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1 Introduction

Theoretically, when considering the Cherenkov radiation, one treats either the un-
bounded charge motion with a constant velocity (this corresponds to the so-called
Tamm-Frank problem [1]) or the charge motion on a finite interval with an instan-
taneous acceleration and deceleration of a charge at the beginning and termination
of its motion. This corresponds to the so-called Tamm problem [2]. The physical
justification for the Tamm problem is as follows. A uniformly moving charge moves
initially in vacuum (where it does not radiate), then penetrates into a transparent
dielectric slab (where it radiates if the condition cos ¢y = 1/8n for the Cherenkov
-angle is satisfied) and, finally, after leaving the dielectric slab, moves again in vacuum
without radiating (we disregard the transition radiation at the boundaries of a di-
electric slab). Since Tamm'’s problem is more physical than the Tammi-Frank one, it
is frequently used for the analysis of experimental data (see e.g., [3-6]). However, the
following complication arises. The superposition of electromagnetic fielda (EMFs)
arising from the instantaneous acceleration and deceleration at the beginning and
termination of a charge motion strongly resembles the Cherenkov radiation spec-
trum. This fact was first noted by S. Vavilov ([7]) (who was a Cherenkov teacher).
We quote him (our translation from Russian):

"We think that the most probable reason for the - luminiscence is the
radiation arising from the deceleration of Compton electrons. The hard-
ness and intensity of v rays in the experiments of P.A. Cherenkov were
very large. Therefore, the number of Compton scattering events and the
number of scattered electrons should be very considerable in fluids. The
free electrons in a dense fluid should be decelerated at negligible dis-
tances. This should be followed by the radiation of the continuous spec-
trum. Thus, a weak visible radiation may arise, although the boundary
of bremsstrahlung and its maximum should be located somewhere in the
Roentgen region. It follows from this that the energy distribution in the
visible region should rise towards the violet part of the spectrum, and
the blue-violet part of the spectrum should be especially intensive”.

This Vavilov explanation of the Cherenkov effect has given rise to a number of
attempts [8,9] in which the observed radiation originating from a charge passage
through the dielectric slab was attributed to the interference of bremsstrahlung
(BS) shock waves. On the other hand, the exact solution of the Tamm problem in
a nondispersive medium was found and analyzed in [10]. It was shown there that
the Cherenkov shock wave exists side by side with BS shock waves and not in any
case can be reduced to them. Then, how this fact can be reconciled with the results
of [8, 9] which describe experimental data quite satisfactorily? A possible reason is
that the exact solution obtained in [10] was written in the space-time representation,
while the authors of [8,9] operated with the Tamm formula related to the frequency
representation. It might happen that the main contribution to the exact solution
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of [10] describing the Cherenkov wave is due to the integration over the frequency
region lying outside the visible part of the intensity spectrum. Then, the radiation
in the visible part of spectrum could be described by the Tamm formula.

The aim of this consideration is to consider the electromagnetic radiation arising

from an instant acceleration of a charge followed by its smooth deceleration. The
charge motion begins with some velocity v and lasts up to its complete stopping.
Formerly, the decelerated charge motion with a rather small change of velocity was
studied analytically and numerically in Refs. [11, 12]. In the present consideration,
the change of velocity is so large that analytical formulae used in [11, 12] do not
work. Numerically, the charge motion with small and arbitrary changes of velocity
was studied in [13] and [14], resp. However, the consideration of [14] was mainly of
methodological nature, without taking account of realistic conditions.
To clarify the peculiarities of the Cherenkov-like radiation from the $-decayed elec-
tron, we take into account only its deceleration and deliberately exclude such effects
~ as multiple scattering. These effects, albeit being quantitatively important, obscure
the influence of deceleration on the direction of radiation given by the Tamm-Frank
formula cosf = 1/0n. We assume the medium to be continuous and postulate that
the whole energy loss takes place on a path defined by Tables available in physical
literature.

The plan of our exposition is as follows. The formulation of the treated problem
is given in section 2. The main mathematical formulae needed for subsequent cal-
culations are presented in section 3. Numerical results are collected in section 4. A
brief discussion of the results obtained is given in section 5.

2 Statement of the problem .

We consider the following problem. A point charge is at rest in a medium at the
origin up to a moment ¢ = 0. At this moment, the charge exhibits the instant
acceleration, acquiring the velocity vo. Then, the charge moves with a constant
deceleration along the z axis, After the moment ¢ = t¢, the velocity of the charge is
zero, i.e., it is again at rest at the point z = z; of the z axis.

