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1. INTRODUCTION

After Dirac let us assume the following definition (Dirac, 1949), (Leutwyler,
Stern, 1978). A theory is called relativistic if it has generators of translations in
time (Hamiltonian H), in space (total linear momentum P), of space rotations
(total angular momentum M ), Lorentz boosts K , and all these generators sat-
isfy the commutation relations of the Lie algebra of the Poincaré group (CPG),
e.g., see (Gasiorowicz, 1966), (Weinberg, 1995) ch. 2.4. In Quantum Field The-
ory (QFT) the generators are expressed in terms of fields. The examples of
relativistic QF'T are theories of free fields and theories with local interactions.
Here, nonlocal QFT are considered which are required to be relativistic in the
Dirac sense. Only this property of nonlocal theories is regarded here, other
their problems (e.g., relativistic causality), e.g., see (Efimov, 1985), (Cornish,
1992), are not touched upon.

For this purpose we use the model of interacting charged ¢ and neutral ¢
scalar fields, see sect. 2. The model is a simple but representative example of
QFT.

The following approach is accepted. Let there be given a theory of the
corresponding free fields with generators Hy, qu, Mo, K, satisfying CPG. The
generators are expressed in terms of the Schroedinger fields (&), ¥(Z) and
their conjugates 7(&), 7(Z) for which the usual commutation relations are pos-
tulated, see Eq. (2.2) in sect. 2. We look for such nonlocal interaction additions
to these generators that CPG would be still satisfiied. The usual form of the
theory is assumed (which Dirac called the “instant form”) where interaction
terms are added only to Hy and I?O: Hy—>H=Hy+V, ffo K= ffo + N.
The interactions V and N are sought as functions of the Schroedinger fields.
We need not to consider any nonlocal interaction Lagrangian corresponding
to V and N (e.g., cf. the paper (Pauli, 1953) which starts with a nonlocal
Lagrangian). Note that the conservation of energy and momenta is ensured in
view of the corresponding CPG containing H, e.g., [H , 13] =0 etc.

It will be shown in sect. 4 that the problem posed above has solutions: A
simple example of relativistic nonlocal QFT will be given. However, it has
divergencies.

Let us add one more requirement to the nonlocal theory sought for: it must
be free of divergencies and have a local limit. Such a theory may be used as
one possible way for regularization of the corresponding local theory. Note
that this way does not need additional (compensative) fields.

The most akin to this work are papers (Kita, 1966, 1968). The main
difference is that Kita considered models which have no local limits, e.g., the
Lee model.

Some necessary conditions for the existence of a relativistic nonlocal theory
are obtained here, see Conclusion. I suppose they are noteworthy enough to
justify their detailed derivations in sect. 4.

Remark that the paper deals only with the algebraic aspects of QFT: only
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commutation relations for fields are needed to calculate CPG, we do not need to
introduce any space of quantum states in which fields would be operators. Here
fields are considered as elements of a noncommutative algebra with involution
1 (which corresponds to the Hermitian adjoint in operator representations).
Sometimes it is difficult to avoid using the word “operator”, but everywhere
it means “algebraic element”.

2. THREELINEAR INTERACTIONS OF
CHARGED AND NEUTRAL SCALAR
FIELDS

The free part Hy = [ d*zHy(Z) of the total Hamiltonian of the charged v and
neutral ¢ scalar fields has the density (e.g., see (Wentzel, 1949), § 6 and § 8)

Ho(@) = 5[r°@) + V(@) Vo(@) + u?e*(#)]

+ [r@rM@) + Vol @) - Vo(@) + m* (@(@)] . (21)

N | =

The usual commutatots of the fields are postulated, e.g., nonzero commu-
tators are

W@, @) =is@-9). (2:2)

Here 7 and 7 are conjugated to ¢ and v respectively. Usually, one considers
the threelinear local interaction

Vi=g [ dap@v!@u@). (2.3)

Its nonlocal generalization may be taken in the form

V= [dn [ay [ @G5 90@v @) . (2.4)

It will be shown in sect. 4 that the theory with such V can be relativistic
only if it is local: W(&,#,2) ~ §(& — §)6(Z — Z). In order to find nonlocal
relativistic theories I shall consider additional interactions. The consideration
can be decisively simplified if one takes a restricted class of such interactions.
Namely, we require that the following conditions are satisfied: a) interactions
must be Hermitian, i.e. V = V', b) they must conserve the total charge Q;
they must be invariant under c) the charge conjugation C; d) time and space
inversions 7" and 1.



