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Z-scaling in the inclusive particle production

Motivation : Search for universal phenomenological description
of particle production cross sections at high energies.

The approach is based on the principles of : locality, self-similarity,
and fractality of hadronic interactions.

1. Locality principle : Gross features of the single particle
distributions for the reaction

My + My, - my+ X
can be expressed in terms of the constituent interaction
(x1 M7) + (za M) — my + (1M + 2o My + mg)
subjected to the condition
(21 Py + o Py — q)2 = (21 My + 2o My + m2)2.
2. Self-similarity principle : Dropping of certain quantities

out of the physical picture of the interactions. We search for the

solution
1 do

N Oinel dz

Y(z) =

which depends on a single scaling variable z. The scaling function
v is expressed via the invariant differential cross section Ed’c /dg?®
and the average multiplicity density dN/dn of particles produced
in the reaction as follows
b(z) = msA1 Az J‘lEdSJ_
[dN/d’l’]]O’inel dq3

The symbol J stands for the corresponding Jacobian.



3. Fractality principle :
The scaling variable z is a fractal measure

z = zoeﬂs

representing formation length of particles produced in the con-
stituent interactions. It depends on the anomalous (fractal) dimen-
sion of the particle trajectory é and tends to infinity with increasing
resolution e 1. Here

ez, 29) = (1 — 1)1 (1 — z9)?

1s the relative uncertainty with which one can single out the binary
subprocess from the system of two colliding nuclei. In the single
nucleon interaction regime, the quantity

6($1,$2> = (1 — fl/Al)Al(l - 52‘2/142)142 ~ (1 — 3_31)(1 - 11_32)

is approximated in terms of the momentum fractions z; = A;z;
of the interacting nuclei expressed in units of nucleon mass. This
is no longer valid for cumulative processes with Z; > 1, which
correspond to the joining of partons from different nucleons of nu-
clei. The region is interesting for study of fractality at small scales.
Here we focus on small distances under the condition that simul-
taneously still larger amount of energy is deposited in it.

Structure of the momentum fractions z; and z, :

The fractions are defined in a way to minimize the resolution ¢!

with respect to the constituent interactions in which the inclusive
particle my can be produced. The form of the momentum fractions

Ty = A1+ X1, T2 = A2 + X2
corresponds to the symbolic notation
(>\1 + Xl) + ()\2 + Xz) — ()\1 + )\2) + (Xl + Xz)

of the underlying subprocess.



The symbols indicate

(P2q) + Mamy
(PLPy) — MMy’

(Prq) + Mymy
(PPy) — MMy’

xi =yl +wi—w,  x2= w3+ wi+ ws.

The factors p; and w; are given by

A = Ay =

1— A1) 1a(1=29)
2 a)\Z( 1 : 2 — 1)\2 ,
:ul (1 . )\2) :u2 (1 . Al)
(a—1) A2 . (@—1) X2
o = _
' 2 (1=Xy) 2T 2 (1=

where
0.5(m3 — m?)

(P Py) — MMy
The parameter a=4d;/8; = A2/ A; is ratio of the anomalous (frac-
tal) dimensions of the interacting (hadrons or) nuclei. The finite

A = A1Ag + Ay, Ao =

part of the scaling variable

~1/2
o S | kin
20 = —F

mp(s)

'§i_/k2m = §}\/2 + §§</2 —my — (lel + m2M2 + m2)7

§/\ = ()\IPI + /\2P2)2, '§X = (lel + X2P2)2

is characterized by transverse kinetic energy of the underlying sub-
process. The m is nucleon mass and the factor p(s) = dn(0)/dn is
the multiplicity density of particles produced in the central region
of the corresponding NN interaction. The my is used in connec-
tion with internal conservation laws (isospin, strangeness, etc.).
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The z-scaling regularity is illustrated in the figures. The energy
and angular independence of the scaling function is contrasted with
the differential cross sections as demonstrated above.

Fractality and particle formation

Using the concept of z scaling we aim at grasping the universal
principles that influence the hadronic interactions with large mo-
mentum transfer at high energies. The scaling construction is based
on hadron interaction self-similarity at constituent level. Its sub-
stantial element is idea of the fractality of the hadron and nucleus
constituents and their interactions. This means that structure of
the objects and the underlying processes are assumed to posses the
properties of fractals. Fractal character in the initial state regards
parton (quark and gluon) composition of the colliding hadrons and
nuclei. Fragmentation of the point-like partons into the observable
hadrons in the final state is considered to be a fractal process char-
acterized by the scaling function 1 (z). It refers to construction of a
complex fractal (dressed constituent quark, hadron) from the more
elementary fractal blocks. In this sense, the fractality of hadronic
interactions is assumed to possess the universal character.