We choose the motion law in the form

2(t) = vt — %at? (2.1)
The charge velocity is J
z
v(t) = pria at. (2.2)

The charge velocity vanishes at the moment of time ¢; = vo/a. At this moment the
charge position is z; = v2/2a. It is convenient to operate not with acceleration a,
but with the distance z; passed by the charge up to its complete stopping (it can
be found from the Tables [15]). Then, a can be expressed through z; and vg:

a=vj/2z. (2.3)



From (2.1) we express the current time through the charge position at this moment

t= %(1 —J1 = 2/z). (2.4)

Substituting (2.4) into (2.2), we find the charge velocity as a function of its velocity:

v =1v9y/1 — 2/z;. (2.5)

The dependence v(z) given by (2.5) is not very realistic. The realistic dependence
should be exctracted from the relation (see, e.g., [16])

& C

dz v
where C' is a function weakly dependent of the current charge velocity v, £ is the
relativistic cinetic energy (€ = moc?(y—1), v = (1-6%)"Y2, B =v/c). However,
our main task is to clarify how the charge acceleration affects the angular-frequency
distribution of the radiated energy. For this purpose, the simplified version of the
velocity loss (2.5) is quite enough.

3 Main mathematical formulae

We intend here to find the electromagnetic field and the energy flux arising from
the motion law (2.1). The current density corresponding to (2.1) equals

3z = e(vo — at)8(z)8(y)d(z — vot + at?/2) (3.1)

in the time interval 0 < t<t; and is zero outside it. The Fourier component of this
current density is given by

tf
W 0

o= 5= [ exp(=iwt)i.()d = S=8(@(u) el "2~ [T 2Tz (32)

for 0 < z < z; and j, = 0 outside this interval.
The Fourier component of the vector potential is

A (w '— 2wc/§exp —it), (3.3)

where
W

Y= —( —\J1—2)2))+ kR, kn=nw/e, R=[r?+2"7—2r2cosf]"/?, (3.4)

¢ and p are electric and magnetic permittivities of the medium, n = |/ei is its
refractive index, r is the distance from the origin to the observation point, 6 is its



polar angle. For simplicity, we limit ourselves to the nonmagnetic medium (p = 1).
The sole non-vanishing component of magnetic field is Hy:

zek r

H, = O/R—exp (—it). (3.5)

The electric field strength is obtained from the Maxwell equation

cOF
1H=="2
cur p at
valid outside the motion interval. In the Fourier representation, this equation looks
as

S we =
curlH = —F.
c

Due to the axial symmetry of the problem, only the § component of E differs from
7€ro .

wc 0 iekrsinf [r — z'cosf
E,=—-<2(H,) = [

wer Or

xp(—ii/;)dz". (3.6)

2mwe

When obtaining (3.5) and (3.6), the terms of the order 1/k, R were dropped outside
sine and cosine functions. Usually, they are of the order 1077.

The radial energy flux through the unit solid angle of the sphere with the radius
r for the whole time of charge motion is given by

o0

s,(o):%:i / Eo(t)Hy(t)dt.

-0

Inserting here
Ey(t) = /exp(iwt)E'wdw and Hy(t) = /exp(iwt)dew,

one gets

=0/S,(9wdw

5.(0,w) = cr?[En(w)H, (w) + Ei(w)H;(w)). (3.7

Sﬁbscripts of E and H mean real and imaginary parts of E, and H,. The latter are
given by

where

ek,rsin 6 smtbd H = ek,rsin@  cosi

H, =
2me R? 2me R?

d I




E, =

ekrsin / r—z'cost . ekr sin 0 / r— 7 cosd cos Pdz’.

