and
references therein).

In the present article we analyze at the next-to-leading (NLO) order ! of pertur-
bative QCD the most known DIS SF Fy(z,@?) taking into account SLAC, NMC,
BCDMS and BFP experimental data [4]-[10]. We stress the power-like effects, so-
called twist-4 (i.e. ~ 1/Q?) contributions. To our purposes we represent the SF
Fy(z,Q?) as the contribution of the leading twist part FF2°P(z, Q%) described by
perturbative QCD and the nonperturbative part (twist-four terms ~ 1/Q?):

Fy(z, Q%) = F{* (2, Q%) = F§¥(, Q") (1 + h“Q(f )) . (1)

The SF FP9“P(z,Q?) obeys the (leading twist) perturbative QCD dynamics
including the target mass corrections (TMC) (and coincides with F}¥?(z, Q?) when
the target mass corrections are withdrawn).

The Eq.(1) allows us to separate pure kinematical power corrections, i.e. TMC,
so that the function h4(z) corresponds to “dynamical” contribution of the twist-four
operators. The parameterization (1) implies ? that the anomalous dimensions of the
twist-two and twist-four operators are equal to each other, that is not correct in
principle. Moreover, there are estimations of these anomalous dimensions (see [11]).
Meanwhile, in view of limited precision of the data, the approximation (1) and one
in the footnote 2 give rather good predictions (see discussions in [12, 13]).

Contrary to standard fits (see, for example, [14, 15]) when the direct numerical
calculations based on Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-
tion [16] are used to evaluate structure functions, we use the exact solution of
DGLAP equation for the Mellin moments M*?(Q?) of SF Fi*%(z, Q?):

1
MFQ?) = / "2 FF(z,Q?) dx (hereafter k = full,pQCD,tw2,...) (2)
0

and the subsequent reproduction of Fj*!(z,Q?), FF9°P (¢, Q%) and/or Fi**(z,Q?)
at every needed @Q%-value with help of the Jacobi Polynomial expansion method

1 The evaluation of a2(Q?) corrections to anomalous dimensions of Wilson operators, that will be
done in nearest future by Vermaseren and his coauthors (see discussions in [3]), gives a possibility
to apply many modern programs to perform fits of data at next-next-to-leading order (NNLO) of
perturbative theory (see detail discussions in Summary).

2The r.h.s. of the Eq.(1) is represented sometimes as FP?°P (¢, Q2) + hy(z)/Q2. It implies that
the anomalous dimensions of the twist-four operators are equal to zero.
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[17)-[19] (see similar analyses at the NLO level [18]-[21] and at the NNLO level and
above [22]-[27]).

The method of the Jacobi polynomial expansion was developed in [17, 18] and
described in details in Refs.[19]. Here we consider only some basical definitions in
Section 3.

The paper has the following structure: in Section 2 we present basic formulae,
which are needed in our analyses: we consider different types of Q?-dependence of
SF moments, effects of nuclear corrections and heavy quark thresholds, the structure
of normalization of parton densities in singlet and nonsinglet channels. In Section
3 we introduce the basic elements of our fits. Sections 4 and 5 contain conditions
and results of several types of fits with the nonsinglet and singlet evolutions for
different sets of data. In Section 6 we study the dependence of the results on choice
of factorization and renormalization scales. In Section 7 we summarize the basic
observations following from the fits and discuss possible future extensions of the
analyses.

2  @Q? dependence of SF and their moments

In this section we analyze Eq.(1) in detail, considering separately different types of
Q?*-dependence of structure function F.

2.1  The leading-twist Q? dependence

To study the @2-dependence of the SF F{¥%(z, Q?) = FJS(z, Q?)+ F5 (z,Q?), which
splits explicitly into the nonsinglet (NS) part and the singlet (S) one, it is very useful
to introduce parton distribution functions (PDF)3: gluon one fg(z, @?) and singlet
and nonsinglet quarks ones fs(z, @?) and fys(z, @?).

The moments MY5(Q?) and M?(Q?) of NS and S parts of SF F, (see Eq.(2)
for definition) are connected with the corresponding moments of PDF f;(z, Q?)
(hereafter : = NS, S, G)

1
£00,@) = [ a7, Q)
0
in the following way (see [28], for example)

MYS(@Q) = Kns(f)- C(n, (@) - fws(n, @)
(3)
MEQ) = Ks(f): [C8(n,3(@2) - fs(n, @) + C&%(n,3,(@2) - fan, @),

30ur PDF are multiplied by z to compare with standard definition.
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where*
— 2\ _ as(QQ)
a,(Q%) = in (4)

and C!*?(n,a@,(Q?)) are so-called Wilson coefficient functions. We have introduced
here also the coefficients

f
Ks(f) = Y en/f,  Kns(f) = e — Ks(f), (5)

which come from definition of SF F, (see, for example, [28]). Here f is the number
of active quarks and €2, is charge square of the active quark of m flavor.

2.1.1 The dependence of @,(Q?) is given by the renormalization group equation,
which in the NLO QCD approximation reads:

! L +&1 as(Q?) (50+515s(M§))] = foln <Q2 ):

(@) @(MD) " Bo | La.(MZ) (o + Bia,(Q2)) Mz

where a@;(M2) is served as a normalization. Here and below we use f, and 8, for
the first and the second terms with respect to @, of QCD S-function:

B(@) = — Boa:— Ba@ + ... .

The equation (6) allows us to eliminate the QCD parameter Agcp from our
analysis. However, sometimes we will present it in our discussions, essentially to
compare it with the results of old fits. The coupling constant @,(Q?) is expressed
through Agep (in MS scheme, where Agep = Ags) as

L A [ Bm@) ) g (98
65(Q2)+501 [(ﬂo-l-ﬂlas(QZ))] ol <A§4_3> ™

(6)

The relation between the normalization @,(M%) and the QCD parameter Agcp
can be obtained from Eq.(7) with the replacement Q? — M32.

We would like to note that the approximations of Eq.(7), based on the expansion
of inverse powers of In (Q2 / Ai/{—s) are very popular. The accuracy of these expansions
for evolution of @, from O(GeV?) to M% may be as large as 0.001 [13], which is
comparable with the experimental uncertainties of the a;(M%) value extracted from
the data (see our analyses in Sections 4 and 5).

Note also that sometimes (see, for example, [22]) the equation

1 B _ _ Q?
s R i@ = () Y

4Sometimes the last term Ks(f)-C&%(n,@s(Q?))- fa(n, @?) we will call as gluon part of singlet
moment and denote it as MS(Q?).




is used in analyses. This equation can be obtained froni the basic equation

Q? 3 (%) gp

by expansion of inverse QCD -function in r.h.s. of (9) 1/8(@,) in powers of @,. The
difference between Eqs.(8) and (7) may be as large as 0.001 at O(GeV?) range. In
order to escape the above uncertainties we use in the analyses the exact numerical
solution (with accuracy about 10~5) of Eq.(6) instead. For recalculation of the QCD
parameter Ayg from A% to Ag\;—si b (i.e. from Agg at f active quark flavors to Mg
at f+1 active quark flavors), because fy and 8; are f-dependent functions, we use
formulae at NLO approximation from Ref. [29] (see discussions in the subsection
2.4).

2.1.2 The coefficient functions C*?(n,a,(Q?)) (i = NS, S, G) have the follow-
ing form
Ci”*(n,a,(Q%) =1— 67 + @, - Bi(n) + O(@?) (6™ is Kronecker symbol), (10)

where the NLO coefficients B;(n) are exactly known (see, for example, [28]).
The @Q*-evolution of the moments f;(n, Q?) is given by the well known perturba-
tive QCD [28, 30] formulae:

frs(n, @) _ [Es(Qg)]v,(\%(n)ﬂﬂo

) HNS(na QzaQ?)) )

fvs(n, QF) a,(Q?)

fin, @) = ffn@)+ff(nQ") (i=5G) (11)

Q%) ra,(Q3)1Em/26

e~ a@) HP Q00
where®
[n,Q% = () fin, @), (j,l=5,G) (12)
00 = 5 (8 +280) £/ (120 —8htw)) + 4]

1 7(0)(77,) -9 (n) _ Y (n) .

gfq(n) = E;Fg(n) = 5(14- M), ]il( ) = m G#D.

The functions HV5(n, Q% Q2) and H f(n, Q% Q%) are nonzero above the leading
order (LO) approximation and may be represented as

HY(n, Q% Q8) = 1+ (a.(Q) - 5,(@8) Zws(n) + O(@(@?),

5We use a non-standard definition (see [31]) of the projectors 5;?, (n), which is very convenient
beyond LO (see Eq. (17) and [32, 33]). The connection with the more usual definition o, & and ¢
in ref. [34, 28] is given by: e5¢(n) = a(n), eg¢(n) = @(n) and egg(n) = e(n)
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Hi(n, Q% Q) = 1+ (@,(@%) - 3,(@3)) Zas(n) (13)

+ (w2 () _ 5.(@)) Zelo) + O (@),

a’s(Qz)
where
Zxs() = 5= (1) = %5(n) - 2) (14)
Zsln) = 5= (1) =1 0() - 2 (15)
78 _ ’Y:(x:lq)c() 76 _ 8 €&a
ix(n) = 260+ 10 (n) = 1O ()’ i) =Zez)- 2= (16)
and
W) = > (17)
§l=8,G
’YS_E%(") = ZEJGWG]_ESS’Yé; (5Gs 53&0/5?0)%:%
7j=8,G

As usually, here we use 7( )( ), 71(?)(71) (4,0 = S,G) and 7(1) (n), 'yﬁ)( ) as the

first and the second terms with respect to @, of anomalous dimensions yys(n,@;)
and v;,(n, @) (see, for example, [35]).

2.1.3 In this subsection, we would like to discuss a possible dependence of our
results on the factorization scale ur and the renormalization scale ug, which appear
(see, for example, [14, 36]) because perturbative series are truncated. These scales
p% = kpQ? and p% = kpp¥ = krkrQ? can be added to the r.h.s. of the equations
(3) and (11), respectively.

Then, the equations (3) are replaced by

MY$(Q*) = Kns(f)-Cyé(n,a,(kr@?) - frs(n, krQ?)

(18)
M@ = Ks(f)- |C2(n,q(krQ?) - fs(n, krQ?)
+ C§*(n,a,(krQ%) - fo(n, krQ?)
The equations (11) are replaced correspondingly by
Ins(n kp@Q?)  1as(krkrQp) Wsm/20 o 2 2
Fusn ks @) = Lo (heka?) T ReknQ@ krhnQa)
(19)

- (n, krQ? @y (kpkrQ2) 170 ™)/280
o = Bng kb ket



The coefficients Cys, Cs, Cg, HVS and H ¥ can be obtained from the ones Cyg,
Cs, Cg, HS and H} by modification in the r.hus. of equations (10), (14) and (15)
as follows:

in Eq. (10)
a,(Q%) — @, (krQ?) (20)
Byns(n) — Bns(n) + 271(3)5( n)Inkp
Bin) — By(m)+ 39 2(minks  (j=5,0) (21)
in Egs. (14) and (15)
,(Q%) — (krkrQ?) (22)
Zns(n) — ZNs(n)+~;-’y](33g(n) Inkg
Zis(n) — Zii(n)+%'y$)(n)lnkR_ (23)

The Eqgs. (21) can be obtained easily using, for example, the results of [37]. The
Eqgs. (23) can be found from the expansion of the coupling constant @;(krkrQ?)
around the one a@(Q?) in the r.h.s. of the exact solution of DGLAP equations (see
Egs.(19) and (13)).

The changes (21) and (23) of the results for Q*-dependence under variation of
kp and kg (usually ¢ from 1/2 to 2) give an estimation of the errors due to renor-
malization and factorization scale uncertainties. Evidently that, by definition, these
uncertainties are connected with the impact of unaccounted terms of the perturba-
tive series and can represent theoretical uncertainties in values of fitted variables.
Indeed, an incorporation of NNLO corrections to the analysis strongly suppress these
uncertainties (see [39, 40]).

We study exactly the pp and pr dependences here for fitted values of coupling
constant. The results of the study are given in the Section 6.