One of the main characteristic of fractals is the divergence of their
measures in terms of the increasing resolution. The divergence is
characterized by the fractal anomalous dimension §.
Ilustration : The von Koch curve with the fractal measure

Ze = ZoEDT_D

representing its length.

Zy

T

n-th approximation is composed of p™ segments, each of the length
z0q~". The curve has the length

w=2np/q" p=4 q¢=3.
This can be rewritten to the form
2, = Zo(q—n)l—lnp/l'nq’
which gives Dr =1, D =Inp/Inq, e = ¢, and
0=D—Dr>0.
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Fractal objects and fractal space-time

There exists suggestions that universal properties of the mat-
ter and its interactions are attributed to the structure of space-
time itself. In the theory of relativity both special and general, it
concerns the Lorentz transformation and the curvature of the tra-
jectories. Free particles are moving along smooth geodesical lines,
characteristic for the classical (curved) space-time. The situation
changes at scales typical for the quantum world of the elementary
particles. Common property is the unpredictability of motion at
small distances. In this region particles follow irregular trajectories
becoming non-differentiable with increasing resolution. The geom-
etry of motion lines can be attributed to the properties of fractals
which are extremely irregular objects fragmented at all scales. As
an example one can mention quantum-mechanical path of a parti-
cle in the sense of Feynman trajectories. It was Feynman who first
discovered the fractal character of the trajectories. Their fractal
dimension

D=14+6=2

is a direct consequence of the Heisenberg uncertainty relation.

Essential hypothesis concerning the universality of the assump-
tions is expressed in the statement: Presence of the interacting
fractal objects deforms the structure of surrounding space at
small distances. As a consequence, space-time becomes locally
fractal with geodesical lines acquiring an extremely irregular
scale-dependent shape. The secondary partons, produced in frac-
tal space-time at small scales, follow extremely irregular geodesics
starting from the regions they have been created. Formation of a
particle from the bare parton realizes along a fractal-like trajectory
characterized by its length.



Addressed questions:

¢ possibility of erratic nature of the particle motion

¢ increasing length of the trajectory with increasing
resolution — superluminal propagation of energy
along fractal-like geodesics

e where are the masses from? ‘dressing’ of a parti-
cle - changing its mass with the resolution

It is possible if one assumes space-time to be fractal at small scales.
In such space-time particle is reduced to and identified with its own
fractal-like trajectory. The rest mass mg being itself a geometrical
fractal structure of the particle’s trajectory.

The reflection invariance and scale-motion relativity

For any resolution €71, fractal space-time F' can be approximated
by a Riemann space R, defined within a differentiable geometry.
The family of the Riemann spaces is characterized by metric ten-
sors with fluctuating curvatures. The fluctuations increase with
decreasing scale breaking the reflection invariance at small dis-
tances. We show that even in this case, the Lorentz invariance need
not to be violated locally. Let us consider the relativistic boost in
141 dimensions.

(i) Linearity of the relativistic transformation is expressed by

' =y(u)[z —ut], t =y([Al)t— Blu)z].
(ii) Group structure of the transformations requires
1

V1+ 2au — u?’
and results in the composition law for the velocities
v+ u+ 2au
B 1+w’
(iii) breaking of the reflection invariance - non-zero values of a.

A(u)=1+42au, B(u)=u, (u)=
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Space-time asymmetry in 3+1 dimensions

We search for linear and homogeneous transformations with
group properties required by the principle of relativity. The pa-
rameter of the group is the velocity « of a system S’ in the S
reference frame. We introduce the notations

1 (1+dad)yy—1
g:

T J+d@-a@)? — (1 +a2)u?’ u? ’
a’ = d-@ and u? = @-u. We also define
v = gu? £ @, g+ = (1 +a*) £ ga-i.

It can be shown that the transformations

T =7—dy(t+adz)— gu-,
t'=t+ [y (t+az)— g,

comply the requirements. The inverse relations
E=2 +ud[y{t' +a-z)+gu-7],
t=t'+[y_(t'+a-a)+g_u7

are obtained by the interchange & «+» &', t <> t', 4 < ', and by
the substitution

o a
C142a-d
The formula connects the velocity ' of the system S in the S’
frame with the velocity & of the system S’ in the S reference sys-
tem. Because of the asymmetry @, the magnitudes of the two
velocities are not equal. The transformation formulae in 1+1 di-

mensions are recovered for @ = (u,0,0) and d = (a,0,0).