The requirement b) means that interactions must commute with Q

Q=i [ da [r@w@ - T @ (@) ,

see (Wentzel, 1949) ch. II, § 8. One can directly verify that Q commutes with
the following bilinear combinations of charged fields

V@@, @), @vE), VHTE), (2.5)

or their superpositions like [d3y [d*2A(7, 2)y!(§)v(Z) with any c-number
function A(7, 2).
The charge conjugation C' can be defined by the following equations:

CyC~t = eyt CYIC—t =i,
CrtCt = n,r; CrC~t =nirt; (2.6)
CoCt=g; CnCt=nm;

[n.| = 1; e.g., see (Schweber, 1961), Eq. (7.335).
One can construct from (2.5) three C-invariant combinations: ¥(¢)y(2) +

b(H)Y1(Z) or

[ &y [ @229 @e) (2.7)

(here ¥, must be a symmetric function ¥y(7, 2) = ¥,(Z, 7)),
[ &y [EL@ o 0r @, TEH=TED, @8
[ &y [ @242 [r@w@ + '@ @], (2.9)

A being any c-number function of ¢, 7.

Multiplying (2.7)-(2.9) by neutral fields ¢ or 7, one may construct threelin-
ear combinations which conserve charge and are C-invariant. However, some
of them are not invariant under time inversion 7T":

To(Z)T~! = noo() ; Tr(Z)T~ = —nom(2);
TY@E@)T' = mp(Z); TYH DT = ot (E) ; (2.10)
Tr(&)T~! = —n*1(Z); TrH@T ! = —nrt(3).

Here |no| = [n] = 1 and T is antilinear so that, e.g., TipT~! = —nyip; see
(Bjorken, Drell, 1965) ch. 15. We let 7y = 1 and retain only those threelinear
interactions which do not change the sign under T-inversion (omitting, e.g.,
t
mTy).
Finally. we get the following most general threelinear interaction satisfying
the above requirements a) — d)

v=[ds [y [ @ {965 90@v @) (2.11)
+ T(Z,4, )@ (@(2) + T(E, 7, 2)7 (@) [F(@$(2) + ' (D7 @]} -
3



The c-number coefficients ¥ and T must be symmetric in the sense
qj(f’ g’ 2‘) = q’(f7 2‘7@')7 T(f?g; 2) =T(1—:7 275’)’ (2'12)

see (2.7) and (2.8); V is hermitian if ¥, T, TI are real functions.
I do not dwell on invariance under space rotation. It holds if ¥, T, IT are
even functions, e.g.,

V(Z,7,2) =9 (-%,-Z, 7). (2.13)

However, the property follows from V invariance under space translations and
rotations, see the next sectlon

The interaction terms N entering into the boost generators K = K, + N,

= [ d®xZHy(Z) (see Introduction) are taken in the form analogous to (2. 11)

/dsgt:/d3y/dSZ{\Iljcpilf’w+TJ'<,07'TJr
+ Wrlrp+yirt]},  j=1,23. (2.14)

Here the functions W/, T7 are symmetric in the sense (2.12).

In the “instant form” the generators of space translations P and rotations
M are the same as in the free theory without interactions and, therefore, the
CPG

hold. In the remaining sections 3, 4 and 5, we consﬂder CPG which include
H=Hy+V and K = Ky + N.