As one can see in Egs. (20) and (22), the coupling constant @; has different

arguments in the NLO corrections of coefficient functions Ciys and C; (j = S, G) and
in the NLO corrections H¥S and A Ji of the Q?-evolution of parton distributions. We
would like to note that the difference between the corresponding coupling constants
@, (krQ?) and @, (kpkrQ?) is proportional to @ and, thus, mathematically negligible
in our NLO approximation.
Then, we can use the replacement (22) in coefficient functions too, as it has been
done in previous studies [38, 39, 40, 27]. We note that the replacement a,(krQ?) —
@s(krkr@?) in Eq. (20) increases slightly the factorization scheme dependence of
the results for coupling constant (see analyses based on nonsinglet evolution and
discussions in Section 6).

6In the recent articles 38, 39, 40, 26] the variation from 1/4 to 4 has been used. In our opinion,
the case kp = kr = 4 leads to very small scale of coupling constant: @2/16, that requires to reject
many of experimental points of used data, because we have the general cut @2 > 1 GeV2. So, we
prefer to use the variation of scales from 1/2 to 2.
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2.2  Normalization of parton distributions

The moments f;(n, Q%) at some Q2 is theoretical input of our analysis which is fixed
as follows.

For fits of data at z > 0.25 we can work only with the nonsinglet parton density
and use directly its normalization fyg(z, Q%) (see, for example, [22]-[26]):

1 -~
Fus(n, Q2) = /0 daa 2 s (z, Q2),
frs(@, @) = Ans(@)(1 - x)bNS(Q‘z’)(l +dns(QF)z) (24)

where Ans(Q3), bns(Q32) and dys(QZ) are some coefficients 7.

At the analyses at arbitrary values of z we should introduce the normalizations
for densities of individual quarks (¢ = wu,d,s,...) and antiquarks (7 = %,d,5,...)
fo(z,Q3) and fyz(z, Q%) having the moments:

1
filn, @) = / daa"2f(x, Q2). (25)

The distributions of u and d quarks f,(z,Q2) = u(z,Q2) and fy(z,Q2) =
d(z,Q3) are split in two components: the valent one u,(z,Q3) and d,(z,Q2) and
the sea one u,(z,Q3) and d,(z,Q2%). For other quark distributions and antiquark
densities we keep only sea parts. Moreover, following [28, 41] we suppose equality
of all sea parts and mark their sum as S(z, Q2).

We use the following parameterizations for densities u,(z, Q2), u,(z, Q2), S(z, Q3)

fG(x7Q3):

2 2 2
2 — au(Qo) 1-— bu(Qo)
uv(ma QO) B(au(Qg), bu(Qg) + 1) T ( ‘T) )
1
4.0 = @ @D, (2p)

B(a4(Q3), ba(Q3) + 1)
S(z,Q?) = Cs(Q2)zs@)(1 — z)bs(@®),
fol@,@}) = Col@)ae@(1 - 2o, (27)

where B(a,b) is the Euler beta-function. The parameterizations (26) have been
chosen to satisfy (at the normalization point 2) the known rule:

/1 dzV(z, Q%) =3,
0

"We do not consider here the term ~ z%¥s(@%) in the normalization st(a:, Q3), because © >
0.25. The correct small-z asymptotics of nonsinglet distributions will be obtained by Eq.(29) from
the corresponding parameters of the valent quark distributions (26) fitted with complete singlet
and nonsinglet evolution in Section 5.




where V (z, Q?) = u,(z, Q%) + d,(z, Q?) is the distribution of valent quarks.
We note that the nonsinglet and singlet parts of quark distributions st(z Q3)
and fg(z, Q?) can be represented as combination of quark ones

fs(z,Q}) qu(x,cz%) = V(z,Q3) + S(z,Q3) (28)

fNS('TaQ(Z)) = uv(xan)_dv(man)’ (29)

where the r.h.s. of Eq.(29) is correct only in the framework of our supposition about
equality of antiquarks distributions and sea components of quark ones.

In principle, following the PDF models used in [15, 12] and above Eq.(24) one
can add in Eq.(27) terms proportional to /= and z. However, the terms ~ /7 are
important only in the region of rather small = (see discussion in [12]). The terms
~ z lead only to replacement of C;, a; and b; values (see, for example, [42]). Thus,
we neglect these terms in our analysis.

In the most our fits we do not take into account also the terms ~ 2%¢(@%) and
~ z5(@0) into gluon and sea quark distributions, because we do not consider exper-
imental data at small values of Bjorken variable z . We hope to include H1 and
ZEUS data [43, 44] in our future investigations [45] and then to study Q?-dependence
of the coefficients ag(Q?) and as(Q?), which could be very nontrivial (see, for ex-
ample, Refs. [46, 48, 43, 32] and references therein).

We impose also the condition for full momentum conservation in the form:

1 = Pe(Q%) + P(Q%), (30)

where

Pa(@?) = /0 ' defalz, Q7),
P(Q%) = /Oldx(st(%Qz)+fs($,Q2))- (31)

The coefficients C;(Q2), a:(Q3), b:i(Q2), ¢i(Q?) and d;(Q?) should be found to-
gether with hy(z) (see subsection 2.6) and the normalization a,(MZ) of QCD cou-
pling constant (or QCD parameter A) by the fits of experimental data.

2.3 Target mass corrections

The target mass corrections [49, 28] modify the SF F}V5(z, Q?) in the following way

M2, o [t de¢ )
FO(z,Q%) = %%FW?(@QZ)% o /g (f,g)zFé‘”"’(f»Q”

8However, we have performed several fits with nonzero ag and as values taken into account
(see Section 5). We have found a negative value of them: ag = ag ~ —0.18 (that is in agreement
with [12]) but these results cannot be considered seriously without taking into account H1 and
ZEUS data [43, 44] (see, however, discussions in the subsection 5.3.4).

8



+ 12 nucl LL' / / Z,é;’, Ftw2(§ll QQ) (32)

where My, is the mass of the nucleon, r = /1 + z2M?2,, /Q? and the Nachtmann
variable £ = 2z/(1 + 7).

In our analyses below, we will use all this (32) representation °. We would like
to keep the full value of kinematic power corrections, given by nonzero nucleon
mass. Then, the excess of 1/Q? dependence encoded in experimental data will give
the magnitude of twist-four corrections, which is most important part of dynamical
power corrections.

2.4  Thresholds of heavy quarks

Modern estimates performed in [51, 52] have revealed a quite significant role of
threshold effects in the o,(Q?) evolution when the DIS data lie close to thresh-
old points Q* = M7,, ~ m%,, (to the position of so-called ”Euclidean-reflected”
threshold of heavy particles). The corresponding corrections to the normalization
as(M%) can reach several percent, i.e. , they are of the order of other uncertainties
which should be under control at our analysis.

An appropriate procedure for the inclusion of threshold effects into the Q-
dependence of a,(Q?) in the framework of the massless MS scheme was proposed
more than 10 years ago [53, 54] : transition from the region with a given number of
flavors f described by massless o, (Q?%; f) 1° to the next one with f + 1 (“transition
across the My, threshold”) is realized here with the use of the so—called “matching
relation” for a(Q?) [54]. The latter may be considered as the continuity condition
for as(Q?*) on (every) heavy quark mass mgy;

a’s(QQ = M?+1; f)

os(Q° = M7,y f+1) and (33)

Mf";l = Mmfn (34)

that provides an accurate a;(Q?)—evolution description for @? values not close to
the threshold region (see [55] and references therein).

At the analyses based on nonsinglet evolution, the additional f-dependence
comes only from the NLO correction of NS anomalous dimensions (see [35]) . In
the Section 3 we check numerically the dependence of the results from the matching

91t is contrary to [13], where only the term ~ M2, /Q? has been used. We note that the
appearance of the terms ~ M2, /Q% at z = 1 (see, for example, [50]), i.e. the absence of the
equality FY QCD (1,Q?%) = 0, is not important in the our analyses because we do not use experimental
data at very large z values: z < 1.

OFollowing [55] in this subsection we use the form as(Q?; f) for the coupling constant with
purpose to demonstrate its f-dependence through the ones of 3y and 3; coefficients.

The corresponding moments at any Q2 value are proportional to same coefficient Kns(f).
Thus, the coefficient can be always taken up by the normalization M2 s (Q3).



point. We use two matching points: (34) one and

My = 2mypp (35)

and demonstrate very little variations of the results '2 (see Section 4 and discussion
there).

As we know, for singlet part of evolution no simple recipe exists for exact value
of the matching point My,;. From one side, as in the nonsinglet case, there is Q-
evolution of the SF moments which leads to above condition (34). But here we have
also the generation of heavy quarks (at lowest nontrivial order, in the framework
of the photon-gluon fusion process), that gives contributions to gluon part of the
singlet coefficient function. The photon-gluon fusion needs the matching point at
the value of Q®, when W? = 4m7 ., i.e.

1—
2
Mf+1 :

. ° + M2y = 4m§+1 . (36)
At small & values the condition (36) is quite close to the one (34) (for example,
at ¢ = 0.2 M7,, = m},, — M2, /4), but at the range of large and intermediate
values of z, the value of My, is essentially large to compare with one of Eq.(34).
For example, at # = 0.5 M7, = 4m},, — M2, , that is very close to the matching
point (35). At larger z values the value of M7, will be close to ones in [38, 39].

We note, that the difference between nonsinglet and singlet Q2-dependences
comes from contribution of gluon distribution. The contribution is negligible at
x > 0.3 that supports qualitatively the choice (34) as the matching point.

We would like to note also, that at NLO approximation and above, the situation
is even more difficult in singlet case, because every subprocess generates itself match-
ing point My, to coefficient functions. To estimate a possible effect of a dependence
on matching point, we will fit data (in Section 3) with two different matching points:
(34) one and (35) one. Surprisingly, at the singlet case, where all functions coming
to Q2-evolution are f-dependent, we do not find a strong f-dependence of our results
(see Section 5 and discussions there).

2.5 Nuclear effects

Starting with EMC discovery in [57], it is well known about the difference between
PDF in free hadrons and ones in hadrons in nuclei. We incorporate the difference
in our analyses.

In the nonsinglet case we parameterize the initial PDF in the form (24) for every
type of target. We have

1 ~
Fisn, Q) = /0 dzz" s (z, QF), (37)

12We will not take into account a small variation (see [56]) of the continuity condition (33)
because of the matching point (35).
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where
fis(z,Q2) = Afs(Q2)(1 — z)"Vs@ (1 + diy5(Q2)2) (38)

and A = H, D, C and F in the case of Hy, Dy, C'? and Fe5® targets, respectively.

In the singlet case we have many parameters in our fits, which should be fitted
very carefully. The representations similar to (38) for gluon and sea quark PDF
should complicate our analyses. To overcome the problem, we apply the Egs. (37)
and (38) only to Hy and D, cases. For heavier targets we apply simpler representa-
tions for F3* structure functions in the form:

FAo,@) = FP@Q) K1 - Kfa+ Kia?)  (A=C% ), (39)
where we use experimental observation 3 (see [60] and references therein) about

approximate Q?-independence of EMC ration Fj'/FP.

2.6 Higher-twist corrections

For n-space eq.(1) transforms to

ha(n
M@ = Mpeen(Q) + M, (10
where hq(n, Q?) are the moments of the function hy(z, Q?):
1
ha(n) = / 272 by () F2O°P (2)dz . (41)
0

The shape hy(x) (or coefficients hy(n)) of the twist-four corrections are of primary
consideration in our analysis. They can be chosen in the several different forms:

o the twist-four terms (and twist-six ones) are fixed in agreement with the in-
frared renormalon (IRR) model (see [61, 62, 1, 2] and references therein).

e The twist-four term in the form hy(z) ~ LInF)¥S(z,Q?) ~ 1/(1 - z) (see [30]
and references therein). This behavior matches the fact that higher twist ef-

fects are usually important only at higher z. The twist-four coefficient function
has the form C§"(n) = (n — 1) Age.

e The twist-four term l~7,4 ~(a:) is considered as a set free parameters at each x; bin.
The set has the form Af™(z) = S°I_, ha(z:), where I is the number of bins.
The constants hy(z;) (one per z-bin) parameterize z-dependence of A" (z).

