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1. INTRODUCTION

Interest in the form factor Tr(q?, ¢2) for the transition processes v*(q1)v(g2) —
P(p) and v*(q1)7*(g2) = P(p), where the final state mesons with the momentum
p are, respectively, P = 7%, 7, 7, and ¢ and ¢, are photon momenta, has again
increased recently. Recent data on the form factors Tp for small virtuality of one
of the photons, g2 ~ 0, with the virtuality of the other photon being scanned up to
8, 22, 30 GeV?, correspondingly, becomes available from CLEO [1] Collaboration.
Theoretically, at zero virtualities, the form factor Tp (0,0) is related to the axial
anomaly. At asymptotically large photon virtualities, its behaviour is predicted by
perturbative QCD (pQCD) [2, 3] and depends crucially on the internal meson dy-
namics which is parameterized by a nonperturbative distribution amplitude (DA),
@5 (z), with z being a fraction of the meson momentum, p, carried by a quark.

In the following, it is convenient to parameterize the photon virtualities as ¢; =
—(1+w)Q?%/2 and g3 = —(1 — w)Q?*/2, where Q? and w are, respectively, the total
virtuality of the photons and the asymmetry in their distribution:

Q*=—(?+¢) >0, and w=(q—a)/(d+a%) 1)

The experimental data from CLEO [1] for the process v*y — P (Jw| = 1) can be
fitted by a monopole form factor:

2 _ 2 2 _ ___gp
Te(q} = -Q% ¢ =0)|;, = HQ;—'Y/;P;’ 2)
Gryy = 0.27 GeV™Y, gy = 0.26 GeV™!, gy =2 0.34 GeV,

tr =~ 0.78 GeV, p, ~0.77 GeV, py ~0.86 GeV,

where gp~, are the two-photon meson decay constants. In the lowest order of pQCD,
the light-cone Operator Product Expansion (OPE) predicts the high @* behaviour
of the form factor as follows [2,4]:

TP(q%’qg”Q?-)oo = Jp (UJ) g—I;" +0 (e{ﬂ_i) +0 (éli) ) (3)

with the asymptotic coefficient given by

1) =3 [ gt @ @

‘where fp is a weak pseudoscalar meson decay constant, defined through the well
know PCAC relation. For the pion, fr = 93 MeV (for the definition of the other
constants see Sect. 2). The leading-twist meson light-cone DA is normalized by
fol dz pf(z) = 1. Since the meson DA reflects the internal nonperturbative meson
dynamics, the prediction of the value of Jp (w) is rather a nontrivial task, and its
accurate measurement would provide quite valuable information.
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It is important to note that, for the considered transition process, the leading
asymptotic term of pQCD expansion (3) is not suppressed by the strong coupling
constant c;. Hence, the pQCD prediction (3) may become reasonable at the highest
of the presently accessible momenta @? ~ 10 GeV2. At asymptotically high Q?, the
DA evolves to pa™¥™(z) = 6z(1 — z) and Jp*™™ (lw| = 1) = 2. The fit of CLEO
data for the pion corresponds to JSVEC (Jw| &~ 1) ~ 1.6, indicating that already at
moderately high momenta this value is not too far from its asymptotic limit.

However, since the pQCD evolution of DA reaches the asymptotic regime very
slowly, its exact form at moderately high Q? may not coincide with ORI (),
At lower Q?, the power corrections to the form factor become important. Thus, to
study the behaviour of the transition form factor at experimentally accessible Q?
is the subject of nonperturbative dynamics, where the same as in (3) type of the
leading high @? behaviour was obtained by different methods. So, the theoretical
determination of the transition form factor is still challenging, and it is desirable
to perform direct calculations of Tr(g?, ¢2) without a priori assumptions about the
shape of the meson DA.

The transition form factor in the symmetric kinematics, ¢ = ¢, (w = 0) at
high virtualities, is in accordance with the norm of a wave function (see (4)), and
is thus trivial. In the other extreme limit, where one photon is almost real (w = 1),
the asymptotic coefficient is proportional to fol % o4 (z) and thus is very sensitive
to a detailed form of the DA. Therefore, much more detailed information about
the nonperturbative QCD vacuum is necessary to have control over the operator
expansion.