7 sinydz', E; = 7

2me 2me

(3.8)
Here the 2’ integration is performed over the interval (0,z). From (3.7) and (3.8)
one gets

d2E e2k2nr4 sin% 4
Sl0w) = Toa = T ante
sin — 2/ cos 0 cos r— 2z cosf
X[ R;/) / 7 intdz' -I—/ wd ! / 73 cospdz’)]. (3.9)

It is convenient to pass to the dimensionless variable 2z’ — z'/z;. Then,

62k2nz? sin? 0

5,(0,0) = =L, (3.10)
where
c ! !
5= /smz/Jd , / c;;cos@ 0 _I_/cosd) / 6;3C080cos¢dz'.
(3.11)

Here the 2’ integration is performed over the interval (0, 1). Further,

W

¢;=zg/r, R=(1+¢2" 22 cos0)?, o ="2(1—V1=2)+kurR.
a
Equation (3.11) is not very convenient, since for large frequencies, sint and cos
are fast oscillating functions. For example, for the middle of optical diapason (A =

2mc/w = 6-107°cm) and the observation distance r & 1m, the value of k,r is of the
order 107. To avoid this difficulty, we present ¢ in the form

Y = P1+k,r, where ) =wr(2)+k,r(R-1), 7(7) = ?—Zi(l—\/l —2'). (3.12)
Vo
Then, S in (3.10) can be written as

S, = 51n1/)1d / €fZ "cos @ sin ydz’ +/ coszbl / CfZ Cosecoszl)ldz’.

(3.13)

Finally, the radial intensity is

ezkznz? sin%

S,.(0,w) = Sy, (3.14)

4r2c
where Sy is given by (3.13).

Equation (3.14) is more convenient for high frequencies than (3.10), since t, is
of the order k,z; when the motion interval is much smaller than the observation
distance (z5 << ).



Let the observation sphere radius r be so large, that one can change R by r
outside the t; function and retain in the development of R (inside the % function)
only the terms of the first order in z’. Then,

1 = 7(2") — knz' cos §. (3.15)

In this case, the radiation intensity can be obtained in analytic form. But at first,
consider more general problem which describes a charge moving on the interval zy, 2z,
according to the law

1
z =zl+vl(t—t1)+5a(t——t1)2. (3.16)

The motion begins at the moment ¢; and terminates at the moment ¢,. The charge
velocity varies linearly with time from the value v = vy at ¢ = ¢; up to value v = vy
at ¢t = tg: v =v1 +a(t —t1). Again, we express the acceleration a and the motion
interval through zy, zq, vy, va:

’U? - ’Ug 2(22 - 21)

=172 4=
“ Azy —z) v + 1

In this case, the function 7(z) entering into (3.16) is given by

2
9y 2T Ay T AU T Uiy
()=t =gl - (4 Sy Uiy, (3.17)

The radial component of the radiation intensity is equal to

e2k*n sin? 0

Sr(H,w) = W /dZ COS’(/)I /dZ Sll’ll/)l ]—

2 12
eSO cos(u? — u?) + ma?[(Ch — 1) + (S2 — S1)2)—

" 2n%cncos?
—V27ma[(Cy = Cy)(sinu? — sinu?) — (S5 — Sy)(cos u? — cos u?)]}, (3.18)

where we put
Cl e C(Ul), CQ - C(UQ), 51 w S(ul), SQ s S(UZ),

— [ k(zz — 21) ]1/2
n|cos (33 — B
C and S are the Fresnel integrals defined as

,S’(av)=\/‘/dtsmt2 and C(z J>/dtcost2

up = a(l — fincosf), uz = a(l —Fancosb),



When vy — v; = v, the intensity (3.17) goes into the Tamm formula:

2 : _
o2 (0) = e [Sinesmwto(l B cos 8)

m2en

9 _ Z9 — 21 —i
cosf —1/3, P to= v B = Cn’ (3.19)

Turning to the treated case with the final velocity equal to zero, we put v; =
vo, v2=0, 1 =0, ty=15, 2z =0andz = z; Then, the same expression
(3.18) for the radiation intensity holds in which one should put

1 kz
u = a(l — foncosb), wup=a, a:% m, Bo = wvo/c.

4 Numerical calculations

Since Eq.(3.14) has a rather complicated analytic structure, we performed numerical
calculations for the radiation generated by decelerated electrons with the maximal
energy 10 MeV and for the radiation produced by decelerated electrons which arise
from the B-decay of “°K. The radius of the observation sphere was chosen to be
r = 100cm. In realistic cases, we cannot expand R — 1 up to the terms of the first
order in z:

R—1~ —¢;2' cos,

which is the usual procedure when treating the Tamm model. In fact, the next-
order terms in the expansion of R — 1 are of the order €}z, According to (3.12),
their contribution to the phase v, is of the order 27rz}/4)\r. For A = 4-107%cm,
zy = 0.5¢cm and r = 100cm, this quantity is about 100. On the other hand, the
contribution of these terms to 1; can be disregarded if they are much smaller than
unity (since ¥, is a phase). Therefore, second-order terms in the development of
R — 1 are essential. For smaller distances their role increases. These questions were
considered in greater detail in [12].