3. POINCARE COMMUTATORS LINEARLY
DEPENDENT ON H AND K

Let us consider the commutators of H and K with the (free) generators P = P,
and M Mo

[H, P =0; [H, M| =0; (3.1)
[V, PI| =i, H; [a?, N| =ieiN*, ij,k=1,2,3.  (3.2)
Using H = Hy + V and K= I?o + N and CPG for free generators
[Ho, P| =0; [Ho, M) = 0; (3.3)
(NG, P| = idiHos  [M', K} = ieuKCE (3.4)
one can rewrite (3.1) and (3.2) in terms of V and N:

v.P]=0; [, M) =o0; (3.5)
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[N, PI| =isyV;  [M,N'] = ey N*. (3.6)

Eqgs. (3.5) mean that V must be invariant under space translations and

rotations. Therefore, the functions ¥, T, II in Eq. (2.11) must depend only

upon differences of their arguments, i.e., upon £ — 7§ = 7, F — 7 = § and,
moreover, upon rotation invariants r2, s2, (7- 3):

U(Z,,2) =V (% (F8), F=i-7, §=8—-% (3.7)

(analogously for T and II). As ¥ and T are symmetric under the permutation
¥ <> Z, they are symmetric under r? <+ s2.

The second Eq. (3.6) means that N', N2, N® make up a three-vector. It
follows that the functions ¥%, 7% II’ in Eq. (2.14) must be components of
three-vectors constructed from their vector arguments Z, ¢, 7.

The first Eq. (3.6) needs a more thorough consideration. However, at first
let us make a decisive simplification. The purpose of this paper is restricted:
we do not strive to find all nonlocal versions of the model under consideration;
we merely want to give some examples of such versions. It turns out that the
examples still exist if IT in Eq. (2.11) and I in Eq. (2.14) are forced to be zero.

Returning to the first Eq. (3.6) we calculate the commutator [N?, P7] letting
Il = 0. We use the commutators

[0(@), PT] = —idp/0z;,  [w(@), PT] = —idy/oa;

and analogous ones for other fields «, ¢, 7, 7t (see Eqs. (2.2) and expressions
for P7 given in (Wentzel, 1949), ch. 2). Carrying in [N?, P/|—id;;V derivations
from fields to the functions ¥, T* (integration by parts), we obtain

[N, P] — bV =
, o oY Qv }
=ifes [y [ e {504 54 B el vamiue

Oy;
or: o1t  oT"
helnll 7 YL s — tAl
[0$j+3yj+c’)zj ‘%T] (@) (@)r (z>} 0. (3.8)

A tedious general solution of Eq. (3.8) will not be presented because in the
next section we obtain simple expressions (4.7) and (4.8) following from other
CPG. They turn into zero the square brackets in Eq. (3.8) and, therefore, the
first equation (3.6) does hold.

4. POINCARE COMMUTATORS NONLINE-
AR IN H AND K: THREELINEAR TERMS

Let us consider the remaining CPG which are nonlinear in H and K
[K7, H] =iP7, [Ki,Kj] = —ieM*, 0,5, k=1,2,3. (4.1)
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Using (4.1) and CPG for free parts Hy and K, of H and K one obtaines
the following equations for V and N

[N, Ho| + [K&, V] + [N, V] =0; (4.2)
[, M| + [N, &3] + [N', N7] = 0. (4.3)

Remember that V and NV are supposed to be of the form given by Eqs. (2.11)
and (2.14) which I call threelinear in fields. Then, the first two terms in the
Lh.s. of Egs. (4.2), (4.3) are also threelinear, while the last ones are fourlinear.
Therefore, the sum of the first two and the latter must vanish separately.

Indeed, consider multiple commutators of the fields with the Lh.s. of (4.2)
or (4.3) of the kind that will be used below in subsect. 4.1, but fourfold ones,
e.g., [, [, [¢,[7, (4.2)]]]]. They turn into zero the first two terms of (4.2) and
(4.3) and turn the last ones into c-number. As the Lh.s. of (4.2) and (4.3) are
zero, so are these c-numbers and, therefore, the last terms must vanish. Then,
the sum of the first two must also vanish separately.