In ref. [5], some progress was achieved by using a refined technique based on
the OPE with nonlocal condensates [6], which is equivalent to the inclusion of the
whole series of power corrections. By means of the QCD sum rules with nonlocal
condensates, it was shown that this approach works in almost the whole kinematic
region |w| < 1, and that for high values of the asymmetry parameter |w| 2 0.8
the pion transition form factor is very sensitive to the nonlocal structure of the
QCD vacuum. The latter is characterized by the average quark virtuality in the
vacuum [6], A2, and, within the instanton model (7], may be expressed through the
average instanton size, p., as A2 ~ 2p;? [8,9]. In [10], the form factor y*y — 0
was directly calculated from a QCD sum rule for the three-point function, leading
to the estimate Jqcpsr (w = 1) & 1.6£0.3. A similar result was obtained within the
quark model with nonlocality induced by instantons [11], where the factorization
expression for the form factor was derived and the DA was expressed in terms of a
nonlocal quark-pion vertex.

Chiral models of the quark dynamics, based on the strong interaction sym-
metries, have many attractive features, as this approach is consistent with the
low-energy theorems. In particular, the Abelian axial anomaly is w1th1n this ap-
proach, and the standard result for T;0(0,0) = gro4y = (472 fx)~" is reproduced
exactly. Within this nonperturbative model of quark-meson interaction, both the
small mass and the composite structure of a light pseudoscalar meson are realisti-



cally described. Furthermore, the intrinsic nonlocal structure of the model may be
motivated by fundamental QCD processes like the instanton and gluon exchanges.

In this paper, within a covariant nonlocal low-energy model of the quark-meson
interaction, we study the high Q? behaviour of the meson transition form factor
4*y* — P in the general kinematics. We show that the asymptotic coefficient Jp (w)
depends on the kinematics of the transition process and on the internal meson
dynamics induced by the nonlocal structure of the QCD vacuum. The dynamic
dependence of Jp is governed by the parameter M, /A, where M, is the constituent
quark mass, and A is the UV regulator. When considering the model dependence of
the asymptotic coefficient Jp, experimental data can be very useful to distinguish
between different assumptions, made on the nonperturbative dynamics of the QCD
vacuum. Within the nonlocal quark-meson model, the expression for the asymptotic
coefficient Jp is found in the whole kinematic region of w. Moreover, from this
dependence, the pseudoscalar meson DA is reconstructed in terms of the quark-
meson vertex function.

The structure of the paper is following. In Sect. 2, two models of quark-meson
interaction are described: the Nambu-Jona-Lasinio model and the model where the
quark-meson interaction is induced by instantons. In Sect. 3, we describe the tran-
sition 7y — P process and calculate its asymptotic for high Q*. A relation between
the DA of meson and the vertex function describing the quark-meson interaction
is also obtained. The meson DA amplitudes are calculated in Sect. 4. There, the
model results are compared with the experimental data from CLEO. In the last
section, we give a brief discussion of the obtained results.

2. EFFECTIVE QUARK-MESON MODELS.

The effective quark-meson dynamics can be summarized in the covariant nonlo-
cal action given by

Sint = —/d"xd“y F [:z+y/2,z—y/2;A‘2]

3
xG(z + y/2) i¥5(9rze Z A7 (2) + GnugeMuTh (%) + Gnageshs(2)] a(z — y/2), (5)
a=1

where )\, are the Gell-Mann matrices, Ay = (V2Xo+As)/V3, As = (—Ao+v/2X8)/V3.
The dynamic vertex F [z + y/2, z — y/2; A=?] with the nonlocality size A~ depends
on the coordinates of the quark and antiquark; g(z), 7(z), m(z), and ns(z) are,
respectively, the quark, pion, and 7, and 7, pure u and 3s pseudoscalar meson
states.