We consider the decelerated motion of electrons in water. For a given initial ve-
locity vg of an electron, the ranges of electrons were taken from Tables [15]. In Table
1, we collected the electron ranges for those kinetic energies, for which calculations
were made. For a given wavelength A, the refractive index n was approximated by
the formula

958141011 4.588 - 10-2!
oo T o

where A is in ¢m. This approximation is in good agreement with the data given
in [17]. In Table 2, we give the wavelengths A, for which calculations were made
together with their refractive indices n(A) and the threshold velocities 3. = 1/n(}).
For the wavelength A = 5.893 - 10~*cm and n = 1.333, the angular distributions for
various initial velocities are presented in the left column of Fig.1. Side by side with

n(M\)|resge = 1.32533 +




deceleration motion curves, there are shown Tamm angular intensities

d*€ e . sin[wL(1 — Bncosf)/2v]

- - 2
S1 = dQdw — T2cn {sin® cosh —1/8n Y

(4.1)

where for L and v we take the total path z; and the initial velocity vo. To make
possible their comparison with angular intensities corresponding to the decelerated
motion, we averaged Tamm intensities over 5 neighbouring points. Non-averaged
Tamm intensities are presented in the right part of Fig. 1.

For the sufficiently large velocity § = 0.959 (this corresponds to 8n =~ 1.278),
the maximum of the angular distribution (3.14) is approximately at 6,, = 38.2°
(top of the left column of Fig. 1), while the usual formula for the Cherenkov angle
Ocy, = arccos(1/83n) gives gy, = 38.56° which is by 0.3° smaller than 6,,. However,
for B close to the threshold (8 = 1/n), the shift of maxima is ~ 3° (middle of the
left column of Fig. 1). It follows from Table 3 that the dependence 8,,(3) differs
from that given by f¢j, = arccos(1/6n).

The third curve in Fig.1 (bottom of the left column) corresponds to the initial
velocity Bo = 0.6593 (Bon = 0.927) smaller than the light velocity in medium.

It should be kept in mind that the Tamm formula (4.1) is not applicable for the
treated deceleration. In fact, Tamm [2] gives the following condition for the validity
of (4.1):

2 dv L
<< )\, tg = % (42)
In the present case,
dv
dt
Therefore, (4.2) reduces to

:a:v§/2zf, to:tj/QZZf/vg.

zp << A

If for A we choose the middle of the optical diapason (A = 6-107cm) and for z; we
take the typical value 10=%cm, then (4.2) reduces to

1072 << 6-107°.

Therefore, (4.2) is strogly violated and the Tamm formula should not work. For-
merly, this was admitted in [13].

Deceleration motion intensities (left column) and the Tamm ones are shown in
Fig.2 for the wavelength A = 5.893 - 10™°cm in a smaller angular interval (in the
neighborhood of the Cherenkov peak).

To see how the angular distributions change when the initial velocity vy changes
from vy > ¢/n to a value smaller than ¢/n, we present, in Fig.3, the radiation
intensities for intermediate values of initial velocities. It is seen that the transition
through the Cherenkov threshold is sufficiently smooth.
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In Fig. 4 (a, b, ¢), we present angular distributions for three different initial
velocities (8o = 0.9594, 8o = 0.7765 and By = 0.6953). For each of these velocities
there are shown intensities for the wavelengths A = 2.144 - 10=°cm (solid curve),
A =3.034-10"¢m (broken curve) and A = 6.780 - 10"%cm (dotted curve). It is seen
that the radiation intensity grows with diminishing the wavelength. The location of
maxima of intensity angular distributions corresponding to the treated decelerated
motion is close to that given by the Tamm formula (4.1) (see Table 3), although
their forms differ appreciably.

The number of photons integrated over the solid angle is given by

2 Y
‘fl—f - % / Sy sin® 08, (4.3)
0

where S is given by (3.13) and o = €?/hc = 1/137 is a fine structure constant.