The first two cases have been considered already in [21] and will be studied
carefully later [45]. Here we will follow the last possibility 4.

13The small Q2 dependence of EMC ration has been observed also in theoretical studies. For
example, in the framework of rescaling model [58] the Q* dependence is very small (see [59]). It
has double-logarithmic form and locates only in argument of Euler ¥-function.

14In conclusion we present, however, several comments about an application of higher-twist
corrections in the form of IRR model.
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3  Fits of F3: procedure

To clear up the importance of HT terms we fit SLAC, NMC, BCDMS and BFP
experimental data [4]-[10] (including the it systematic errors), keeping identical form
of perturbative part at NLO approximation. In the Section we demonstrate the basic
ingredients of the analyses.

As it has been already discussed in the Introduction we use the exact solution
of DGLAP equation for the Mellin moments M, “”g ) of SF Fi*%(z,Q?) and
the subsequent reproduction of Fy*!(z,Q?), FF9°P(z QZ) and/or F{*?(z, Q%) at
every needed Q*-value with help of the Jacobi Polynomial expansion method. The
method of the Jacobi polynomial expansion was developed in [17, 18] and described
in details in Refs.[18]. Here we consider only some basical definitions.

Having the QCD expressions for the Mellin moments M*(Q?) we can reconstruct
the SF F¥(z,Q?) as

Nmax

Fhne (7. Q%) = g Z 0 (@)Y (@, B)MS2 (Q7),  (42)
J=0

where ©% are the Jacobi polynomials !® and a, b are the parameters, fitted by the

condition of the requirement of the minimization of the error of the reconstruction
of the structure functions !¢ (see Ref.[18] for details).

First of all, we choose the cut Q% > 1 GeV? in all our studies. For @2 < 1 GeV?,
the applicability of twist expansion is very questionable.

Secondly, we choose quite large values of the normalization point Q2. There are
several reasons of this choice:

e Our above perturbative formulae should be applicable at the value of Q2.
Moreover, the higher order corrections ~ a?(Q2) (n > 2), coming from nor-
malization conditions of PDF, are less important at higher Q2 values.

e It is necessary to cross heavy quark thresholds less number of time to reach
Q* = M2, the point of QCD coupling constant normalization.

e It is better to have the value of @3 around the middle point of logarithmical
range of considered @2 values. Then at the case the higher order corrections
~ (as(Q?) — as(Q2))™ (n > 2) are less important.

15We would like to note here that there is similar method [63], based on Bernstein polynomials.
The method has been used in the analyses at the NLO level in [64, 37] and at the NNLO level in
(65, 27].

16There is another possibility to fit data. It is possible to transfer experimental information
about structure functions to their moments and to analyze directly these moments. This approach
was very popular in the past (see, for example, Ref. [66]) but it is used very rarely at present (see,
however, [67] and references therein) because a transformation of experimental information to the
SF moments is quite a difficult procedure.
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Basic characteristics of the quality of the fits are x2/DOF for SF F, and for its
slope dinF/dinQ?, which has very sensitive perturbative properties (see [28]).

As these fits involve many free parameters independent of perturbative QCD, it
is important to check whether, in the results of the fits, the features most specific to
perturbative QCD are in good agreement with the data. The slope dInFy/dinQ? has
really very sensitive perturbative properties and will be used (see the Figs. 4-8 and
10-12) to check properties of fits. Indeed, the DGLAP equations predict that the
logarithmical derivations of SF and PDF logarithms are proportional very nearly
to coupling constant a(Q?) with an z-dependent proportionality coefficient that
depends (at z > 0.2) only weakly on the z-dependence of the SF and PDF. Thus,
the study of the @*-dependence of the slope dinF,/dIn@? leads to obtain the direct
information about the corresponding Q?-dependence of QCD coupling constant and
to verify the range of accuracy for formulae of perturbative QCD.

We use MINUIT program [68] for minimization of two x? values:

exp teor 2
Fe _

Dexp _ [yteor 2 (D 3 dlnFQ)
ARG :

2 — _
X (F) = ADesr = dinQ?

and x*(slope) =

We would like to apply the following procedure: we study the dependence of
x2/DOF value on value of @2 cuts for various sets of experimental data. The study
will be done for the both cases: including higher twists corrections (HTC) and
without them.

We use free normalizations of data for different experiments. For the reference,
we use the most stable deuterium BCDMS data at the value of energy Ey, = 200
GeV 17, Using other types of data as reference gives negligible changes in our results.
The usage of fixed normalization for all data leads to fits with a bit worser x2.

4 Results of fits of F5: the nonsinglet evolution
part

Firstly, we will consider the @*-evolution of the SF F, at the nonsinglet case where
there are the contributions of quark densities only and, thus, the corresponding fits
are essentially simpler. The consideration of the nonsinglet part limits the range of
data by the cut x > 0.25. At smaller z-values the contributions of gluon distribution
is not already negligible.

Hereafter at nonsinglet case of evolution we choose Q% = 90 GeV? for the BCDMS
data and the combined all data and Q2 = 20 GeV? for the combined SLAC, NMC,
BFP one, respectively. The choice of @32-values is in good agreement with above
conditions (see the previous Section). We use also Ny, = 8, the cut 0.25 < z < 0.8.
The Nypq,-dependence of the results has been studied carefully in Ref. [18] (see also
below the Table 3).

17 By is the initial energy lepton beam.

13



4.1 BCDMS C* + Hy+ D, data

We start our analysis with the most precise experimental data [7, 8, 9] obtained by
BCDMS muon scattering experiment at the high Q? values. The full set of data is
607 points (when z > 0.25). The starting point of QCD evolution is Q% = 90 GeV?2.

It is well known that the original analyses given by BCDMS Collaboration itself
(see also Ref. [14]) lead to quite small values of a,(M%): for example, a,(M3) =
0.113 has been obtained in [14] '8. Although in some recent papers (see, for example,
[12, 13, 69]) more higher values of a;(M2) have been observed, we think that an
additional reanalysis of BCDMS data should be very useful.

Based on study [70] (see also [71, 69]) we propose that the reason for small
values of a,;(M%) coming from BCDMS data is the existence of the subset of the
data having large systematic errors. Indeed, the original analyses of H,, Dy and C'?
data performed by BCDMS Collaboration lead to the following value of QCD mass
parameter (see Refs. [7, 8, 9]:

A — (220 +13 (stat) = 50 (syst)) MeV, (43)

i.e. the systematic error is four times bigger than the statistical one. Hereafter the
symbols “stat” and “syst” mark the statistical error and systematic one, respectively.

We study this subject by introducing several so-called Y-cuts '° (see [70] and
subsections 4.1.1 and 5.1.1). Excluding this set of data with large systematic errors
leads to essentially larger values of (M%) and very slow dependence of the values
on the concrete choice of the Y-cut (see below).

4.1.1. The study of systematics.

The correlated systematic errors of the data have been studied in [70], together
with the other parameters. Regions of data have been identified in which the fits
cause large systematic shifts of the data points. We would like to exclude these
regions from our analyses.

We have studied influence of the experimental systematic errors on the results
of the QCD analysis as a function of Y3, Yeuta and Y5 applied to the data. We
use the following z-dependent y-cuts:

y>014 when 03<z<04
y>0.16 when 04<z<0.5
y>Yoss when 05<z<0.6
y>Yous when 06<z<0.7
y>Y.s when 07<2<08. (44)

18We would like to note that the paper [14] has a quite strange result. Authors of the article have
obtained the value A% = 263 MeV, that should lead to the value of coupling constant a; (M%) is
equal to 0.1157.

9Hereafter we use the kinematical variable Y = (Eq — E)/Ey, where Ey and E are initial and
scattering energies of lepton, respectively.
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We use several sets N of the values for the cuts at 0.5 < z < 0.8, which are given
in the Table 1.

Table 1. The values of Y13, Yeuta and Yoyus.

N (0] 1 2 3 4 ) 6

Yeus | 0014 | 0.16 | 0.16 | 0.18 | 0.22 | 0.23
Yeura | 01 0.16 | 0.18 | 0.20 | 0.20 | 0.23 | 0.24
Yeurs | 0 0.20 | 0.20 | 0.22 | 0.22 | 0.24 | 0.25

The systematic errors for BCDMS data are given [7, 8, 9] as multiplicative fac-
tors to be applied to Fy(z,Q?): fr, fo, fs, fa and f, are the uncertainties due to
spectrometer resolution, beam momentum, calibration, spectrometer magnetic field
calibration, detector inefficiencies and energy normalization, respectively.

For this study each experimental point of the undistorted set was multiplied by
a factor characterizing a given type of uncertainties and a new (distorted) data set
was fitted again in agreement with our procedure considered in the previous section.
The factors (fr, fb, fs, fa, fn) Wwere taken from papers [7, 8, 9] (see CERN preprint
versions in [7, 8, 9]). The absolute differences between the values of oy for the dis-
torted and undistorted sets of data are given in Table 2 and the Fig. 1 as the total
systematic error of o estimated in quadratures. The number of the experimental
points and the value of o, for the undistorted set of F, are also given in the Table
2 and the Fig. 1.

Table 2. The values of a,;(M2) at different values of N.

N | number | x*(F;)/DOF | a,(90 GeV?) + stat full
of points syst. error

0 607 1.03 0.1590 + 0.0020 0.0090
1 511 0.97 0.1711 + 0.0027 0.0075
2 502 0.97 0.1720 £ 0.0027 0.0071
3 495 0.97 0.1723 £ 0.0027 0.0063
4 489 0.94 0.1741 £ 0.0027 0.0061
5 458 0.95 0.1730 £ 0.0028 0.0052
6 452 0.95 0.1737 £ 0.0029 0.0050

From the Table 2 and the Fig. 1 we can see that the o, values are obtained for
N =1+ 6 of Yous, Yeura and Y5 are very stable and statistically consistent. The
case N = 6 reduces the systematic error in o, by factor 1.8 and increases the value
of a, while increasing the statistical error on the 30%.
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Figure 1: The study of systimatics at different y.,; values in the fits based on
nonsinglet evolution. The QCD analysis of BCDMS C*'2, H,, D, data (nonsinglet
case): Te = 0.25, Q3 = 90 GeV2. Thresholds of ¢ and b quarks are chosen at
Q? = 9 GeV? and Q? = 80 GeV?, respectively. The inner (outer) error-bars show
statistical (systematic) errors.

After the cuts have been implemented (in this Section below we use the set
N = 6), we have 452 points in the analysis. Fitting them in agreement with the
same procedure considered in the previous Section, we obtain the following results:

(90 GeV?) = 0.1737 & 0.0029 (stat) % 0.0050 (syst) & 0.0025 (norm)
(45)
as(M2) = 0.1153 £ 0.0013 (stat) = 0.0022 (syst) & 0.0012 (norm),

where hereafter the symbol “norm” marks the error of normalization of experimen-
tal data. Thus, the last error (£0.0011 to as(M2)) comes from difference in fits
with free and fixed normalizations of BCDMS data [7, 8, 9] having different values
of energy.

So, for the fits with NS evolution of BCDMS data [7, 8, 9] with minimization of
systematic errors, we have the following results:

as(M2) = 0.1153 +0.0028 (total experimental error) (46)

Here total experimental error is squared root of sum of squares of statistical error,
systematic one and error of normalization.
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The value of a;(M2) corresponds to the following value of QCD mass parameter:

A% = (181 + 32 (total experimental error)) MeV,

A% (257 + 40 (total experimental error)) MeV. (47)

4.1.2. The study of N,,,,~dependence.

Following to [18, 19], we study the dependence of our results on the N, value.
The full set of data is 452 points. The Q*-evolution starts at Q2=90 GeV?2.

As it can be seen in the Table 3, our results are very stable, that is in very good
agreement with [18].

Table 3. The values of a;(M2) at different values of Ny,az.