The fields 7, and 7, in (5) are not physical because they are subject to singlet-
octet mixing:

ncos(fp — ) — 7' sin(6p — 6), (6)
nsin(fy — ) + 1’ cos(fp — 6), ‘ (7)

s
Th
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where 6 = —19° is the singlet-octet mixing angle, and 6p &~ 35.5° is the ideal mixing
angle [12,13], and 7, 7’ are physical meson fields.
In the following calculations, we restrict ourselves to the approximation (see,
e.g. [14])
Flz+y/2,z—y/% A% = F(y%,A72), (8)

where the dynamic quark-meson vertex depends only on the relative coordinate
of the quark and antiquark squared, y2, with the dependence of the vertex on
angular variable (yz) neglected. The Fourier transform of the vertex function in
the Minkowski space is defined as F(k%A%) = [d'yF(y% A~?)exp(—iky) with
normalization F(0; A?) =1, and we assume that it rapidly decreases in the Euclid-
ean region (k> = —k% = —u). We also approximate the momentum-dependent
quark self-energy in the quark propagator S~(k) = % — M by a constant quark
mass [14] and neglect meson mass effects. Here, M is a diagonal 3 x 3 flavour ma-
trix, M = diag(M,, Mg, M;), M, = My. We have to note that the approximations
used here are not fully consistent. Further, as we show below, the choice of the
model for the quark-meson vertex (8), depending only on the relative coordinate,
induces a certain artifact in the z behaviour of the DA. However, these deficiencies
of the chosen approximation are not essential for the present purpose and do not
lead to large numeric errors.

The quark-meson interaction is described by the coupling constants grgq, 9nuges
and gy,g- Let us consider their definition in the NJL and instanton induced qua,rk—
meson (IQM) models.

NJL model. In the NJL model, the quark-meson coupling constants (see [12])
are defined as follows:

9rgq = mugq = Gu,  9nsdg = s» 9)

where we introduced g, and gs for convenience,

-2 = /duF —uyXg (l-fu)z’ (a=u,s), (10)

In (10), we have rescaled the integration variable by the quark mass squared. In
the NJL model, the vertex function F'(—u;x;!) is chosen in the form of the step
function:

F(_u; Xa_,l) = 0(1 - Xau)1 (11)
where we introduced the parameters x, = M2/A%. As one can see, the introduction
of the vertex function of this specific form is equivalent to implementing an ultra-
violet cut-off in quark-loop integrals in the standard NJL model.

The UV cut-off parameter A characterizes the size of the SBCS domain. For
the distances larger then A=, SBCS takes place. The Compton length of a quark
or a meson should be greater then this length. Given the values of A and M,, one



can estimate x,. Let us say some words about these parameters. The values of
A and M, are fixed by two conditions [12,13]: i) the Goldberger-Treiman relation
M, = grgofr D and ii) the p-meson decay constant g, whose value 6.1 is well known
from experiment. The mass of the strange quark is fixed by the kaon mass. In [12],
the A = 1.05 GeV, M, = 234 MeV, and M; = 467 MeV were obtained 2. This
corresponds to the quark condensate (gq) = —(250 MeV)3. Therefore, one can see
that the parameters x, are small: x, = 0.05 and xs = 0.2.

Instanton-induced quark-meson model (IQM). In the constant quark mass
approximation to IQM that we use here, the quark-meson coupling is given by the
compositeness condition [14] in the form

N, 1 (8 + 2u)u 2u)u
2= . —U, X ) 12
and the meson weak decay constants fr = fy,, and f; are expressed by
Ncgo
= M, F(
fo= yo / du F(—u; x; )(1 wed (13)

Within the instanton vacuum model, the size of nonlocality of the nonperturbative
gluon field, p, ~ A~1, is much smaller than the quark Compton length M !; thus, x,
are small parameters [7] as well as in the NJL model. The parameter X, character-
izes the diluteness of the instanton vacuum. We have to note that in the exact IQM
the Goldberger-Treiman relation and other low energy theorems are fulfilled [9].
Within the constant quark mass approximation to IQM, the low-energy relation
following from the Adler - Bell - Jackiw (ABJ) axial anomaly [frgry, = 1/(47%)] is
well reproduced numerically with a relative error smaller than 10% [14]. In the for-
mal limit of a very dilute vacuum medium x, < 1, the results of this approximation
are consistent with the ABJ anomaly and the Goldberger-Treiman relation.