4.1. Let us seek for V and N which would cancel threelinear terms in L.h.s.
of Eq. (4.2)

K8, V] ~ [Ho, M) = /d%{xj [Ho(#), V] — [Ho(#), N]} . (1.4)
This would mean the finding of some necessary conditions for the fulfilment of
(4.1). They may be insufficient ones because the fourlinear terms in (4.2) also
must vanish.

The calculation of the commutators in (4.4) are straightforward though
tedious. The encounting commutators of the kind

[a%j(p(f)’ n(j‘)] =i08(Z — 7)) dx;

follow from (2.2). Integrations by parts are used, e.g.,

300 .0 -
3! N—4(z' — F) = — 7
N, = 0%/02% + 97 )0z} + 0*/0x2 (4.5)

as well as changes of variables which numerate (are arguments of) fields. The
result is

(54, V] — [Ho, 7] = —i / &z / &y / i { [% — W] (@) (7)0(2)
+ [y = U+ 9T/02; + 25 (D, = m?) T = (B, —m?) T (4.6)
x(@) (1@ (@) + '@ @) + [2,7 - T 7@)r@)r!(2)} .
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It is evident that the r.h.s. of Eq. (4.6) vanishes if c-number multiples
of mpty, ¢ (Tz/) +1[}"TT) and 777! vanish. Let us show that the inverse is

also true: if (4.6) vanishes then the square brackets in (4.6) vanish separately.
Indeed, the threefold commutator

[r(2), [7' ), (@), 7-h.5.(4.6)]]

is equal to multiple of 73’ in (4.6), i.e. to the first square bracket in (4.6)
(it is symmetric under ¥ <> Z). Analogously (¢!, [, [r, (4.6)]]] is equal to
the multiple of 777'7"r Unlike these commutators the multiple commutator
[7(2), [ (), [7 (& ) (4.6)]]] is equal to the second square bracket written in
(4.6) whereas [2/)( ), [7(y), [x(z'), (4.6)]]] is equal to this bracket with inter-
changed ¥ and 2.

So using algebraic tools only, we get from Eq. (4.2) the following equations
for the c-number functions ¥, U4, T, T9:

V(& 9, 2) — V(Z,9,2) =0, (4.7)
z;T(Z,7,2) - TV(Z,7,7) =0, (4.8)
y ¥ =W + 2 (B, = m?) T = (8, —m?) T9 =0, (4.9)
70 =W 4y, (8 —m?) T = (&, —m?) TP =0, (4.10)

These equations must hold for all Z, ¢, Z and j = 1,2, 3.

4.2. In an analogous manner one can obtain equations for ¥, ¥/, T, TV
resulting from vanishing of the threelinear terms in Eq. (4.3). One can show
that the terms vanish if Eqs. (4.7)-(4.10) hold. So in what follows we may
consider the latter ones only.

4.3. Substituting the solutions ¥/ = ;¥ and T = z;T of Egs. (4.7), (4.8)
into Egs. (4.9)-(4.10), one obtains

—r; ¥ = 8T/0z; — 5; (b, —m*) T =0, (4.11)

—s5; ¥ — 0T /dy; —r; (B, —m?) T =0. (4.12)

Here r; = z; — y;, s; = 7; — z;. Remind that ¥ and T are functions of # and
§, see sect. 3, and, therefore,

0T /0zj = —0T/0s;;  OT/dy; = —0T/dr;;
AT =N0NT; ANT=A,T.

Here A is Laplacian, see Eq. (4.5).