Nmaz | X2(F2)/DOF | x?(slope) | a,(90 GeV?) + stat | o (M%) =+ stat
for 6 points stat = 0.0038 stat = 0.0013

3 1.08 7.3 0.1720 0.1155

4 0.97 11.3 0.1715 0.1143

) 1.11 6.9 0.1729 0.1144

6 0.95 3.6 0.1747 0.1157

7 0.94 5.4 0.1740 0.1154

8 0.94 6.8 0.1738 0.1153

9 0.94 7.6 0.1735 0.1152

10 1.07 7.7 0.1735 0.1152

11 1.08 7.2 0.1726 0.1149

12 1.04 7.1 0.1731 0.1152

13 1.11 7.1 0.1725 0.1149

Starting with Np,q, = 5, where our results are already very stable, we put the
results together and can calculate average value of a,(M2) = 0.1152 and estimate
average deflection. The deflection is 0.0002 and can be considered as error of the
Jacobi Polynomial expansion method, i.e. method error.

4.2 SLAC and NMC H; + Dy data and BFP Fe data

We continue our NS evolution analyses by fits of experimental data [4, 5, 6, 10]
obtained by SLAC, NM and BFP Collaborations. The full set of data is 345 points
(when z > 0.25): 238 ones of SLAC, 66 ones of NMC and 41 ones of BFP. The
starting point of QCD evolution is Q2 = 20 GeV?, the Q*-cut is Q? > 1 GeV?2.
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For illustration of importance of 1/Q? corrections we fit the data in the follow-
ing way. First of all, we analyze the data applying only perturbative QCD part
of SF F,, i.e. Fi*?. Later, we have added 1/Q? corrections: firstly, target mass
ones and later twist-four ones. As it is possible to see in the Table 4, we have the
very bad fit, when we work only with twist-two part F{*2. The agreement with the
data is improved essentially when target mass corrections have been added. The
incorporation of twist-four corrections leads to very good fit of the data. Neglect
of systematic errors deteriorates twice our results. We combine the statistical and
systematic errors in quadrature.

Table 4. The values of a;(M%) and x? at different regimes of fits.

N of | TMC | HTC | syst. | x2(F2) | x*(slope) as(20 GeV?) | ay(M32)
fits error | DOF' | for 6 points =+ stat

1 No No Yes 6.0 1050 0.2131 + 0.0012 | 0.1167
2 Yes No Yes 2.3 224 0.2017 £ 0.0013 | 0.1133
3 Yes Yes No 1.8 12.0 0.2230 £ 0.0030 | 0.1195
4 Yes Yes Yes 0.8 6.1 0.2231 + 0.0060 | 0.1195

Table 5. The values of the twist-four terms.

xT; il4($,) of H2 ﬁ4($l) of D2
=+ stat =+ stat

0.25 || -0.149 &+ 0.015 | -0.176 + 0.014
0.35 || -0.151 4+ 0.013 | -0.178 &+ 0.012
0.45 || -0.214 £ 0.012 | -0.147 &+ 0.022
0.55 || -0.228 + 0.022 | -0.065 + 0.037
0.65 || 0.024 &+ 0.070 | 0.053 & 0.080
0.75 || 0.227 £ 0.154 | 0.130 £ 0.131

We have got the following values for parameters in parameterizations of parton
distributions (at Q3 = 20 GeV?):

ARe = 1.44, AR = 2.06, AR = 1.87,
bhs = 3.88, bR = 3.84, bEo = 4.23,
dks = 10.9, dbg = 4.04, dbs = 5.03, (48)

where the symbols P, D and F' denote the parameters of parameterizations for
proton, deuteron and iron data, respectively.

18



We note that the values of the coeflicients are close to ones obtained in other
numerical analyses (see [12, 13, 26, 27] and references therein). The values of bhg
(I = P,D,F) are in quite good agreement with quark-counting rules of Ref.[72].
There is also good agreement with theoretical studies [73, 42].

The values of parameters of twist-four term are given in the Table 5. We would
like to note that the twist-four terms for H, and D, data coincide with each other
with errors taken into account. It is in full agreement with analogous analysis [14].

We obtain the following results (at x*(F3) = 250, x?(slope) = 6.1 on 7 points):

(20 GeV?) = 0.2231 = 0.0060 (stat) & 0.0075 (syst) + 0.0030 (norm)
(49)

as(M3) = 0.1195+0.0017 (stat) % 0.0022 (syst) + 0.0010(norm) .

The last error (£0.0010 to o, (M%)) comes from fits with free and fixed normaliza-
tions between different data of SLAC, NM and BFP Collaborations.

So, the fits of SLAC, NMC and BFP data based on the nonsinglet evolution give
for coupling constant:

as(M3) = 0.1195 % 0.0030 (total experimental error), (50)

which corresponds to the following value of QCD mass parameter:

A% = (231 + 37 (total experimental error)) MeV,
A% = (321 + 44 (total experimental error)) MeV, (51)

where the error connected with the type of normalization of data are included al-
ready to systematic error.

Looking at the results obtained in two previous subsections we see good agree-
ment (within existing errors) between the values of the coupling constant o, (M32)
obtained separately in the fits of BCDMS data and ones in the fits of combine SLAC,
NMC and BFP data (see Egs. (45)-(47) and (49)-(51)). Thus, we have possibility
to fit together all the data that is the subject of the following subsection.

4.3 SLAC, BCDMS, NMC and BFP data

We use the following common z-cut: z > 0.25 and Y,,; with N =6 (see the Table
1) for the BCDMS data. After these cuts have been incorporated, the full set of
data is 797 points. The starting point of QCD evolution is Q2 = 90 GeV?2.
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4.3.1. The results of fits.

We verify here the range of applicability of perturbative QCD. To do it, we
analyze firstly the data without a contribution of twist-four terms, i.e. when F, =

FPPP We do several fits using the cut Q* > Q?2,, and increase the value Q2,, step

by step. We observe good agreement of the fits with the data when Q
(see the Table 6).

Later we add the twist-four corrections and fit the data with the usual cut Q% > 1
GeV?. We have find very good agreement with the data. Moreover the predictions
for ay(M%) in both above procedures are very similar (see the Table 6 and Fig. 2).

2

Table 6. The values of a(M%) and x? at different regimes of fits.

Nof | @ | Nof | HTC | x*(F;)/DOF | a;5(90 GeV?) + stat | o (M32)
fits cut | points

1 1.0 [ 797 | No 2.87 0.1679 & 0.0007 | 0.1128
2 2.0 | 772 | No 1.82 0.1733 £ 0.0007 | 0.1151
3 3.0 | 745 | No 1.38 0.1789 = 0.0009 | 0.1175
4 4.0 | 723 | No 1.23 0.1802 £ 0.0009 | 0.1180
5 5.0 | 703 | No 1.19 0.1813 £ 0.0011 | 0.1185
6 6.0 | 677 | No 1.13 0.1803 £ 0.0013 | 0.1189
7 7.0 | 650 | No 1.09 0.1799 £ 0.0016 | 0.1179
8 8.0 | 632 | No 1.06 0.1803 £ 0.0019 | 0.1181
9 9.0 | 613 | No 1.01 0.1797 £ 0.0023 | 0.1178
10 |10.0| 602 | No 0.98 0.1776 £ 0.0022 | 0.1170
11 |11.0| 688 | No 0.97 0.1770 £ 0.0024 | 0.1167
12 |12.0| 574 | No 0.97 0.1768 & 0.0025 | 0.1167
13 1.0 [ 797 | Yes [ 0.97 0.1785 + 0.0025 [ 0.1174 |

Table 7. The values of the twist-four terms.

> 10 GeV?

cut =

Z; 77/4(1',) of Hz iL4($Z) of Dz Z; 77,4(.’171) of C and Fe
=+ stat =+ stat =+ stat

0.275 || -0.221 & 0.010 | -0.226 £ 0.010 || 0.250 || -0.118 + 0.187
0.350 || -0.252 & 0.010 | -0.214 + 0.010 || 0.350 || -0.415 + 0.233
0.450 | -0.232 & 0.019 | -0.159 = 0.020 || 0.450 || -0.656 + 0.494
0.550 | -0.122 & 0.360 | -0.058 =+ 0.300

0.650 || -0.159 & 0.031 | -0.057 + 0.031

0.750 || 0.040 £ 0.050 | 0.020 £ 0.049

We have got the following values for parameters in parameterizations of parton
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Figure 2: The values of a;(M2) and x? at different Q%-values of data cutes in the fits
based on nonsinglet evolution. The black points show the analyses of data without
twist-four contributions. The white point corresponds to the case where twist-four
contributions were added. Only statistical errors are shown.

distributions (at Q% = 90 GeV?):
AL = 240, ARs = 246, A§s = 246, ALs = 1.65,
bys = 3.98, bys = 3.94, bis = 4.08, bys = 4.72,
dhs = 4.85, dRg = 238, dSs = 155, dig = 7.97. (52)

Il

The values are in good agreement with ones presented in previous subsection.
Then all discussions given there can be applied here.

The Table 7 contains the value of parameters of the twist-four term. As it was
in the previous subsection, the twist-four terms for Hy and D, data coincide with
each other with errors taken into account that is in agreement with [14].

So, the analysis of combine SLAC, NMC, BCDMS and BFP data are given the
following results:

e When HT corrections are not included and the cut of Q? is 10 GeV? at the
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free normalization

x?/DOF = 0.98 and (90 GeV?)

0.1776 + 0.0022 (stat),

as(M3) 0.1170 + 0.0009 (stat) (53)

e When HT corrections are included and the cut of Q2 is 1 GeV?

X?/DOF = 0.97 and (90 GeV?) = 0.1785 % 0.0025 (stat),

as(Mé)

0.1174 + 0.0010 (stat) , (54)

Thus, as it follows from nonsinglet fits of experimental data, perturbative QCD
works rather well at Q% > 10 GeV?2.

4.3.2. The study of threshold effects.

Here we would like to study threshold effects in Q%-evolution of SF F,. Note
that at NLO level in nonsinglet case the coefficient function of F, and anomalous
dimension do not depend on the number ny of active quarks. Then, the our study
of the threshold effects in @2-evolution of SF Fj is exactly equal to the investigation
of a role of threshold effects in the QCD coupling constant a;,(Q?).

To study the threshold effects we consider two types of possible thresholds of
heavy quarks: Q% = 4m? and Q% = m?. First type of thresholds has appeared when
a heavy quark with the mass my takes a possibility to be born. The second one lies
close to the position of “Euclidean-reflected” threshold of heavy quarks. It should
play a significant role (see [55]) in the a,(Q?)-evolution.

A.  Let thresholds appear at Q% = 4m%. Then we split the range of the data
to three separate ones:

o The Q? values are between 1 GeV? and 10 GeV?, where the number n; of
active quarks is 3.

e The Q? values are between 10 GeV? and 80 GeV?, where the number n; of
active quarks is 4.

e The Q2 values are'above 80 GeV?, where the number n ¢ of active quarks is 5.

The results are shown in Table 8. The average a,(M2%) value can be calculated
and it has the following value:

a,(MZ) = 0.1178£0.0010 (stat). (55)
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Table 8. The values of a;;(M2) and x? at different regimes of fits.

N| @ |n;|QF| Nof | x* | APl AY N as(MZ)

of | range points | (Fy) | = stat + stat + stat + stat

fit (MeV) (MeV) (MeV)

1 1-10 3 5 195 124 | 400 &+ 30 | 308 & 26 | 220 & 23 | 0.1187 £ 0.0020
2 10-80 | 4 | 20 455 471 291 £ 17 | 208 £ 13 | 0.1177 + 0.0012
3 |80-300 | 5 | 90 190 143 199 £ 54 | 0.1169 £ 0.0040

B. Let thresholds appear at Q% = mf‘. Then we split the range of the data to
two separate ones:

e The Q* values are between 2.5 GeV? and 20.5 GeV?, where the number ny of
active quarks is 4.

e The Q? values are above 20.5 GeV2, where the number n ¢ of active quarks is
5.

Table 9. The values of o, (M%) and x? at different regimes of fits.