For the IQM estimates, we take the vertex function in the Gaussian form, like
in [11]:

F(K* A?) = exp(k*/A%), (14)
and parameters A2 = 0.55 + 0.05 GeV? and M, = 275 + 25 MeV. This choice of
parameters correspond to the average quark virtuality A2 = 0.65 & 0.05 GeV?, and
quark condensate (gg) = — (205 + 15 MeV)®.

)This relation is naturally reproduced in the IQM [9] and NJL [12] models from the m — v,
decay amplitude.

2)Here we use the parameters that had been obtained with the 7 — A;-transition not taken into
account.



3. MESON TRANSITION v*y* — P FORM FACTOR AT MODERATELY
HIGH Q2

Let us consider the contribution to the y*y* — P invariant amplitude as calcu-
lated from the triangle diagrams (see Fig. 1):
M (v* (q1,€1) 7" (g2, €2) = P (D)) = Mpyy (a1, €1; G2, €2) + Mpyy (g2, €25 01,€1)  (15)
where e;(i = 1,2) are the photon polarization vectors, and
N, d*k
mP77(¢11761;(I27 62) = _?chqq/ (2 )4 (k2 A2)
xtr{i1sS(k — p/2)éxS[k — (a1 — ¢2)/2]é1S(k + p/2)}
1
= 5Tp(47, 43)€uvpo el €50105 - (16)

If the tensor €,,,0€i€5qtq3 is factorized from this amplitude, the form factor can be
expressed as

g
TP(Q%ng) = %MGIP’Y’Y((ﬁv q%’pz), (17)
where M, = M, for P =7 or P = 5, and M, = M; for P = n;. The Feynman
integral Ip,,(q?,¢3,p?) is given by

Ipy (@, 43,9%) = (18)
_/dflc_ ﬁ‘(k2;A2)
~Jin? [M2 — (k +p/2)? —ie][M2 — (k — p/2)? — ie][M2 — (k — (1 — g2)/2) — ie]

Let us note that integral (18) is similar in its structure to the integral arising in
the lowest order of pQCD, treating the quark-photon interaction perturbatively. In
the latter case, its asymptotic behaviour is due to the subprocess 7*(g1) +7*(g2) =
d(Zp) + q(zp) with z (Z) being the fraction of the meson momentum p carried by
the quark produced at the g; (g2) photon vertex. The relevant diagram is similar
to the handbag diagram for hard exclusive processes, with the main difference that
one should use, as a nonperturbative input, a quark-meson vertex instead of the
meson DA. As we see below, this similarity allows one to translate the form of the
quark-meson vertex into a specific shape of the meson DA.

Let us now estimate the asymptotics of the transition form factor. To this end,
we rewrite the expression for integral (18) in the form that is obtained after rotating
to the Euclidean space [k2 — —u, —idk — n2udu, F(k% A%) = F(—u;A?)], by
using the Feynman a—parameterization for the denominators and integrating over
the angular variables. Then, the corresponding integral Ip,, is given by

® duuF(—u; A?)

IP’Y’Y(qfv qg, P2) = )
M} +u-5

1 1
/‘““ NG (S r IV = (Y= | K
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where

v = qu+u+%aQ2 - }1 (1-20)p?% af=2u@®(atw(l-a))—(1-2a)up’

(20)
In this way, the expression (19) can be safely analyzed in the asymptotic limit of
high total virtuality of the photons @? — occ. Moreover, the integral over o can be
taken analytically, leading, in the chiral limit m, = 0, to the asymptotic expression
given by (3), where (see [11])

o=t { [ BB ]

Np—l/ duy———22 72 1+’X)“)

a=uif P=m,n, and a=sif P =1, (22)