The distribution dNV/dA as a function of the observed wavelength ), is shown in
Fig. 5 (solid lines) for various initial charge velocities. In the same figure, there are
presented Tamm’s photon numbers (dotted lines) given by

dNp _ 2mazg 1 4o 1 1+ 06n
dx £ (l—ﬁ”n2)+7r)\n(2;6n1n,8n—1 -1

for fn > 1 and

dNT_4a _1_ 1+ﬂn_1

D" mn g Mg Y
for fn < 1. In all cases, Tamm intensities for v > ¢/n are much larger than those
corresponding to the decelerated motion. One of the reasons for this is that in the
Tamm formula (4.3) corresponding to Bn > 1, the motion interval was taken to be
to be equal to z; which is slightly larger than the distance passed by a charge from
the space point where # = (3 to the space point where 3 = ¢/n. More important is
the constancy of a charge velocity implied by the Tamm formula.

In Fig.6, there are shown dependences dN/d) as a function of the initial kinetic
energy 1" for various wavelengths A. We observe that these dependencies are almost
linear. The comparison with the Tamm formula (dotted lines) is presented in Fig.
7. The integral number of photons emitted in the wavelength interval (A1, \;) as a
function of an initial kinetic energy is given by

(4.4)

FdN
N(T) = N(Ap, Ao, T) =/E\-dx, (4.5)
M

where dN/d) is given by (4.3). In Fig. 8, the solid curve corresponds to N (T, Ay, A;)
with A} =2.144 - 10"%cm and Ay = 5.893 - 10~5¢m. It is obtained by the integration
over A curves with fixed A shown in Fig.6. In the same Fig. 8, there are presented
results of calculations of Ref. [19] (dotted curve) and Ref. [20] (dashed curve). We



observe the sharp disagreement with our calculations.
The idea of calculations made in [19, 20] originates from the method suggested by
Cherenkov [21] who begins with the Tamm-Frank formula

% = [ fw)de, (4.6)

describing the energy losses per unit length on the surface of a cylinder coaxial with
the charge motion axis. Equation (4.5) is related to an infinite charge motion with
a constant velocity. f(w) entering into (4.6)

d*E *w 1

f(w)=m—c—2(1“w)

is the energy loss per unit length per unit frequency.
Similar expression for the number of photons emitted per unit length looks like

% = /N(w,z)dw, (4.7)

where
&N o 1 e?

Gdo = T ) TR

is the number of photons emitted per unit length unit per unit frequency. The num-
ber of photons emitted on the interval z, z, of the cylinder surface in the frequency
interval wy,ws is given by

N(w,z) =

zy wo
N = //N(w,z)dwdz. (4.8)
2z wi
Now, Cherenkov assumed that the charge velocity entering into f(w) and N(w, z) is
a function of z. He integrated (4.8) from z;, for which the charge velocity is equal
to the initial velocity to zz, for which the charge velocity is equal to the threshold
velocity 1/ (in fact, only for that interval of velocities, Egs.(4.6) and (4.7) are valid).
The identification of the (z1,2;) interval with the charge path is not very clear to
us, since Eq. (4.6) was obtained under the assumption of unbounded charge motion
with a constant velocity. On the other hand, Egs.(4.3) and (4.5) unambiguously
define the number of photons with a given A and the number of photons in the
(A1, A2) interval, resp., passing through the sphere surrounding the charge path.

4.1 Numerical calculations for the electrons emitted by “K

So far, we evaluated distributions of the energy and the number of photons radiated
by an electron moving in water. But the electrons emitted by real sources have
definite energy distributions, As an example, the number of electrons per unit kinetic
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energy dN,/dT (in arbitrary units) arising in the B-decay of “°K have the kinetic
energy distribution shown in Fig. 9. The corresponding data were taken from [22]
for 0.1MeV < T < 1.1MeV. We extrapolated them to the 1.1MeV < T < 1.3MeV
interval. To avoid the use of arbitrary units, we normalize dN,/dT as follows

dN, dN, dN,
(G =g [ TG (4.9)

The integral entering into (4.9) is equal to 897.8. Obviously, (dN/dT'), is normalized

to unity:
dN,
dT(—==), = 1.
/ ( dT )

If we multiply (dN./dT), given by (4.9) by dN/dX defined by (4.3), we obtain
the number of photons emitted by the decelerated electron (with the initial kinetic
energy T') arising from the 3-decay of “°K. Conditionally, we denote it by d*N/dAdT".
We apply this procedure to the curves shown in Fig. 6. The results of calculations
are shown in Fig. 10. Finally, for the number of photons emitted by the decelerated
electron in the wavelength interval (A;, Ay) arising from the 3-decay of *°K, one finds

A2
dN(T) N
5 :N(AI,AZ,T)-jdAM. (4.10)
1

For Ay = 2.144 - 10~%cm and Xy = 5.893 - 1075cm, dN(T')/dT given by (4.10) is
shown in Fig. 11. The total number of photons emitted by decelerated electrons
arising from the B-decay of “°K is obtained by integration of N(T') given by (4.10)
over all kinetic electron energies:

Tma:v:
N = / di\;;_T)dT, Tonin = 0.1MeV, Tpaw = 1.3MeV.