Nof | @ |ns|QF| Nof |x*(FR)| AL A8 as(M3)

fit range points + stat =+ stat =+ stat
(MeV) (MeV)

1 2.5-20.5 | 4 | 10 241 197 208 £10 | 213+ 8 | 0.1181 + 0.0007

2 20.5-300 | 5 | 90 558 533 187 £ 16 | 0.1159 & 0.0014

The results are shown in Table 9. The average a,;(M2) value can be calculated
and it has the following value:

as(M%) = 0.1176 £ 0.0006 (stat). (56)

Thus, we do not find a strong dependence on exact value of thresholds of heavy
quarks. The theoretical uncertainties due to threshold effects can be estimated for
as(M2) as 0.0002.

4.4 The results of the analyses based on nonsinglet evolu-
tion

Thus, using the analyses based on NS evolution of the SLAC, NMC, BCDMS and
BFP experimental data for SF' F; we obtain for a,(M2) the following expressions:

1. When we switch off the twist-four corrections, and put the cut Q2 > 10 GeV?,
we have got at x2/DOF = 0.98

as(MZ) = 0.1170 £ 0.0009 (stat) = 0.0019 (syst) = 0.0010 (norm) (57)
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or

a(M3) = 0.1170 £ 0.0023 (total experimental error) (58)

2. When we add the twist-four corrections, and put the cut Q% > 1 GeV?, we
have got at x2/DOF = 0.97

ay(M2) = 0.1174 4 0.0007 (stat) = 0.0021 (syst) = 0.0005 (norm) (59)

or

as(M3) = 0.1174 £ 0.0022 (total experimental error) . (60)

Looking at the results obtained in the Section we see that the central value of the
coupling constant o, (M2%) obtained in the fits (based on NS evolution) of combine
SLAC, BCDMS, NM and BFP data lies between the central values of the coupling
constants obtained separately in the fits of BCDMS data and in ones of SLAC,
BCDMS, NM and BFP data. All obtained values of a;;(M2) are in good agreement
within existing statistical errors.

5 Results of fits of F,: the combined nonsinglet
and singlet evolution

At this case, the quite low z experimental data lie at low Q? range and we choose
Q2% = 20 GeV2. We use also Nyqp = 8.

The study of the Np,q;-dependence of the results in the combine nonsinglet and
singlet case of evolution has been found in [19]. Note here only that the analysis
in [19] shows the Nj,q;-independence of the obtained results starting already with
Nipaz = T7.

5.1 BCDMS C'? + H, + D, data

As in the previous Section, we start our analyses with the experimental data [7, 8, 9]
obtained by BCDMS muon scattering experiment. The full set of data is 762 points.
The starting point of QCD evolution is Q2 = 20 GeV?2.

As in the nonsinglet evolution case we have studied influence of the experimental
systematic errors on the results of the QCD analysis as a function of Yy, Yeuta and
Y.u15 applied to the data. Here we use also several sets N of the values for the cuts
at 0.5 <z < 0.8, which are given in the Table 10.
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Figure 3: The study of systimatics at different y.,; values in the fits based on combine
siglet and nonsinglet evolution. The QCD analysis of BCDMS C'2, H,, D, data (the
case of combine evolution): no a ey, Qg = 20 GeV?2. Thresholds of c and b quarks
are chosen at Q% = 9 GeV? and Q? = 80 GeV?, respectively. The inner (outer)
error-bars show statistical (systematic) errors.

Table 10. The values of Y43, Yeua and Yeus.

N |0 1 2 3 4 5

You3 |01 014 ]0.16 | 0.18 | 0.22 | 0.23
Yeuta | 01 0.16 | 0.18 | 0.20 | 0.23 | 0.24
Yeus | 0]0.20 | 0.20 | 0.22 | 0.24 | 0.25

The absolute differences between the values of o, for the distorted and undis-
torted sets of data are given in Table 11 and the Fig. 3 as the total systematic error
of o, estimated in quadratures. The number of the experimental points and the
value of oy for the undistorted set of F, are also given in the Table 11 and the Fig.
3.

We can see that the o values are obtained for N = 1+ 5 of Y3, Yeus and Yeus
are very stable and statistically consistent. The case N = 5 reduces the systematic
error in a, by factor 1.8 and increases the value of oy, while increasing the statistical
error on the 27%.
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Figure 4: The values of the slope d(In F3)/d(In Q?) at @? = 20 GeV2. The white
points correspond to the theoretical predictions based on combine singlet and non-
singlet evolution. The black points show BCDMS C'2, H, and D, data without a
chut-

X

Table 11. The values of a;(M2) at different values of N.

N | number | x%(Fy)/DOF | a (20 GeV?) + stat full
of points syst. error

0 762 1.22 0.1992 + 0.0034 0.0122
1 649 1.06 0.2116 £ 0.0042 0.0096
2 640 1.07 0.2126 + 0.0044 0.0088
3 627 1.05 0.2152 £ 0.0045 0.0080
4 596 1.04 0.2172 £ 0.0047 0.0076
5 590 1.04 0.2160 £ 0.0047 0.0068

The importance of the Y-cut can be shown also in the Figs. 4 and 5, where the
slope d(In F3)/d(In Q?) has been shown at Q? = 20 GeV2. As we can see, there is
an essential inprovement (the corresponding x?(slope) decreases in half), when the
Y-cut has been taken into account.
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Figure 5: Notation as in Fig. 4 with one exception: the Y,,; with N = 5 is taken
into account.

After the cuts have been implemented (in this Section below we use the set
N = 5), we have 590 points in the analysis. Fitting them in agreement with the
same procedure considered in the Section 3, we obtain the following results:

a5(20 GeV?) = 0.2160 = 0.0047 (stat) & 0.0068 (syst) = 0.0031 (norm)
(61)
0.1175 4 0.0014 (stat) == 0.0020 (syst) = 0.0011 (norm) .

I

CVS(Mg)

As in the nonsinglet case the last error (+0.0011 to a,;(M%)) comes from difference
in fits with free and fixed normalizations of BCDMS data [7, 8, 9] having different
values of energy.

So, for the fits of BCDMS data [7, 8, 9] based on complete singlet and nonsinglet
evolution with minimization of systematic errors, we have the following results (total
experimental error is squared root of sum of squares of statistical error, systematic
one and error of normalization):

as(Mz) = 0.1175 4+ 0.0026 (total experimental error) . (62)

The value of as(M2) corresponds to the following value of QCD mass parameter:

AY = (290 +20 (stat) £ 29 (syst)) MeV,
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Figure 6: The values of the slope d(In F3)/d(In Q?) at Q* = 20 GeV2. The white
points correspond to the theoretical predictions based on the twist-two approxima-
tion of perturbative QCD and combine singlet and nonsinglet evolution. The black
points show SLAC, NMC and BFP experimental data.

X

A8 = (206:|: 17 (stat) + 24 (syst)) MeV, (63)

where the errors connected with the type of normalization of data are included
already to systematic error.

5.2 SLAC and NMC H; + D; data and BFP Fe data

We continue our analyses with experimental data [4, 5, 6, 10] obtained by SLAC,
NM and BFP Collaborations. The full set of data is 719 points (with the cut @ > 1
GeV?): 364 ones of SLAC, 300 ones of NMC and 55 ones of BFP. The starting point
of QCD evolution is Q3 = 20 GeVZ.

As in previous Section we give an illustration of importance of 1/@Q? corrections.
First of all, we analyze the data applying only perturbative QCD part of SF F,
i.e. Fi*2. Later, we add the 1/Q? corrections: firstly, target mass ones and later
twist-four ones. As it is possible to see in the Table 12 and Figs. 6-8, we have the
very bad fit (x*(slope)/DOF = 40), when we work only with twist-two part F}*2.
The agreement with the data is better essentially (x?(slope)/DOF = 9) when target
mass corrections have been added. The incorporation of twist-four corrections leads
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Figure 7: Notation as in Fig. 6 with one exception: the target mass corrections are
taken into account for theoretical predictions.

to very good fit of the data: x2(slope)/ DOF = 1.05 (see the Table 12 and the Fig.
8) . We note that the statistical and systematic errors are combined in quadratures.

Thus, we see that x2(slope)/DOF decreases in 38 times when the 1/Q? correc-
tions has been taken into account.

Table 12. The values of a;(M2) and x? at different regimes of fits.

N of | TMC | HTC | syst. | x2(F2) | x*(slope) as(20 GeV?) | as(M2)
fits error | DOF | for 23 points =+ stat

1 No No Yes 5.5 800 0.2400 £+ 0.0017 | 0.1241
2 Yes No Yes 2.2 179 0.2153 £ 0.0018 | 0.1174
3 Yes Yes | Yes 0.85 21 0.2138 £ 0.0058 | 0.1170

Looking at the results in the Table 12, we see the following results for coupling
constants

a(20 GeV?) = 0.2138 & 0.0058 (stat) =£0.0075 (syst) + 0.0030(norm)
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corrections are taken into account for theoretical predictions.

(64)
ay(MZ) = 0.1170 +0.0016 (stat) =0.0021 (syst) + 0.0011(norm),

As in the nonsinglet evolution fits, the last error £0.0011 to a;(M2) comes from fits
with free and fixed normalizations between different data of SLAC, NM and BFP
Collaborations.

Table 13. The values of o (M2) and x? in fits with different values of W2-cut.

Nof | W2 | X*(F,)/DOF | 04(20 GeV?) | AL (MeV) | AC (MeV) as(M2)

fits cut =+ stat =+ stat + stat =+ stat

1 2.0 1.30 0.2407 + 0.0013 | 400 £ 6 296 £+ 4 | 0.1243 + 0.0004
2 4.0 1.00 0.2135 & 0.0018 | 280 + 7 194+ 5 | 0.1169 £ 0.0004
3 6.0 1.00 0.2070 + 0.0023 | 253 +£9 178 £ 7 | 0.1150 £ 0.0007
4 8.0 0.91 0.2128 + 0.0043 | 277 + 18 197 £ 14 | 0.1167 + 0.0012
5 10 0.91 0.2107 + 0.0053 | 268 + 22 190 + 18 | 0.1162 + 0.0015

We would like to compare the results in the Table 12 with the results of the
analyses of the data when an additional W2-cut is taken into account. The inclusion
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of the W2-cut is very popular (see [74] and references therein) and we fit considering
data with variation of the W2-cut (and with the standard cut Q® > 1 GeV?). The
results of the fits (without twist-four correction) are presented in the Table 13 (the
systematic errors of the data are included in the fits).

As we can see from the Table 12 (the last line, where twist-four corrections are
incorporated) and Table 13, the results for a;(M2) are in very good agreement for
values of W2-cut larger then 4 GeV2. So, the W2-cut procedure can be used suc-
cessfully to switch off the range of experimental data where higher-twist corrections
are required.

We would like to note that the results obtained in two previous subsections
show very good agreement between the values of coupling constant a;;(M2) obtained
separately in the fits of BCDMS data and ones in the fits of combine SLAC, NMC
and BFP data (see Egs. (61)-(63) and (64)). Thus, as in the case of nonsinglet
evolution we have possibility to fit togather all the data. It is the subject of the
following subsection.

5.3 SLAC, BCDMS, NMC and BFP data

Here we start to analyze the maximal number of experimental points which have
been produced in considered experiments. The full set of data is 1309 points.

5.3.1. The study of Q? range, where 1/Q? corrections are important.

Here we would like to repeat our analysis given in Subsection 4.3 . Firstly we
fit the data without a contribution of twist-four terms. We use the cut Q? > Q2,,
and increase the value @2, step by step. Later we do fits including the twist-four

corrections and the cut @2 > 1 GeV?2.

Table 14. The values of a,(M32) and x? at different regimes of fits.