In the 4-vector notation z* = {&,t}, the transformations can be
rewritten as follows

z' = D(u)z,

D) = Oij +guiv; —yu;a; —yu;
—g+ujtyia;  14ys )

The transformation matrix has the form

where
A,(@) = ( Vv 1+a%d;; 0) A(ﬁ) _ ( i+ 90035 —’)’oﬁi)
* a; 1)’ —%8; Yo )’
1 Yo — 1 d u
= — p— = 1 2 .
Yo \/I—_—ﬁga 490 ﬁ2 3 /B +a 1+ a-i

The group composition is given by
Q(¢)D(5) = D(F)D(@), Qu(4) = A, R(¢)A,,

provided

The matrix

o P .
R(qs):(R(;J‘f), G xq

describes the Thomas precession. Region of the accessible values
of velocities is given by the ellipsoid

(v — a)? + (1+a?)v? = (1+a?).

The focus of the ellipsoid is in the point ¥ = 0. The ellipsoid is in-
variant with respect to the above transformations of the velocities.

10



The relativistic transformations preserve the invariant
t? — &+ 237 — (@ x 2’ =77

which corresponds to the metrics

. —d;; a; 2
a= ( a]-J 1 ) , dm’ = (1—{-0, )57571‘ — a;a;.

Energy and momentum

The position and momentum of a particle in the 4-space are
given by z# = {&;t} and p* = {]3, E}, respectively. Let us de-
fine an ‘elementary’ particle as an object which reveals no internal
structure at any resolution considered. We comprehend the notion
of elementarity as a relative concept which relies on the scales we
are dealing with. For the infinite resolution it should be a perfect
point whose trajectory is a fractal curve. For an arbitrary small
but still finite resolution ! the perfect point is approximated by a
particle which we call ‘elementary’ with respect to this resolution.
It 1s therefore natural to assume that the concepts of the momen-
tum, energy, mass and the velocity of the ‘elementary’ particle
have good physical meaning also at the scales where space-time is
expected to break down its isotropy.

The 4-momentum of such a particle should comply the relation
given by the metrics of space-time in which the particle is situated.
The relation is characterized by the space-time asymmetry a:

p? = a,,p'p” = E* - P>12EG P — ((’i><]3)2 =m}.

How do the variables P and E depend on the particle velocity?
How do the variables transform?

11



First, we introduce the mechanical variables 7# = {#, 7y}
which transform as follows

= DT(ﬁ)W.

The 7# have properties of the 4-momentum of a particle with the
space component oriented in the direction of the asymmetry a@. The
general form of the 4-momentum is defined in the way to preserve
the same metric invariant as the coordinates and time. There exists

two sets of the variables p# = {]5;, E}, s = L, R defined by

6@']‘ :|:€i]‘kak 0 )

m = A (d)ps, A d)= ( 0 ]

which comply the requirement. The plus (minus) sign corresponds
to s=L (s=R), respectively.
4-momentum p# with s = L - left-handed motion.
4-momentum p# with s = R - right-handed motion.
Explicitly:
7= P +Pxa B T Eaxw+(d-w)d
1+ a?

1

I

It is convenient to introduce the variables U's, s=LR

b

. 0.5 a1 (a0,
U, =i Fixd,  id=-—1 +(@-U)a
1+ a?

Using the notations G = g/(1+a?) and Gy = g1 /(1+a?), we get

p{s‘ = A(ﬁs )ps 3
where

A(ﬁ)— 6ij+GUU;—G_a;U; GU%a;—G L U;
- —U; I+74 '
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The transformation matrix can be written in the way

-

A(U,) = A (@)A(B)Ap (),

where

A ((_l,) _ 1 (5ijj:5ijkak —a;
PR V1 + a2 0 Vi+a? )’
The group composition is given by

BGAV) = AVAD), () = A,/ R($) Ay,

provided B
V' + Uy +Ga@ V' + GU-V|

V= q 1
1+~ +GU2E-V'+G_U-V

The 4-vectors z# and p# have mutually different transformation
properties for @ # 0. The transformations preserve the same met-
ric form DT(ﬁ)dD({[) = AT((}:)&A(U) =a. This implies the depen-
dence of the energy (positive energy solution) on the momentum
as follows

E=+V1+a2€ —aP, &=yP?+ M

E > 0 for arbitrary @ and P. 1t has a minimum
My
V1+a?