’

The 5 and 7' mesons appear as mixed 7, and 7 states (see (7)), and for them, one
has:

Jop(w) = 1 Jp, (W) + €2 Iy, (w), (23)
Iy (W) = 3 Iy, (W) + €4 Ip,(w), (24)

where the coefficients c; are:

€= —fﬂsm(G -0) = _V2fs cos(Bp — 6)
3fy 3fa (25)
c3 3;11 cos(fp—0) ca= \;?fs sin(6p — 6),
7'
and the constants f, and f;y are defined as
fn = g— fusin(fy —6) — —\g—i fscos(By — 6) (26)
fr = gfu cos(fo — ) + gfs sin(f — 6). (27)

Here, the constants f, and fs are calculated using (13).

From (21) it is clear, that the prediction of the nonperturbative approach to
the asymptotic coefficient is rather sensitive to x,, the product of the value of the
constituent mass M, and the size of nonlocality A~" of the vertex F'(z? A~?) and to
the relative distribution of the total virtuality among photons, w. In particular, for
the off-shell process 7v*y* — 7 in the kinematic case of symmetric distribution of
photon virtualities, g2 = g3 — —oo (w — 0), the result J (Jw| = 0) = 4/3 obtained
from (21) is in agreement with the OPE prediction.
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Let us note, that we use an approximation to the model with constant con-
stituent quark masses for all three quark lines in the diagrams of the process (see
Fig. 1). However, the asymptotic result (21) is independent of the mass parameter
in the quark propagator with hard momentum flow, as it should be. The other two
quark lines remain soft during the process; thus, the mass parameter M, can be con-
sidered as given on a certain characteristic soft scale in the momentum-dependent
case M, (\2). It means that the dynamic and kinematic dependence of Jpnp (w)
found in (21) will be unchanged, even if one includes the momentum dependence
of the quark mass and considers the dressed quark-photon vertex which goes into
the bare one, v#, as one of the squared quark momenta becomes infinite.

Both the expressions for Jp derived within the nonlocal quark-meson model (21)
and from the light-cone OPE (4) can be put into the common form

9 1
Jp (w) = @—/0 déRp(§) In [1 i—?‘:] (28)
with
R () = - o (5 and Rnay(® = o (25557 ) 72 ©9)

where 0<¢é=(22-1)<1

and similar expressions for —1 < ¢ < 0. Equating both contributions, we find the
meson DA in terms of the vertex function on a certain low-energy scale pi ~ A? [11]

A - ! dy = ( -y . —1>
SOP(.'I:) NP |2z_1| 1 — yF 1 — y7 Xa * (30)
Thus, we show that (21) obtained within the nonlocal quark-meson model is equiva-
lent to the standard lowest-order pQCD result (4), with the only difference that the
nonperturbative information accumulated in the meson DA @#(z) is represented by
the quark-meson vertex function F(—u;x;").

To compare our results with CLEQO data, one needs to investigate the asymptotic
- @? — oo behaviour of the following magnitude:

Tr(w) = lim Q*Tr(ql,q), (31)
Q%00

using the leading term in the asymptotic expression (3) expressed through the
asymptotic coefficient Jp (see (4)), where the meson DA are calculated from (30)
in a certain model of the quark-meson interaction.

We have to note that an explicit form of the asymptotic coefficient (21) and the
relation between the DA and the vertex function depend on the model of quark-
meson interaction (5). In particular, the expression (30) is obtained within the
approximation (8), when the quark-meson vertex depends only on.the relative co-
ordinate. This approximation results in the artificial dependence of DA on the



modulo function of z and leads to the nonsmooth behaviour of the distribution at
z = 1/2. These peculiarities disappear if the angular dependence of the vertex
motivated by, e.g., the instanton model is recovered .