Eqgs. (4.11) and (4.12) are partial derivative equations of the second order.
In the momentum representation they turn into simpler equations of the first
order. To obtain the latter, multiply the Lh.s. of Egs. (4.11), (4.12) by exp i(5"-
7+ ¢ - §) and integrate over 7, 5. Denoting

¥(5,q) = /d3r/d3s\Il(r",§’)expi(ﬁ- P q3) (4.13)
and using the equation of the kind
/d3 /d383J(A — mA)T(7,3) expi(F- 7+ q- )
= —z———[ ¢ —m?T(p,q) =i [2qJT+ (> +m )BT/an] , (4.14)
one obtains
0V /dp; — q;T — (¢ + m»)OT/dg; =0, Vp,G, j=1,2,3; (4.15)

8@/6(]] - p]‘j:' - (p2 + m2)8T/8pj =0. (416)

It follows from Eq. (3.7) that (5, §) = ¥ (p?, ¢?,7q). Let us use arguments

€ = VP> +m? and ¢, = /¢ + m? instead of p? and ¢? and denote ¢ = - .
Then, Egs. (4.15) turn into

7 (ia@ /e, — ega:f/at) + (j’(@\il Jot —T + quT/Ocq) =0. (4.17)

Eqgs. (4.16) turn into equations (4.17t) which are Eqs. (4.17) with transposed
p and ¢.
From Eqgs. (4.17) we obtain two equations

ela\i/ JOe, — COT /0t = 0; 0/t — T — e 0T /9e, = 0, (4.18)
P

using vector (outer) products x at first by 7 and then by ¢ (' is supposed to
be not parallel to ¢ so that 7 x ¢ # 0).

From transposed Eq. (4.17t) one obtaines Eq. (4.18) where ¢, and ¢, are
transposed

0 /0e, ~ SOT/0t =03 9%/0t — T — 0T 0, = 0. (4.19)
q

So we have reduced the starting Eqgs. (4.7)-(4.10) to the system (4.18)
and (4.19) of partial derivative equations of the first order for the c-number
functions. Their general solution is obtained in Appendix A:

V(5,q) = — filepeg — 5+ @) + falepeq + 7+ @), (4.20)
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T(5,d) = : eyt + 7+ @) + falpe + 7+ D) - (4.21)

Here f; and f, are arbitrary functions of their arguments. Let us discuss some
particular cases of the solution.

4.4. Let the interaction V be given by Eq. (2.4), i.e., ¥ # 0, T = 0. The
solution (4.21) can be zero at all €, €, (7 §) if

filw=t)+ folw+1) =0, w=¢, ¢, t=p-¢ (4.22)

for all values of w, ¢. This is a functional equation. Consider the set of w,
t values which satisfy w — ¢ = const. For such w, ¢ values f; in (4.11) is a
constant C, while the argument w + ¢ of the function f; does vary. However,
(4.22) states that f, is nevertheless equal to the constant —C. Then, f; is
equal to —C' at all w, t. So ¥ = —f, + f, = —2C is constant and its Fourier
prototype ¥ (see Eq. (4.13)) is proportional to the product §(Z — §)d(z — 2)

V() ~ [ dp [ @20 exp(—i) (77475 ~ 6. (4.29)

This result may be formulated as a “no-go theorem”: The relativistic non-
local theory does not exist if the interaction is of the kind [ [ Wity only,
i.e., there is no admixture of other interactions.

The conclusion can be derived immediately from Eqs. (4.7)-(4.10): if T = 0,
then Eqs. (4.9) and (4.10) turn into equations (y;—z;)¥ = 0 and (z;—z;)¥ = 0.
Their nonzero solution is ¥(Z, ¥, 2) ~ 6(Z — §)6(Z — 2).

Let us stress that in this particular case not only the threelinear parts of
(4.2), (4.3) vanish but also the remaining fourlinear ones because

(@)W (@) (2), o(@)e' (y) ()] = 0.

So the obtained particular solution 7 = 0, ¥ = constant turns out to be not
only a necessary condition, but also a sufficient one in order that the obtained
local theory be relativistic.