The energy includes, a priori, the potential energy contained in

Py=Mya@, E(B)=DM, M=

the scale structure involved. The structure is already present even
in the rest frame of the particle; the rest mass mgy being itself a
geometrical fractal structure of the particle trajectory. The par-
ticle is identified with its own trajectory, which is the fractal-like
trajectory of a point-like ‘elementary’ object moving chaotically

with the momentum P and having the mass (minimum energy)
MO = Emz'n~

13



The 4—m0mentum Conservation
mg = G (p1 + p2)(p1 + p2)” = mi +m3 + 2a,,pip}

gives E=F\+Ey, P=P,+ B, and £ = £, + &,.
The form invariant relation between p# and ¥ reads

P, = MG+ (142d-0)d) F M(txd), s=L,R
E=(1+av)M.

The inertial mass depends on the velocity as follows :

M = Myy(v), v(7) = \/ 1

(1+ad)? — (Lta2)?
Particle trajectory is defined by the form invariant equation
tE — %P, 7 @-(fxP,) +23-ZE = 7M.
Its solution is &£ = vt, t = 7, where
P,+ P,xd—aE
1+ a? '

M7y =

We conjecture that the vector asymmetry a@ is special case of a
‘field of the space-time asymmetry’ assumed at small scales. In
our approximation, the ‘field’ implies the commutation relation

:|:€i' 2a —ZCLZ'
AILUAE - AIUAPS = ( SR ) .

QCL]‘ 0

The space-time asymmetries are caused by the vacuum fluctua-
tions. The fluctuations possess erratic character which influences
both metrics of space-time and motion of the elementary particles.
The aim of the scale-motion relativity is to give a new approach to
the quantum mechanics in which quantum behaviour would result
from space-time structure at small scales.

14



The assumptions about stochastic and scale dependent nature of
the space-time asymmetry d@ give

¢ possibility of fractal-like motion of particles with
respect to their momenta

e possibility of superluminous propagation of en-
ergy along fractal-like trajectories

e generation of particle masses in dependence on
the character of the space-time fluctuations

Interactions of asymmetric fractal objects

The natural question arises whether one can organize a region
in which stochastic character of the space-time asymmetries could
be somehow oriented. We argue that such region can be created
in the interactions of hadrons and nuclei. This concerns high en-
ergies where the objects reveal fractal composition in terms of the
parton content involved. One can imagine that the chaoticity of
the space-time anisotropy can be oriented and space-time ‘polar-
ized’ by the interactions of fractals possessing mutually different
anomalous dimensions. We denote the asymmetry corresponding
to the ‘polarized’ region by & = (0,0,a). The energy of the recoil
particle in the constituent interaction is expressed as follows

9F
$=X1+Xz=Vw%+u%+\/w%+u%—(w1—wz)-

This gives

V1 +a2)(0¢ +x3) — axe = Jwi + p + i + 1 — (w1 — wy),

where

2P, P, 2M, M, 2 2 2
. = = y = = s {\/i = P .
X V5 Epa V5 B L=+

15




It follows from the conservation of the energy and momentum that

JA+a2) (2 +x2) = Jwi + 1 + b + 43,
ax, = wp — Wa.

The P and E are connected by the relation expressed in the way

2 2
( Xz —a) +(1+a2)<X7L> =1+a?
X1+ X2

X1+ X2
where
Ezﬁxz Xz ML:[tEX _ XL
E 2B x1+x2 E 2B xi1+x2

This altogether gives the solution

Xz = M1 — M2, XL = 2¢/H1pe,

with the asymmetry
a= a())‘c’

where

a—1 )\1)\2
= —— Ae = A <1,
=/ (1= )1 — ) =
a - induced asymmetry of space-time.
A heuristic estimate for 400 GeV/c pA data: a < 0.09 + 0.13.
Collisions of asymmetric fractal objects (a # 1) result in creation
of a domain in which the isotropy of space-time is violated. The

induced asymmetry of space-time is due to the richer parton con-
tent of one fractal with respect to the other one. It is expressed
by mutually different anomalous dimensions d; of the interacting
fractals (e.g. hadrons and nuclei).

16



We identify the induced asymmetry with the space component
of four velocity

1%
ViV

The velocity can be expressed in the form

a.

v=_2"0 =g/,
representing the ‘velocity of space-time drift’ induced by the in-
teraction of the parton fractals. The quantity represents no real
motion but characterizes local polarization of the vacuum. It sat-

isfies the scale-relativity composition rule

Vi + Vs

y=2
1+ V1V,

provided a = ayas.
Exploiting the experimentally established relation d4 = AJ, we

get
Ay Az A

Al Ay Ay
This is the natural scaling property consisting in the following: If
one examines the nucleus A3 with a probe Az, and then the probe
nucleus A, with another probe A; one arrives at similar fractal
structure as if examining the nucleus A3 with the probe A;.