Nof | @ | Nof |HTC | x*(Fy) | (20 GeV?) | AL o, (M2)
fits cut | points DOF =+ stat MeV =+ stat
1 1.0 | 1309 No 1.55 | 0.2258 £ 0.0011 | 333 | 0.1203 & 0.0004
2 4.0 1051 No 1.27 | 0.2364 £ 0.0017 | 380 | 0.1232 4 0.0005
3 6.0 942 No 1.30 | 0.2385 £ 0.0022 | 390 | 0.1237 & 0.0005
4 8.0 870 No 1.32 | 0.2232 £ 0.0035 | 321 | 0.1196 & 0.0010
5 10.0 | 817 No 1.27 [0.2226 £ 0.0035 | 318 | 0.1194 & 0.0011
6 11.0 | 793 No 1.21 | 0.2187 4+ 0.0038 | 301 | 0.1183 £ 0.0011
7 12.0 | 758 No 1.18 | 0.2192 £ 0.0039 | 304 | 0.1185 + 0.0011
8 13.0 | 754 No 1.17 | 0.2180 £ 0.0039 | 297 | 0.1181 4 0.0012
9 14.0 | 740 No 1.17 | 0.2169 + 0.0041 | 294 | 0.1178 & 0.0013
10 15.0 | 714 No 1.14 | 0.2177 £ 0.0042 | 297 | 0.1180 £ 0.0013
| 11 1.0 ’ 1309 | Yes 1.11 | 0.2167 &+ 0.0024 | 293 | 0.1177 £ 0.0007
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Figure 9: The values of as(M%) and x? at different @2-values of data cutes in the
fits based on combine singlet and nonsinglet evolution. The black points show the
analyses of data without twist-four contributions. The white point corresponds
to the case where twist-four contributions were added. Only statistical errors are
shown.

As it was in nonsinglet case, we observe very good agreement for first type of the
fits starting with Q2,, > 15 GeV? (see the Table 14 and the Fig. 9). For the second
type of fits the agreement is good already at @* > 1 GeV2. The both types of the
fits give very similar results. Moreover, the results are very close to ones obtained
earlier in the nonsinglet case (see the Tables 3 and 6).

We obtain the following results:
e When twist-four corrections are not included and the cut of Q2 is 15 GeV?

x’/DOF = 1.14 and q,(20 GeV?) 0.2177 4 0.0042 (stat),
as(M%) = 0.1180 = 0.0013 (stat), (65)
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e When twist-four corrections are included and the cut of Q2 is 1 GeV?

x?/DOF = 1.11 and o,(20 GeV?) 0.2167 £ 0.0024 (stat),
as(M2) = 0.1177 £0.0007 (stat), (66)

As it was in nonsinglet case, we observe very good agreement for first type of the
fits starting with @2, > 15 GeV? (see the Table 14 and the Fig. 9). For the second
type of fits the agreement is good already at Q% > 1 GeV2. The both types of the
fits give very similar results. Moreover, the results are very close to ones obtained
earlier in the nonsinglet case (see the Tables 3 and 6).

For additional illustration of importance of 1/Q? corrections at nonlarge Q?
values we study the slope d(In Fy)/d(In Q?) as it has been done in the previous sub-
section 5.2 . First of all, we analyze the data applying only perturbative QCD ap-
proximation of SF F, (with target mass corrections taken into account), i.e. FF9°P.
Later, we add the cut @ > 15 GeV2. As it is possible to see in the Figs. 10 and
11, we have the bad fit (x*(slope)/DOF = 7.78) in the case without a Q? cut.
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Figure 11: Notation as in Fig. 10 with one exception: the cut Q2 > 15 GeV? is
taken into account for experimental data.

X

The agreement with the data is strongly better when this Q? cut has been added:
x?(slope)/DOF = 1.26 in the case.

As in the previous subsection the incorporation of twist-four corrections leads
also to very good fit of the data (without a @?* cut): x2(slope)/DOF = 1.09 (see
the Fig. 12) . These results demonstrate the importance of twist-four corrections
at nonlarge Q? values.

Thus, as it follows from the fits of experimental data based on combine singlet
and nonsinglet evolution, perturbative QCD works well at Q% > 15 GeV2.

5.3.2. The study of threshold effects.

Here we continue our study of threshold effects in @?-evolution of SF F,. Note
that at LO level and NLO one in the singlet case of evolution the coefficient functions
of F, and anomalous dimensions depend on the number n; of active quarks.

By analogy with the NS case of evolution (see subsection 4.3.2), to study the
threshold effects we consider two types of possible thresholds of heavy quarks:

? = 4m} and Q% = mj. First type of thresholds has appeared when a heavy
quark with the mass m; takes a possibility to be born (in the framework of photon-
gluon fusion process, for example). The second one lies close to the position of
“Euclidean-reflected” threshold of heavy quarks. It should play a significant role
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Figure 12: Notation as in Fig. 10 with one exception: the twist-four corrections are
taken into account for theoretical predictions.

(see [55]) in the as(Q?)-evolution.

A.
to three separate ones (see page 20).

Let thresholds appear at Q% = 4mft. Then we split the range of the data

Table 15. The values of a,;(M%) and x? at different regimes of fits.

Nof | @ |ns|@| Nof | x> | A9 A AQ as(M2)

fit range points + stat + stat + stat =+ stat
(MeV) (MeV) (MeV)

1 1-10 | 3 | 3.0 | 467 |[290 | 331+ 24 | 250 £ 20 | 176 £+ 16 | 0.1148 + 0.0015

2 10-80 | 4 | 20 | 627 | 595 274 £ 21 | 194 £ 17 | 0.1165 + 0.0014

3 80-300 | 5 | 90 | 190 | 156 220 £ 70 | 0.1187 £ 0.0050

The results are shown in Table 15. The average a;(M2%) value can be calculated
and it has the following value:

OKS(Mg)

0.1158 = 0.0010 (stat) .
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B.  Let thresholds appear at Q% = m#%. Then we split the range of the data to
two separate ones (see page 20).

Table 16. The values of a,(M2) and x? at different regimes of fits.

Nof| @* ny | Q2 N. of | x? A% A% as(M3)
fit range points =+ stat =+ stat =+ stat

1 2.5-20.5 | 4 | 10 | 519 | 396|230 £ 21 | 160 + 16 | 0.1132 & 0.0016
2 20.5-300 | 5 | 90 | 631 | 670 205 &= 15 | 0.1174 + 0.0013

The results are shown in Table 16. The average a;(M%) value can be calculated
and it has the following value:

as(M%) = 0.1157 £0.0020 (stat). (68)

The results are very surprising. From one side, all variables: the coefficient func-
tions of F; and anomalous dimensions, depend on the number ny of active quarks.
However, we do not find a strong dependence on exact value of thresholds of heavy
quarks. From another side, the central values of the average a,;(M2) obtained here
are essentially lower than in other our analyses.

Thus, the theoretical uncertainties due to threshold effects can be estimated in
the case of combine singlet and nonsinglet evolution for a,(M%) as 0.0001.

5.3.3. The values of fitted parameters.

We have got the following values for parameters in parameterizations of parton
distributions (at Q3 = 20 GeV?) 20

a,(20) = 0.72,  b,(20) = 3.72,

aq(20) = 0.69,  bg(20) = 5.81,

Cs(20) = 0.375, bg(20) = 13.8,

Pg(20) = 0519, bg(20) = 114,

KE(20) = 1.222, KS(20) = 0.554, K (20) = 0.253,

KF(20) = 110, Kf(20) =-0.081, K{(20) =—0.58. (69)

For the coefficients a,(20) and a4(20) we find good agreement between their
values and the double-logarithmic estimations in Refs.[75, 76], based on [77]. We

20Here and in the following subsection we give the results for the coefficient Pg(Q3) but not
for the one Cg(Q3). They are connected because of Eq. (31): Pg(Q3) = Cq(Q32) - B(ag(Q3) +
1,b,(Q3) + 1), where the beta-function B(a,b) has been defined in Eq.(26).
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Figure 13: The values of the nuclear-effect ratio: r4, for A = C'? and Fe®. The
solid and dashen curvess correspond to the small-z asymptotics ~ z7% of sea quark
and gluon distributions with w = 0 and w = 0.18, respectively.

would like to note that the estimations in Ref. [75] have been given in other set of
parameters that changes effectively only the value of normalization point Q2. As it
has been shown in Refs. [78, 42], the value of a,(20) and a4(20) should be nearly
@Q%independent (if the values are not too close to 1) 2!. This @*-independence of
values of a,(20) and a4(20) explains our good agreement with the results of [75].
The values of a,(20) and a4(20) are supported also by recent fits (see discussions in
Ref. [27]).

The value b,(20) is in agreement with Eqs.(48) and (52) and with other fits
(12, 13, 26, 27], that supports its slow @?-dependence (see [73, 42]). The value
of b4(20) is higher than b,(20) that is supported by other fits (see, for example,
[12, 13]) and references therein) and by quark-counting rules [72]. The values of
bc(20) and bg(20) are very high, that is in agreement with BCDMS analyses [7, 8, 9]
and demonstrates difficulties to study the large-z asymptotics of sea quark and gluon

21This @?-independence is very similar to corresponding ()2-independence of the coefficients
as(20) and ag(20) in the power-like small x asymptotics ~ z% and ~ z¢ of singlet parton
distributions, if ag and ag are not close numerically to 0 (see studies in Refs.[79, 80, 81, 47, 82]
and references therein).
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Figure 14: The values of the twist-four terms. The black and white points correspond
to the small-z asymptotics ~ 7% of sea quark and gluon distributions with w = 0
and w = 0.18, respectively. The statistical errors are displayed only.

distributions in analyses of inclusive deep-inelastic data 22.

The value of Pg(20) shows that at Q3 = 20 GeV? gluons contain about half of
nucleon momentum.

The coefficients K€ (20) and K} (20) (: = 1,2,3) demonstrate non-zero values
of nuclear effects for bound nucleons in C'? and Fe nuclei. The Egs. (39) with
the values of coefficients K (20) and K} (20) given in Egs. (69) demonstrate the
shapes of nuclear effects which are represented in Fig 3, where we see a resonable
agreement of our curves with the experimental data from Refs [57, 60].

The values of twist-four terms are given in the Table 17. To obtain the values
we used the approximate equality of twist-four terms for Hy and D, targets that
has been obtained in our studies in the previous Section (see the Tables 5 and 7).
This is also in agreement with the Ref. [14]. The values of twist-four terms are
represented also in Fig. 14.

We would like to note (see the Table 17 and Fig. 14) about a quite strong rise

22In semi-inclusive case of deep-inelastic scattering the gluons give large contributions, essentially
at low z values, (see, for example, the recent study of open charm production in [83] and references
therein) and, thus, gluon distribution can be perfectly extracted.
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of twist-four terms at lower z-bins. The necessity of large magnitude of twist-four
corrections at the low z values it is possible to observe also in the Figs. 6, 7 and 10,
where there is a quite strong difference between experimental data and theoretical
predictions (based on perturbative QCD) for the slope d(ln F3)/d(In Q?). The rise
is in good agreement with theoretical predictions [84] and with the recent analyses
of H1 and ZEUS data at low values of z and Q? (see [33]).

Table 17. The values of the twist-four terms.

Z; h4 (.’I?z) Z; h4 (l‘,,) Z; h4($z)

+ stat =+ stat =+ stat

0.008 | 0.87 & 0.16 || 0.090 | 0.16 £ 0.03 || 0.275 | -0.19 £ 0.01
0.013 | 0.83 £ 0.12 || 0.100 |{ 0.09 £ 0.02 || 0.350 | -0.19 & 0.01
0.018 | 0.78 £+ 0.10 || 0.110 | 0.05 £ 0.03 || 0.450 | -0.12 &£ 0.02
0.025 | 0.68 &+ 0.08 || 0.140 | -0.04 £ 0.01 || 0.500 | 0.45 & 0.23
0.035 | 0.57 £ 0.06 || 0.150 | 0.43 + 0.11 || 0.550 | 0.04 £ 0.03
0.050 | 0.39 £ 0.04 || 0.180 | -0.13 4+ 0.01 || 0.650 | 0.35 £ 0.05
0.070 | 0.28 + 0.03 || 0.225 | -0.15 4= 0.01 || 0.750 | 0.66 £ 0.10
0.080 | 0.30 & 0.15 || 0.250 | -0.27 £+ 0.13

5.3.4. BFKL-like parameterizations of gluon and sea quark distribu-
tions.

As we have already discussed in Section 2, we would like to try to study the
parameters of the sea quark and gluon distributions when the terms ~ z%5(%) and
~ 296(Q8) were incorporated. These terms take into account a possible rise of the
sea quark and gluon distributions at low = values. As it has been already noted
in Section 2, from DGLAP-like analyses [80, 47, 48], the parameters as and ag
should be the same, because they are mixed together into the “+4”-component of
the @2-evolution (see [47]). Moreover, the parameter w = —as = —ag should be
()*-independent (see, for example, [80, 48]), if it is not small, i.e. 7% >> Const at
small z.