Tmz‘n
For the distribution dN(T')/dT presented in Fig. 11, this number is about 25. It
corresponds to the energy per one decay averaged over the F-spectrum.

5 Conclusion

We considered the general properties of the Cherenkov radiation in medium aris-
ing from instant acceleration of electron followed by its smooth deceleration. The
motion begins from the state at rest. Then, an electron exhibits an instantaneous
acceleration up to reaching the velocity v and moves with deceleration up to reaching
the state at rest. The ranges of electrons were taken from Tables. In fact, this is a
typical situation in nuclear water reactors. Physically, this problem can be realized
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in the B-decay of an atom imbedded into water with the subsequent deceleration
of the emitted electron. This consideration is exact, as far as we do not take into
account the multiple electron scattering on the medium inhomogenuities. The ana-
lytic expression for the radiation intensity is found when the condition AzF/R << 1
(A, z; and R are the wavelength, the electron range and the observation distance,
resp.) is fulfilled. However, in realistic cases, this condition is strongly violated [12].
Thus, we decided to limit ourselves to pure numerical results.

We briefly summarize the main results obtained:
1. The dependence of the radiation propagation on the electron velocity does not
follow the classical law cos @ = 1/8n. The agreement is satisfactory for 8 ~ 1 and
fails at the Cherenkov threshold 8 = 1/n.
2. The dependence of the radiation intensity on the electron velocity has no sharp
threshold at B = 1/n. The change of intensity near the threshold is more smooth
than that described by the Tamm formula.
3. The absolute value of the emitted photon number is much smaller than that
given by the Tamm formula. A possible reason is that the Tamm problem contains
two instantaneous jumps of the charge velocity (at the beginning and termination
of motion), while there is only one instantaneous jump of the charge velocity (at
the beginning of motion) for the treated deceleration motion. It is known that an
interference of bremsstrahlungs arising from two instantaneous jumps of velocities
in Tamm’s problem leads to the increasing of the total radiation intensity by 4
times [8]. Other possible reasons for this are that a rather simplified law (2.5) for
the velocity losses was used and that it was not taken into account the multiple
scattering.

The results of this investigation show that charge acceleration and deceleration
play an important role in the consideration of the Vavilov-Cherenkov effect, in ac-
cordance with Vavilov predictions [7] made in 1934.



Table 1: Initial electron kinetic energies T', velocities § and corresponding to them
electron ranges Z; in water taken from Tables [16]

T,MeV 16 Zg,cm

0.1 0.5482 1.400-1072
0.2 0.6953 4.400-10~2
0.3 0.7765 8.263-10~2
0.5 0.8629 1.735-107!
1.3 0.9594 5.890-10~*
2.0 09791 9.613-107!
5.0 0.9957 2.499

10.0 0.9988 4.880

Table 2: Wavelengths A, corresponding to them refractive indices n and threshold
Cherenkov velocities 3, for water at 20°C

A, 107%°cm n(A)  Be=1/n(X)
2.144 1.4032 0.7127
3.034 1.3581 0.7363
4.047 1.3428 0.7447

5.893 1.3330 0.7502
6.780 1.3308 0.7514

Table 3: Positions of angular distributions maxima 6, for the treated deceleration
motion and the Cherenkov angles 0¢;, = arccos(1/4n)

T.MeV X, 10°cm 0,,,deg Ocp,deg

1.3 2.144 41.8 42.0
1.3 5.893 38.1 38.6
1.3 6.708 38.0 38.4
0.3 2.144 22.3 23.4
0.3 5.893 12.0 15.0
0.3 6.708 11.4 14.6
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Fig. 1. Left column: The angular radiation intensities on the sphere of radius
r = 100ecm corresponding to the decelerated charge motion (dotted lines). Tamm
intensities shown by solid lines were obtained by averaging over 5 neighboring points
(to make possible comparison with decelerated motion intensities). Right column:
Non-averaged Tamm’s intensities.