4.5. Let ¥ = T # 0. The restriction ¥ = —fi + fo = 0 leads to
H=fh=C. Then = 2C/eyeq. This solution can be obtained more simply
from Eqs. (4.18) and (4.19) where ¥ is put equal to zero. The corresponding

d (
Fourier prototype T(a? ¥, Z) is not local. The interactions are

VTz///TgoTTT; N =///Tj<p7'7'T; T7 = a,T. (4.24)

As in the previous case, the fourlinear terms in Egs. (4.2) and (4.3) vanish.
So we get a simple example of the relativistic QF'T which is nonlocal. Moreover,

9



the relativistic local theory does not exist if interaction terms are of the kind
(4.24).

Let us show that in this case the theory has the same divergencies as in the
previous local case. For this purpose, use the well-known expansions of ¢, 7
¢, 715 41, 7 in the creation-destruction operators g, g'; a, b'; at, b, respectively
(e.g. see (Wentzel, 1949), ch. 2). Then, the interaction V/, glven by Eq. (2.11)
with IT = 0 can be represented as follows:

V= (m)? /dSk/dgp/daqé(E—ﬁ+ ) (wrepeq) (g5 + ')
[Via (B, Dafag + Via @, )alp! 5 + Var (7, Dbpag + Vaa (5, -1 ] |
(4.25)

V(P ) = Vo (5, @) = \I’( —q) + prqT(p’ —q) = 2fa(epeqg — 9+ Q)
‘/12(])7 d) ‘/21(17,@ \II( (j) - €p€q (p7 (T) - _2f1(6p64 +p (j)
(4.26)

_ Equation (4.13) has been used. We see that in both the cases ¥ = const,
T =0and ¥ =0, T = const/eye, all coefficients V,,, are constants.
Now let us consider the cases when f; and f, are not constants.

4.6. We sce immediately that the allowed solution (g, ¢) cannot depend
on p only (or on ¢ only): it must depend on both 7 and § by means of the
combinations e,e, + 5’ ¢. So does T. This means that theories with nonlocal
interactions of the kind

[ [¥@-2e@vi@u@ + [ [16 - 2e@r @) (4.27)

cannot be relativistic.

4.7. 1t is possible to choose such particular solutions f; and f, that diver-
gencies will be suppressed and the local interaction (2.3) will emerge in a limit.
Indeed, put for example

fi=—-Cexp [—(epeq—ﬁ'-q)/Mz], fa= Cexp[ (epeq+ﬁ-tj)/M2].

(4.28)

Here M denotes a cutoff parameter. Then
¥ = 2C exp (—epeq/MQ) cosh(p- q)/M?, (4.29)
epegT = —2C exp (—epeq/MQ) sinh(p"- )/ M?. (4.30)
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When |p] — oo or |q] — co we have a cutoff which is able to eliminate any
of the known divergencies. In the limit M — co ¥ tends to a constant while
T vanishes, i.e., the interaction S I Yoty tends to the local one (2.3) while
] Terrt tends to zero.

However, the problem of canceling the fourlinear parts of (4.2) and (4.3)
arises in this example. This will be outlined in the next section.

5. POINCARE COMMUTATORS NONLIN-
EAR IN H AND K BEYOND THREELIN-
EAR TERMS

Let us calculate the commutator [N7, V] entering into Eq. (4.2) using V and
N7 found in the previous section. We obtain

NV, V]= — i / &z / &’ / &y / &P2Fy(3, 7, 7, 2) () p(a)

x [r(@y(@) + '@ ()], (5.1)
Fi(7, 4,7, 7) / dPu(@) — 2;)[U(F, @, A)T(7, §, ) — V(& @, 2)T(%, 7, 7).
(5.2)

The commutator [N7, V] vanishes if F; = 0; F; does vanish evidently in the
particular cases when either T or ¥ are zero. It can be shown that there are no
other cases when F; = 0. Taking the omitted terms with IT and 1 into account
seems to help the trouble of nonvanishing [N7, V] in no way. Following (Kita,
1966, 1968), one may suggest the following schematic approach to provide the
fulfilment of the commutators (4.1).