In the fit with free nonzero w value we have got the following values for param-
eters in parameterizations of parton distributions (at Q2 = 20 GeV?) %:

a,(20) = 0.72,  b,(20) = 3.69,

23We would like to note that the fit contains strong correlations between the values of w, the
coupling constant and twist-four terms. These correlations come because of very limited numbers
of experimental data used here lie at the low z region. Indeed, only the NMC experimental data
contribute there. Then, the results (70) can be considered seriously only when H1 and ZEUS data
[43, 44] have been taken into account. We hope to incorporate the HERA data [43, 44] in our
future investigations.
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1.160, K$(20) = 0.472, K$(20) = 0.141,
= 1.03, K75 (20) = 0.131, KF(20) = —0.28. (70)

as(20) = 0.68,  by(20) = 5.4,
as(20) = —0.18, ag(20) = - 0.18,
Cs(20) = 0.185,  bg(20) = 10.4,
Po(20) = 0524, bg(20) = 7.31,
(20)
(20)

We would like to note that the values of parameters of valent quark distributions
are not changed really. The values of bg(20) and bs(20) are yet high but they
are closer to predictions of quark-counting rules [72] than the corresponding values
obtained in the previous subsection.

The values of the parameters of the nuclei effect ratio are not changed within
considered errors. The similarity of the results for the nuclei effect ratio is shown in
the Fig. 13.

The value of w is equal to 0.18, that is in perfect agreement with the recent
studies based on BFKL dynamics [85] when NLO corrections [86, 87] were taken
into account (see, for example, studies [88], a review [89] and references therein).
Moreover, this value is in good agreement also with recent phenomenological studies
(see a recent review in [90]) of Pomeron intercept values and also with recent H1
and L3 data [43, 91].

Table 18. The values of the twist-four terms.

=+ stat =+ stat =+ stat

0.008 | 0.004 + 0.090 || 0.090 | 0.11 £ 0.03 || 0.275 | -0.14 £ 0.02
0.013 | 0.05 £ 0.09 | 0.100 | 0.05 £ 0.02 | 0.350 | -0.17 &+ 0.02
0.018 | 0.09 £0.09 | 0.110 | 0.05 £ 0.03 || 0.450 | -0.12 4+ 0.03
0.025 | 0.11 +0.08 | 0.140 |-0.01 & 0.02 || 0.500 | 0.43 4+ 0.23
0.035| 0.13 £0.07 || 0.150 | 0.62 £ 0.12 || 0.550 | 0.01 £ 0.05
0.050 | 0.11 £0.05 |/ 0.180 |-0.07 &+ 0.02 || 0.650 | 0.26 £ 0.08
0.070 | 0.11 £0.04 | 0.225 |-0.09 £ 0.02 || 0.750 | 0.47 £ 0.12
0.080 | 0.31 £0.16 | 0.250 |-0.16 £ 0.14

As it is possible to see in the Tables 17 and 18 and also in Fig. 14, the effect of
strong rise of twist-four magnitude at small z values observed in previous subsection
is completely absent here 2%. So, the rise is replaced by the small z rise of twist-two
gluon and sea quark distributions. This replacement seems due to a small number

24 As it was in previous subsection, to obtain the values we used the approximate equality of
twist-four terms for Ho and D, targets that have been obtained in our studies in the previous
Section (see the Tables 5 and 7). This is also in agreement with the Ref. [14].
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of experimental points at low = range and narrow range of Q? values there. The
cancellation of twist-four corrections at low z is in good agreement with the recent
studies [32, 92]. This demonstrates the fact that a strong rise of twist-four correc-
tions coming from BFKL-like approaches [84] has negligible magnitude (see [92, 33]).

The value of a,(M%) in the fit (with the number of points N = 1309 and
x?/DOF = 1.1) is as follows:

ay(M3) = 0.1187 +0.0015 (stat), (71)

i.e. it is in good agreement within statistical errors with fits performed earlier but
the middle value is slightly higher.

5.4 The results of analyses with combine singlet and nons-
inglet evolution

Thus, using singlet analyses of the SLAC, NMC, BCDMS and BFP experimental
data for SF F, we obtain for o (M%) the following expression:

@s(20 GeV?) = 0.2167 & 0.0024 (stat)  0.0080 (syst) = 0.0012 (norm)
(72)

a,(M2) = 0.1177 £0.0007 (stat) = 0.0021 (syst) & 0.0005 (norm).

Looking at the results obtained in the Sections we see very good agreement
between the value of coupling constant a;(M%) obtained in the fits of combine
SLAC, BCDMS, NMC and BFP data and the values of a,(M2) obtained separately
in the fits of BCDMS data and in ones of SLAC, BCDMS, NMC and BFP data.

6 The dependence on factorization and renormal-
ization scales
In the section we study the dependence of our results on the different choice of the

factorization scale ur and the renormalization one pgr. Following the studies [14, 36]
we choose three following values (1/2, 1, 2) for the coefficients kr and kg.

6.1 Nonsinglet evolution case

The results are given in the Table 19. We do fits here without higher-twist correc-
tions (no HTC), with the number of points 596, at @> > 10.5 GeV? and for free
normalization of different sets of data. The change of the value of coupling constant
as(M2) at some kr and kg values is denoted by the difference:

ACVS(Mg) = QS(M%) _O‘S(Mg)lkp=kx=1 . . (73)
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Table 19. The values of a,(M2) at different values of kp and kg. The values
in brackets correspond to the case when the Eq.(22) replaces the Eq.(20) into the
NLO corrections to coefficient functions.

kr | kp. | X3(F2) | as(90 GeV?) £ stat | as(M2) | Aay(M32)

1 [ 1 [ 55 | 0.1789 +0.0023 | 0.1175 0
/2] 1 | 558 | 0.1769 +0.0022 | 0.1167 | —0.0008
(0.1745) (0.1155) | (—0.0020)

1 ]1/2 545 0.1730 + 0.0021 0.1150 | —0.0025
1 2 568 0.1876 4 0.0025 0.1211 +0.0036
2 1 555 0.1826 + 0.0025 0.1191 +0.0016

(0.1858) (0.1203) | (+0.0028)
1/2] 2 || 570 | 0.1856 & 0.0026 | 0.1203 | +0.0028
(0.1817) (0.1186) | (+0.0011)
2 |1/2|| 554 | 0.1770 £0.0022 | 0.1167 | —0.0008
(0.1784) (0.1173) | (—0.0002)
1/2|1/2 | 556 | 0.1789 +0.0023 | 0.1175 | —0.0034
(0.1694) (0.1134) | (—0.0041)
2 | 2 | 567 | 01912+ 0.0028 | 0.1225 | +0.0050
(0.1965) (0.1245) | (+0.0070)

We find similar variation of o, (M%) with the variations of kr and kg: a,(M32)
increases (falls) with increasing (decreasing) of values of kp and/or kr. So, the
dependence is quite similar to one which has been obtained in [39, 26, 27] by the
variation of k-scale from 1/4 to 4 (k = kr = kg in [39, 26, 27]).

Taking maximal and minimal values (that corresponds to kg = kr = 1/2 and 2,
respectively) of coupling constant we obtain the theoretical uncertainties +0.0050
and —0.0034 for a;(M%). In the case when the replacement (22) has been used also
in NLO corrections to the coefficient functions (i.e. when the Eq.(22) replaces the
Eq.(20) there), the theoretical uncertainties for c;(M%) are little higher: +0.0070
and —0.0041.

Thus, using the analyses with NS evolution of the SLAC, NMC, BCDMS and
BFP experimental data for SF F, we obtain for a;(M2) the following expressions
(when no HTC, Q% > 10 GeV? and x? = 0.98):

as(M3) = 0.1170 +0.0009 (stat) £ 0.0019 (syst) & 0.0010 (norm)

+0.0050
{ —0.0034 (theor), (74)

or

+0.0050

—0.0034 (theor), (75)

ay(M3) = 0.1170 4 0.0023 (total experimental error) + {
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where the symbol theor marks the theoretical uncertainties which contain the sum of
the scale uncertainties, threshold error (+0.0002) and the method error (40.0002)
in quadratures.

6.2 Combine singlet and nonsinglet evolution

The results are given in the Table 20. We do fits with higher-twist corrections, with
the number of points 1309, at Q% > 1 GeV? and for free normalization of different
sets of data.

Table 20. The values of as(Mg) at different values of kr and kr. The values
in brackets correspond to the case when the Eq.(22) replaces the Eq.(20) into the
NLO corrections to coefficient functions.

kr | ke | X2(F) | s(20 GeV?) £ stat | ALL | ASL | o (M2) | Aay(M3)
MeV | MeV
1 1 1410 0.2167 + 0.0024 293 209 0.1178 0

1/2| 1 || 1410 | 0.2112+0.0019 | 270 | 191 | 0.1162 | —0.0016
(1443) | (0.2104 =+ 0.0029) | (267) | (189) | (0.1160) | (—0.0018)
1 |1/2|| 1423 | 0.2040 £ 0.0020 | 241 | 168 | 0.1140 | —0.0038
1 | 2 | 1447 | 0.2300 +0.0031 | 351 | 256 | 0.1215 | +0.0037
2 | 1 || 1413 | 0.2204 +£0.0024 | 309 | 222 | 0.1189 | +0.0011
(1500) | (0.2263 =+ 0.0030) | (334) | (242) | (0.1204) | (+0.0026)
1/2] 2 | 1422 | 0.2190 +0.0029 | 303 | 217 | 0.1185 | +0.0007
(1500) | (0.2132 = 0.0031) | (278) | (197) | (0.1167) | (—0.0011)
2 |1/2| 1460 | 0.2021 +0.0022 | 233 | 162 | 0.1134 | —0.0044
(1496) | (0.2323 + 0.0030) | (361) | (264) | (0.1220) | (+0.0042)
1/2 [ 1/2|| 1436 | 0.1975 +0.0012 | 216 | 149 | 0.1120 | —0.0058
(1450) | (0.1970 =+ 0.0018) | (214) | (148) | (0.1120) | (—0.0058)
2 | 2 || 1447 | 0.2340 £0.0033 | 369 | 271 | 0.1225 | +0.0047
(1460) | (0.2343 + 0.0032) | (370) | (271) | (0.1226) | (+0.0048)

We find that variations of as(M%) with the variations of kp and kg are very
similar to ones which have been obtained in previous subsection. However, there
is a quite big difference in the cases kr = 2, kr = 1/2 and kg = 1/2, kp = 2
between results in the Table 20 in brackets and without ones. The difference seems
to come from the correlations between the values of higher-order contributions (that
is mimicked by scale dependences) and twist-four corrections, i.e. so-called duality
effect (see [27] and references therein).

As in the case of nonsinglet evolution, the dependence of a;;(M%) with the vari-
ations of kp and kg is quite similar to one which have been obtained in [39] by the
variation of kg-scale from 1/4 to 4.
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Taking maximal and minimal values (that corresponds to kg = kr = 1/2 and
2, respectively) of coupling constant we obtain the theoretical errors +0.0050 and
—0.0057 for a;(M%). In the case when the replacement (22) has been used also
in NLO corrections to the coefficient functions (i.e. when the Eq.(22) replaces the
Eq.(20) there) the theoretical uncertainties for a,(M2) are changed very little but
x2(Fy) is higher.

Thus, using these analyses of the SLAC, NMC, BCDMS and BFP experimental
data for SF F, we obtain for

ay(MZ) = 0.1177+ 0.0007 (stat) = 0.0021 (syst) % 0.0005 (norm)

{ +0.0047

—0.0057 (theor), (76)

where the theoretical uncertainties contain the scale ones (see above), the ones due
to threshold effects (+0.0001) and the method error (£0.0002) in quadratures.