The wavelength, refractive index and Cherenkov threshold are A = 5.893 - 10~%cm,
n = 1.333 and 8. = 1/n = 0.7502, resp. The electron ranges are: z; = 0.589cm
for Bo = 0.9594, z; = 8.263 - 10~ 2cm for By = 0.7765 and z; = 4.4 - 107%cm for
Bo = 0.6953. N
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Fig.2: The same as in Fig.1, but for a smaller 6 interval. Left column: angular
intensities for the treated decelerated charge motion. Right column: Tamm angular
intensities.

The main maxima of the radiation intensity for decelerated motion are at 6,, = 38.1°
for By = 0.9594 and at 6, = 12° for By = 0.7765. The corresponding maxima for

the Tamm intensity are at . = 38.6° and 6§, = 15.5°, resp. Other parameters are
the same as in Fig.1.
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Fig.3: Angular radiation intensities corresponding to decelerated motion for var-
ious initial velocities 3o in the neighborhood of the Cherenkov threshold 8, = 0.7502.
The wavelength A = 5.893 - 10™°cm. It is seen that intensities change rather slowly
near the Cherenkov threshold. Other parameters are the same as in Fig.1.
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Fig.4: Angular radiation intensities corresponding to decelerated motion for dif-
ferent wavelengths and initial velocities: B = 0.9594 (a), Bo = 0.7765 (b) and G =
0.6953 (c). Solid, broken, and dotted lines correspond to A = 2.144 - 10~°cm,n =
1.4032, X = 3.034 - 10~%cm,n = 1.3551 and A = 6.780 - 10~°cm,n = 1.3308, resp.

Other parameters are the same as in Fig.1.
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10w _—

dN/dx, cm™

10" . . . y :

Fig. 5: The number of photons per unit wavelength as a function of the ob-
served wavelength for a fixed initial velocity. Solid and dotted lines correspond to
the decelerated motion and the Tamm formula (4.4).

20—

-
(3]
1

dN/dx, 10°%cm™
» 3

Fig.6: The number of photons per unit wavelength as a function of the initial
kinetic energy for the fixed wavelengths A = 2.144 - 10~5cm, n = 1.4032 (curve 1),
A =3.034-10"%cm,n = 1.3557 (curve 2), X = 4.047 - 107%c¢m,n = 1.3428 (curve 3)
and A = 5.893-10"%cm, n = 1.333 (curve 4) for the treated deceleration motion (solid
curve). We observe that the dependence on the initial kinetic energy is almost linear.
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Fig.7: Comparison dN/d\ for the treated decelerated motion (solid lines) with
that given by the Tamm formula (4.4) (dotted lines) for A\ = 2.144 - 10~5¢m, n =

1.4032 and A = 5.893 - 10 5cm, n = 1.333.

3000 T y . —

T,MeV

Fig. 8: The integral number of photons emitted in the region of visible light
(2.144 - 107%cm < A < 5.893 - 107%¢m). Solid curve corresponding to the treated
decelerated motion was obtained by integrating over A curves presented in Fig. 6.
Dotted and broken lines correspond to the data taken from Refs. [19] and [20], resp.
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Fig. 9: The 8 spectrum of “°K. Solid and broken parts of the curve correspohd
to experimental data taken from [22] and to their extrapolation, resp.

w
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Fig. 10: Distributions of the photon number with a fixed wavelength emitted
by decelerating electrons originating from f-decay of 4K in water as a function of
kinetic energy. These distributions were obtained by folding the curves shown in
Fig. 6 with the 8-decay spectrum of 40K presented in Fig. 9.
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Fig. 11: The integral number of photons emitted in the region of visible light
(2.144-107°cm < X < 5.893 - 1075cm) as a function of kinetic energy. This curve is
obtained by integrating curves shown in Fig. 10 over A. The total number of pho-
tons emitted by decelerated electrons emitted by “°K decaying in water is obtained
by integrating the curve shown in this figure over T'. It equals 25.
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Aduanacees I''H., Kaprasenko B.I'., 3penos B.II. E2-2001-207
Oco0eHHOCTH M3TyYeHHS THIIA YEPEeHKOBCKOTO OT 3aMeVISeMOTrO 3JIEKTPOHa,
BO3HMKAIOLIETO NpH B-pacrane B BOAe