Let threelinear interactions V and N7 be proportional to a coupling con-
stant g. In what follows denote them by gV and gNJ. Let us add fourlinear
interactions ~ g2 so that

V=gVs+¢Vi, N =gNj+gNj. (5.3)
Then, we obtain
(K7, H) = iP7 = g {[K3, Vi) + [N}, Hy)}
9* {[K3, Vi) + [N{, Ho) + (4, Vi) } (5.4)
+9° {[N4, Vil + [N, Val} + g*[], Vi)

(analogously for the second commutator in (4.1)). The interactions ¢V} and

g2Nj are to cancel the terms ~ g in (5.4). For this purpose, the commutators
[Kg, Vi] + [N], Ho] in the r.hs. of Eq. (5.4) must contain the terms pp(Th +
Yi7t), see Eq. (5.1). To provide this, V; and NJ must contain

eoyly,  perrt, mp(ryl +yirh). (5.5)
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But then some excess undesired terms of the kind wpytep, morrt will appear in
(K3, V4] + [N], Hy). For their compensation one should add to (5.5) the terms
amiptep and 7r7rTTJf. As the result, all the terms ~ g? in the r.h.s. of Eq. (5.4)
must vanish. The terms of the order g3 and g* also must vanish. For their
canceling one ought to add in the r.h.s. of Eq. (5.3) fivelinear, sixlinear, etc.
interactions.

Let us note one consequence of this approach. Suppose one wants to cal-
culate an effect of the order ¢g* using the described nonlocal theory. Then, one
must take into account not only the threelinear interaction gVs but also the
interaction g2V, constructed as sketched above.

6. CONCLUSION

The commutation relations of the Poincaré group have been considered for

interacting neutral ¢ and charged v fields. It has been proved that if their

interactions are of the kind [[[ (&, 7, 2)¢(Z)y!(#)vy(Z), then the theory can

be relativistic in the Dirac sense in the case of the local interaction only:
(7,7, 2) ~ 6(Z — )3(Z — 2).

If the interaction is of the kind [[[T(Z,7, 2)p(Z)7(§)71(2), (T being the
conjugate to ), the theory is shown to be relativistic only if T is a nonlocal
function of Z, , Z. However, this case has the same divergencies as the previous
local one.

Some necessary conditions for the existence of the relativistic nonlocal the-
ory without divergencies has been obtained. First of all, interactions must
be superpositions of terms including, in particular, Uity and Tprrt . The
obtained conditions do not specify the explicit forms of the corresponding
formfactors ¥(5,§) and T(5,q) or f1(F,§) and fo(7,q), see Eqs. (4.13), (4.20),
(4.21). However, fi(p,q) and fo(7,q) are to depend only on specific combina-
tions of f, ¢, namely on I4(p,q) = v/p?> + m2V/g> + m2 F (- §). The combi-
nations are relativistic invariants constructed from four-vectors (v/p? + m?2, p)
and (V% +m?,q) or (V@ + m?, —q).

A specific example of cutting off formfactorm is given in subsect. 4.7. Its
particular property is that the corresponding nonlocal theory turns into the
usual local one (with ¥ = const, T = 0) when a cutoff parameter tends to
infinity. This example shows that this nonlocal theory can be used as a way
of relativistic regularization of the local one.
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APPENDIX A: GENERAL SOLUTION OF
EQS. (4.18), (4.19)

Let us consider the pair of second equations in Eqs. (4.18) and (4.19). Their
difference gives

€,0T [9eq — €,0T |de, = 0. (A.1)
The corresponding system of ordinary differential equations (Forsyth, 1959) is
deq/eq = —dep/€p. 1t has the integral e,¢, = const. So the solution T'(e,, €, 1)

of Eq. (A.1) is an arbitrary function of the variables €p - € and ¢.
From the pair of first equations in Eqs. (4.18) and (4.19) one obtains