In conclusion of the Section we would like to note that the theoretical uncertain-
ties in both types of analyses (based on nonsinglet evolution and on combined singlet
and nonsinglet one) are essentially larger than the corresponding total experimental
eITOrS.

Indeed, the total experimental errors are as follows:
in the analyses with the nonsinglet evolution:

(total experimental error) =
{ (stat) + (syst) + (norm) = 0.0038 (total linear exp. err.)

\/ (stat)® + (syst)® 4+ (norm)® = 0.0023 (total quadratic exp. err.)

(77)

in the analyses with the combined singlet and nonsinglet evolution:

0.0033 (total linear experimental error)

(total experimental error) = 0.0023 (total quadratic experimental error), (78)

i.e. they are less by factor 1.5+ 2 to compare with corresponding theoretical uncer-
tainties.

As it has been shown in [39, 40, 26, 27|, the theoretical uncertainties decrease
essentially (by a factor around 2.5), when NNLO corrections have been taken into
account. So, the fits of combined data show real necessity in analyses of DIS data
at NNLO approximation.

7  Summary

As a conclusion, we would like to stress again, that using the Jacobi polynomial
expansion method, developed in [17, 18, 19], we have studied the @2-evolution of
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DIS structure function F; fitting all modern experimental data existing at values of
Bjorken variable z: z > 1072,

1. From the fits we have obtained the value of the normalization ay(M3%) of
QCD coupling constant. First of all, we have reanalyzed the BCDMS data cutting
the range with large systematic errors. As it is possible to see in subsections 4.1
and 5.1 (and also the Figs. 1 and 3), the values of a;(M2%) rise strongly when the
cuts of systematics were incorporated. In another side, the values of a,(M2) does
not dependent on the concrete type of the cut within modern statistical errors.

The values o, (M%) obtained in various fits are in good agreement with one other.
Indeed, we have very similar results for (M%) in separate analyses of BCDMS data
(with the cuts of systematics) and other ones. This gives us the possibility to fit all
data together.

We have found that at @Q® > 10 = 15 GeV? the formulae of pure perturbative
QCD (i.e. twist-two approximation together with target mass corrections) are in
good agreement with all data. The results for a;;(M2) are very similar for the both
types of analyses: ones, based on nonsinglet evolution, and ones, based on combined
singlet and nonsinglet evolution. They have the following form:

from fits, based on nonsinglet evolution:
as(M%) = 0.1170 £ 0.0009 (stat) £ 0.0019 (syst) & 0.0010 (norm),  (79)

from fits, based on combined singlet and nonsinglet evolution:
as(M3) = 0.1180 = 0.0013 (stat) £ 0.0021 (syst) & 0.0009 (norm).  (80)

When we have added twist-four corrections, we have very good agreement be-
tween QCD (i.e. first two coeflicients of Wilson expansion) and data starting already
with Q2 = 1 GeV?, where the Wilson expansion should begin to be applicable. The
results for a;;(M2) coincide for the both types of analyses: ones, based on nonsinglet
evolution, and ones, based on combined singlet and nonsinglet evolution. They have
the following form:

from fits, based on nonsinglet evolution:
as(M2) = 0.117440.0007 (stat) £ 0.0019 (syst) & 0.0010 (norm),  (81)

from fits, based on combined singlet and nonsinglet evolution:
as(M2) = 0.1177 £0.0007 (stat) & 0.0021 (syst) & 0.0009 (norm).  (82)

Thus, there is very good agreement (see Egs. (79), (80), (81) and (81)) between
results based on pure perturbative QCD at quite large Q? values (i.e. at @* > 10+15
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GeV?) and the results based on first two twist terms of Wilson expansion (at Q2 > 1
GeV?, where the Wilson expansion should be applicable).

We would like to note that we have good agreement also with the analysis [69)
of combined H1 and BCDMS data, which has been given by H1 Collaboration very
recently. The shapes of twist-four corrections are very similar to ones from [14, 93).
Our results for a,;(M2) are in good agreement also with the average value for cou-
pling constant, presented in the recent studies (see [26, 39, 40, 65, 74, 94, 95] and
references therein) and in famous Bethke review [96].

2. As the second item of our summary we would like to note about the real
importance of NNLO corrections in analyses of DIS experimental data. The incor-
poration of the NNLO corrections have been started already several years ago in
various ways (see Introduction for discussions).

The results are based on the studies of the effect of high order corrections, which
can be estimated from the dependence of our results on factorization scale up and
renormalization one pg. As it has been point out already in the previous Section the
value of the theoretical uncertainties 2%, coming from this dependence of the results
for a,(M3) (given by Egs.(74) and (76) for two types of Q*-evolution), are equal to

+0.0047
ACYs(]VI%)]theor = 1 —0.0057. (83)

Thus, the theoretical uncertainties are higher essentially than the total exper-
imental error (78). Similar values of the theoretical error can be found in recent
analyses of DIS process (see [39, 40, 26]) and of e*e-process in [94, 95]. As it has
been studied recently by van Neerven and Vogt [39, 40], the value of theoretical
error decreases strongly (by a factor around 2.5) when the NNLO corrections have
been taken into account. Thus, our fits of combined data performed here and also
other analyses [94, 95] show real necessity to include the NNLO corrections to the
study of DIS experimental data.

As it has been noted in Introduction, using partial information about NNLO
QCD corrections several fits of experimental data have been performed (see [22]-[27],
(39, 40, 65, 97] and references therein). In order to do the analyses of experimen-
tal data in full range of = values, it is necessary to know exactly all NNLO QCD
corrections. At present three-loop corrections to anomalous dimensions of Wilson
operators are still unknown. These calculations, which are known only for several
finite number of fixed Mellin moments [98], will be performed [99] in nearest future
by using modern approaches (see [37, 100, 99]) to evaluate complicated Feynman
diagrams.

5 As it has been already shown the scale choices ur = pg = 2Q? and pr = pug = Q2/2 give
the maximal and minimal values of a;(M%) (at the various choices of values kr = 1/2, kp = 2,
kr = 1/2 and kp = 2 separately) and, thus, give the basical part of theoretical error. The
additional theoretical uncertainties due to our method error and choice of threshold points are
negligible. ’
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3. At the end of our paper we would like to discuss the contributions of higher
twist corrections.

In our study here we have reproduced well-known z-shape of the twist-four cor-
rections at the large and intermediate values of Bjorken variable z (see, for example,
the Tables 5, 7 and 17 and also, for example, the results of very popular article [14]).

We would like to note about a small-z rise of the magnitude of twist-four correc-
tions, when we use flat parton distributions at  — 0. The rise is in full agreement
with the theoretical predictions [84]. As we have discussed already in the Section 5,
there is a strong correlation between the small-z behavior of twist-four corrections
and the type of the corresponding asymptotics of the leading-twist parton distri-
butions. The possibility to have a singular type of the asymptotics leads (in our
fits) to the appearance of the rise of sea quark and gluon distributions as ~ =018
at low z values. At this case the rise of the magnitude of twist-four corrections
is completely canceled. This cancellation is in full agreement with theoretical and
phenomenological studies and low z experimental data of H1 and L3 Collaborations
(see discussions in subsection 5.3.4).

We would like also to give a few words concerning the IRR-model predictions for
the twist-four and twist-six corrections.

In our previous study [21] based on the IRR-model predictions for higher twist
corrections, we have found a strong correlations between these corrections and the
value of coupling constant. The (M%) value tends to be very small: a,(M2) =
0.103+0.002 (stat). This study has been supported by fits of DELPHI Collaboration
(see [101]) and by some other analyses [95]. There is, however, a disagreement with
the results of the paper [102], where the twist-four corrections in the framework
of the IRR-model do not lead to decrease the a;(M2) value. In our opinion, the
situation is not so clear here and it needs more investigations. We hope to return
to this problem in our future studies.
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Kpusoxuxun B.I'., Korukos A.B. E2-2001-190
H3yyeHne KOHCTAHTHI CBS3H CHJIBHOTO B3aUMOEHCTBUS
Ha OCHOBE SKCIIEPHMEHTOB I10 [NTyGOKOHEYNPYroMy pacCesHUIO

ITpoaHaTu3upOBaHbl JaHHbIE MpolLecca INyOOKOHEYNPYroro paccesHHs JIENTOHOB
Ha aIpoHax, Mojy4eHHble Koyutabopauueir BCDMS. Ilpu 5TOM HCKITIOYAINCh 0OIAcTH, CO-
Iepxaiye 6oJbIINe CHCTeMaTHYecKue olMOKU. BrinonHeHa anmpokcuManus sKCIepUMeH-
TAIBHBIX JAHHBIX IO CTPYKTYPHBIM (PYHKIMSAM, NONYYeHHBIX KoutabopauusamMu BCDMS,
SLAC, NM u BFP, u u3BjieyeHbl 3Ha4eHHUs KaK )11 KOHCTAHTHI CBA3M CHJIBHOTO B3aUMOIECH-
CTBHA as(M%), TaK M /I CTEIEHHBIX IONpPaBOK K CTPYKTYpHOH (pyHKuuu F,. B ciyyae He-
CHHIVIETHOH 9BOJIOLIMH KOHCTAHTA CBA3M CHJIBHOTO B3aUMOIEHCTBUA paBHa oy (M %) =01174 %
+ 0,0007 (CTaT ) £ 0,0019 (cuct.) £ 0,0010 (HopM.), a KX]I-napameTp paBeH, COOTBETCTBEH-
HO, Arr = (204 £ 25 (monHas 2Kcm. ownbka)) MaB. B ciydae nosnHoii (HECHHIVIETHOM U CHH-
FIICTHOPI) 9BOJIIOLIMM KOHCTAHTA CBA3U CWIBHOIO B3aMMOJCHCTBHS paBHA ocs(MZ) =0,1177%
+ 0,0007 (crat.) £ 0,0021 (cucr.) £ 0,0009 (HopMm.), a KX]JI-mapameTp paBeH, COOTBETCTBEH-
HO, AS\/I_)S_ = (208 £ 27 (monuas »kci. omnOka)) MaB. HaiinenHsle 3HaueHHs HaxomATCs B

OYeHb XOpOoLLIEeM cornacuu Apyr ¢ apyroM. ITonyyeHa BenuuMHa TEOPETHYECKOH HEONpeesIeH-
HOCTH, KOTOpas B Cllyyae MOJIHOH (HECUHIVIETHOH M CHHIVIETHOI) ®Boouuu paBHa +0,0047 u
—0,0057 cOOTBETCTBEHHO.

PaGota BrinonHena B JlaGoparopuu ¢usuku yactun OMAH.

Ipenpunt O6beANHEHHOTO HHCTUTYTA SIEPHBIX ucchnenoBanuii. Iy6Ha, 2001

Krivokhijine V.G., Kotikov A.V. E2-2001-190
A Systematic Study of QCD Coupling Constant
from Deep Inelastic Measurements

We reanalyze deep inelastic scattering data of BCDMS Collaboration by including prop-
er cuts of ranges with large systematic errors. We perform also the fits of high statistic deep
inelastic scattering data of BCDMS, SLAC, NM and BFP Collaborations taking the data sep-
arately and in a combined way and find a good agreement between these analyses. We ex-
tract the values of both the QCD coupling constant o.;(M%) up to NLO level and of the pow-

er corrections to the structure function F,. The fits of the combined data for the nonsinglet
part of the structure function F, predict the coupling constant value o (MZ )=01174 £
+ 0.0007 (stat.) + 0.0019 (syst.) + 0.0010 (normalization) (or QCD parameter A(S) 204 +
+ 25 (total exp. err.)) MeV). The fits of the combmed data for both the nonsmglet part
and the singlet one, lead to the values oy (MZ ) = 01177 £ 0.0007 (stat.) + 0.0021(syst.) £
+ 0.0009 (normalization) (or QCD parameter A( = (208 * 27 (total exp. err.)) MeV). Both

values are in a very good agreement with each other. We estimate theoretical uncertainties
for ooy, M ZZ ) as +0.0047 and - 0.0057 from fits of the combined data, when complete singlet
and nonsinglet O , evolution is taken into account.

The investigation has been performed at the Laboratory of Particle Physics, JINR.
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