17



Summary

e The z-scaling represents an observed regularity for the inclu-
sive particle production in hadronic interactions with large mo-
mentum transfer at high energies. The scaling variable z is
the formation length of particles and has character of a fractal
measure. The scaling function (z) is probability density to
form a particle with the formation length z. The existence
of the z-scaling is confirmation of the hadron interaction self-
similarity, locality, and fractality at the constituent level.

e Fractality of hadrons, nuclei and their interactions is univer-
sal property connected with fractal structure of space-time at
small scales. A formalism concerning local relativistic trans-
formations of the coordinates and momenta of a particle in
space-time with vector asymmetry @ was elaborated. The re-
lations between the 4-momentum and velocity of the particle
in space-time with the asymmetry @ were obtained.

e Increase of stochasticity of the asymmetry @ with decreasing
scales would result in erratic fractal-like motion of particles
with respect to their momenta. This implies change of the
rest mass M in dependence on the value of @ and possibility
of motion with superluminal velocities along fractal-like tra-
jectories. Anisotropy of space-time induced in the interaction
depends on the ratio of the anomalous fractal dimensions of
the objects (hadrons and nuclei) colliding at high energies.

e The anomalous fractal dimensions § for single hadrons and jets
are found to be different. The experiment gives § ~ 0.8 for
charged particles (pions) and 6 ~ 1 for the production of jets.
Change of these values can be considered as a possible signal
of new physics.
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360oposcku H. u ap. E2-2001-41
Z-CKeHMHT, (PpaKTATBHOCTh U MPHHLIKIT OTHOCHTEIBHOCTH
IpH PENSTHUBUCTCKUX CTOJMKHOBEHHSX aJipOHOB H SOep

OO6cyxmaeTcs CBA3b NMOHSATHA MIMHBI (DOPMHPOBAHHS YaCTHULBI, POXIEHHOH
[pH PEIATHBHCTCKUX CTOJIKHOBEHHAX aJPOHOB H SIEp, C TAKMMHU (pyHHaMEHTaNb-
HBIMH IpHHIUIAMH (PU3HKH, KaK JIOKATBHOCTB, (PPAKTAIBHOCTL U camMonomobue.
OHa MMpOSIBIAETCH B CYIIECTBOBAHUHU Z-CKEHIHMHIA, HOBOM 3aKOHOMEPHOCTH, OTpa-
Xalolled CBOHCTBA MOBENCHUS HHKITIO3UBHBIX AM((epeHUHANBHbIX CEeUeHUil po-
XKIEHHsS] YaCTHL] MPH BBICOKMX 3Heprusix. CKeWsIMHIoBas MepeMeHHasl z OTpaxaer
CBOWMCTBO JUTHHBI GOPMUPOBAHHS BJIEMEHTAPHON YAaCTHILIbI KaK (hpakTalbHON MEPBL.
O6cyXpaercs HPUMEHUMOCTb TIPHHIMIIA OTHOCHTENIBHOCTH I AHU30TPOITHOTO
HPOCTPaHCTBA-BpeMeHH. IlomydeHsl penaTHBHCTCKHE NMpeoOpa3oBaHHd KMHEMAaTH-
YECKHX IEePEMCHHBIX (HMMITYJIbCa, KOOPAUHATHI, CKOPOCTH) B aHH3OTPOITHOM IIPO-
crpancTBe. [IpUBOIITCA ApTYMEHTH B TIONB3Y TOTO, YTO TaKas aHM3OTPOINHA IIO-
SBMSETCA NPU B3aUMOIEHCTBUU alpOHOB H SAEp.

Pabora soionneHa B Jlaboparopuu Beicokux sHepruid OMSH.

IMpenpunt O6BeIMHEHHOrO HHCTHTYTA AIepHBIX HcclenoBanud. Hy6Ha, 2001

Zborovsky 1. et al. E2-2001-41
Z-Scaling, Fractality and Principle of Relativity
in Relativistic Collisions of Hadrons and Nuclei

The formation length of particles produced in the relativistic collisions
of hadrons and nuclei has relevance to the fundamental principles of physics
at small interaction distances. The relation is phenomenologically expressed
by a z-scaling observed in the differential cross sections for the inclusive reactions
at high energies. The scaling variable reflects the length of the elementary particle
trajectories in terms of a fractal measure. Characterizing the fractal approach, we
demonstrate the relativity principle in space-time with broken isotropy. We derive
relativistic transformations accounting for the asymmetry of space-time induced
in the interactions by various parton fractal structures of hadrons and nuclei.

The investigation has been performed at the Laboratory of High Energies,
JINR.
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