€0V /0¢, — €,00/de, = 0, (A.2)
ie., the same equation as (A.1). Its general solution is an arbitrary function
U(ep - €g,t) of €, - €4 and ¢. ) )

Let us denote w = €,¢, and substitute T'(w,t) and ¥(w,t) in the starting
Eqgs. (4.18), (4.19). Then, Egs. (4.19) turn out to coincide with Egs. (4.18)
and we get a system of two equations for ¥(w,t) and T'(w, t):

00 /0w — wdT /0t =0, V)8t —T — wdT /0w =0. (A.3)

Differentiate the first equation of the system over ¢ and the second one over

w. The difference of the resulting equations turns out to be the equation for
T only, but of the second order

wd*T/0t? = 20T | 0w + wd*T /0w . (A.4)

Without loss of generality let us introduce a new unknown function f in-
stead of T: T' = w™'f. Then, Eq. (A.4) turns into 8%f/9t2 — 02f/w? = 0. This
simplest hyperbolic equation is known to have the general solution of the form

f=hHw-1)+ falw+1),

where f; and f, are independent arbitrary functions of their arguments w — ¢
and w + t, respectively. Substituting

T(ep,eq, t) =[filw=1) + fo(w +1)]/w, W = €p€q (A.5)
into Eqgs. (A.3), we get
OU/ow+ fi— fr=0, dV/dt—(fl+f)=0. (A.6)

Here f],(2) = df12/dx. Bach of these two equations is an ordinary differential
equation. In the first one, ¢ may be considered as a parameter and its general
solution is

F(w,t) = /w dw' [~ (W' — ) + fow + )] + O(t)

/ Y [~0fJu! + fs)w] + C(t) (A7)

—filw—=1t)+ falw+t) +C(1),
13



where C(t) is an arbitrary function of ¢. Substituting (A.7) into the second
equation (A.6) one obtains dC(t)/dt = 0, i.e., C(t) does not depend on ¢, is
an arbitrary constant. So

U(ep, €q,t) = —frlepeq — t) + falepeg +1) + C. (A.8)

The constant C may be included into arbitrary functions f; and f, and,
therefore, C is omitted in Egs. (4.20), (4.21).
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IIupoxos M.H. E2-2001-241
O pensTUBUCTCKOM HENOKaJbHOM KBaHTOBOH TEOpUH IO

Teopus HasbIBaeTCs PEATHBUCTCKOHM, €CNIM €€ IaMHIbTOHHAH, ITOJIHBIH HUM-
HybC, MOMEHT M T€HepaTopsl 6YCTOB YAOBIETBOPSIOT KOMMYTaLMOHHBIM COOTHO-
weHuaM rpynmnst [lyankape. HM3BeCTHO, YTO TEOPHH ¢ OOBIYHBIMH JIOKQJIBHBIMH
B3aUMOZEHCTBHAMY SABIAIOTCA pensTUBUCTCKUMU. HaiineH mpoctoii nmpumep pens-
THBHCTCKOH HEJIOKAIBHON TEOPHH, B KOTOPOH, ONHAKO, HMEIOTCA PacXOOUMOCTH.
IMonyyeHsl HEKOTOpbIE HEOOXOMMMBIE YCIIOBHMS CYLIECTBOBAHHS PEIATHBUCTCKOM
HEJIOK&IPHOH TEOpHH 6e3 pacXxOmXHMOCTeH.

Pa6ota Beinonnena B Jlaboparopuu Teopernyeckoit ¢pusuku uM. H.H.Boroo-
6osa OMAN.
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Shirokov M.I. E2-2001-241
On Relativistic Nonlocal Quantum Field Theory

A theory is defined to be relativistic if its Hamiltonian, total momenta
and boost’s generators satisfy commutation relations of the Poincaré group. Field
theories with usual local interactions are known to be relativistic. A simple exam-
ple of a relativistic nonlocal theory is found. However, it has divergences. Some
conditions are obtained which are necessary in order that a nonlocal theory be rela-
tivistic and divergenceless.
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