PaccMoTpeHbI CBOHCTBA HITyY€HHUs, BOBHHKAIOILETO NPH MTHOBEHHOM YCKOPEHHH 3apsja
BIUTOTH 0 JOCTHXXEHHs UM CKOPOCTH, GOJIBLIEH CKOPOCTH CBETa B BEILIECTBE, U [OCIIEYIOLIEM
€ro 3aMeUIeHHH BIUIOTh 10 MOJHOM octaHOBKH. ITonmyyeHa obmmas ¢opMyna, omuchIBaoLIas
310 M3My4yeHue. Mcnonmp3ys ee, Mbl BBIYUCIIMIM YIVIOBbIE W CIEKTpalibHble paclpenesieHus,
a TaKXe YUCJIO HCIYLIEHHBIX (POTOHOB B 3aBUCHMMOCTH OT HayalbHOH ®HEPIUHU 3JIEKTPOHA
(MakcumansHas sHeprus 10 MaB). D1u pacripeneneHus MOTYT OBITh HCIIOB30BaHBI [T OLICH-
KM 4epEeHKOBCKOIO M3JIy4eHHs B SNEPHBIX PEaKkTopax C Tﬂ)KEJIOH BOJIOH. Bhrumciien criextp
YepeHKOBCKOT'O U3Ty4eHHs, BO3HUKAIOLIETro NpH B -pacrnane 0 (E max =13 MaB). B o6mem

cllyyae YITIOBbIE paclipelenieHus He UMEIoT MaKCUMyMa Iipu cos0=1/ B, . Caur MakcumMyma
Gosee BbIpaxeH BOJIM3M YepeHKOBCKOro nopora B, =1. Yucno ucnymeHHsix (GOTOHOB MpH-
MepHO B 3,5 pa3a MeHbllle, YeM 110 KJIacCHYecKOoi opMyJie, TakXe yYUTBIBAIOILEH ycKope-
HHe. MBI CBA3bIBaEM 3TO C HaJIMYHEM ABYX MIHOBEHHBIX CKa4KOB CKOPOCTEH B MCXOIHOM
3agaye TaMMa M TOJIBKO OJHOrO CKayKa B HaHHOM NOAXOAE. DTO NMPHBOIUT K OTCYTCTBHIO
HHTep(hepeHINH MEXIY TOPMO3HBIMU U3JTyYeHHSIMH, UCITYIIEHHbIMU B Hayale ¥ B KOHIIE IBH-
xeHus. [laHHas paGora yKa3piBaeT Ha HEOOXOIMMOCTb MEPECMOTPA OCHOB TEOPUH U3ITYyYESHUS
Basunosa-Yepenkosaa.

Pa6Gora BemonHeHa B JlaGoparopuu Teopernueckoil ¢usuku um. H.H.Boromo6osa
OMSIH.

Tpenpunr OGbeANHEHHOrO0 HHCTHTYTA SAEPHBIX HccrenoBaHuii. dy6Ha, 2001

Afanasiev G.N., Kartavenko V.G., Zrelov V.P. E2-2001-207
Peculiarities of the Cherenkov-Like Radiation
from the Decelerated Electron Arizing from the p-Decay in Water

We considered radiation arising from an instantaneous charge acceleration up to reach-
ing the velocity greater than the light velocity in medium and its smooth deceleration up
to its complete stopping. General formula for the radiation arising from such a charge motion
is obtained. Using it, we evaluated the angular frequency distributions of the radiation
and the number of emitted photons as a function of the initial electron energy (the maximal
energy is 10 MeV). They may be used for the evaluation of Cherenkov radiation in nuclear
reactors with heavy water. We evaluated the spectra of the Cherenkov radiation for the decel-
erated electrons arising from the p-decay of 40K (E max =13 MeV) in water. In general,

the angular distributions do not have maximum at cos®=1/p,. The shift of maximum is
more pronounced near the Cherenkov threshold B,=1. The number of photons is by
3.5 times smaller than the one given by the classical Tamm formula which also takes into ac-
count the deceleration of electrons. We associate this disagreement with the fact that there
are two jumps of a charge velocity (at the beginning and termination of motion) in the origi-
nal Tamm problem, while there is only one velocity jump (at the beginning of motion)
in the present consideration. Correspondingly, there is no interference of bremsstrahlung
waves emitted at the beginning and termination of a charge motion. This contribution points
out to the necessity to reconsider the main postulates of the Vavilov—Cherenkov effect.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical

Physics, JINR. . . .
Preprint of the Joint Institute for Nuclear Research. Dubna, 2001
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