4. THE MESON DISTRIBUTION AMPLITUDES AND NUMERICAL
PREDICTIONS OF THE TRANSITION FORM FACTORS AT MODERATELY
HIGH Q2.

The quark-meson interaction in the Nambu-Jona-Lasinio model [12] is described
by the vertices like (5). The only difference from IQM is that the vertex function
F(—u,x;') is taken in the form of the step function: F(—u,x;") = 6(1 — uxa)-
One just have to calculate the integral (18) with the vertex function F(—u,x;')
thus chosen. Formally, the integral (18) is convergent, and the UV cut-off is not
necessary here, however, the extracting of its asymptotic behavior at large Q* would
lead to logarithmic dependence ~ In Q?/Q?, which is not expected, as it is known
from QCD. Therefore, the UV cut-off in the NJL model should be treated not only
as a trick to make the integrals convergent, but also as a way to take into account
the non-trivial nonlocal vacuum structure.

Let us note also that all calculations are performed in the chiral limit (zeroth
meson masses). An on-mass-shell calculation entails problems with unphysical gq
thresholds for the 7/-meson 4.

Within the NJL model, one can easily obtain from (30) analytical expressions
for two special DA describing the distribution of u(s)- and s-quarks, respectively,

¥4 (z) = 2z -1 <& (32)
|2£C - 1l > €u
where the constant &, is defined as follows:
A2
§u = A ME (33)
2z - 1| <& (34)
|2.’L‘ - 1] > &

3)In [9], emerging of a similar cusp for the pion distribution function and its disappearance, if
the angular dependence in the vertex is taken into account, were demonstrated.

4 Authors already have a model describing the meson spectrum, where unphysical quark-
antiquark thresholds are eliminated [17]. However, this model in not quite consistent with the
calculation of transition form factors.



AZ

= N 35
b= Y (35)
For the pion, 77, and 1’ mesons, one has:
(,01.-(1?) = QOu(il'), (36)
en(z) = c1pu(2) + caps(z), (37)
ep(z) = c50u() + caps(z), (38)

where the coeflicients ¢; are defined in (25). The DA calculated in the NJL and
IQM models are plotted in Figs. 2-5.

Now we compare our results for the case w =1 (y*y — P) with those given by
CLEO collaboration [1]. In the NJL model, we have 7(1) ~ 0.197 GeV, T,(1) =~
0.19 GeV, and Ty (1) =~ 0.26 GeV. The IQM predicts 7(1) =~ 0.16 GeV, T,(1) ~
0.17 GeV, and Ty (1) =~ 0.23 GeV. CLEO collaboration gives 7,(1) = 0.17 0.3
GeV at Q% = 7.0 — 9.0 GeV?, T,(1) ~ 0.16 GeV at Q? ~ 22 GeV?, T, (1) = 0.25
GeV at Q% ~ 30 GeV2.

5. DISCUSSION AND CONCLUSIONS.

Within the two covariant nonlocal models under consideration that describe
the quark-meson dynamics, we obtained the v*y* — P transition form factor at
moderately high momentum transfers squared, where the perturbative QCD evo-
lution does not yet reach the asymptotic regime. From the model calculations,
it is possible to find the normalization coefficient at the leading Q=2 term. The
asymptotic normalization coefficient Jp(w) , given in (21), depends on the ratio
of the constituent quark mass on a certain soft scale to the characteristic size of
QCD vacuum fluctuations (or the UV cut-off) A and also on the kinematics of the
process. When considering the dependence of the asymptotic coeflicient on the in-
ternal dynamics, the CLEO data are consistent with a small value of the diluteness
parameter, which confirms the hypothesis about the small density of the instanton
liquid vacuum [7] or approximate locality of the quark-meson interaction in NJL.
From the comparison of the kinematic dependence of the asymptotic coefficient
of the transition pion form factor, given by pQCD and the nonperturbative mod-
els (IQM and NJL), the relation (30) between the meson distribution amplitude
and the dynamical quark-meson vertex function is derived. In the specific case of
symmetric kinematics (¢? = ¢2), our result agrees with the one obtained by OPE.

We obtained explicit expressions for the DA of pion, 7, and 1’ meson. Comparing
with CLEO data has shown that the model in the chiral limit (massless pseudoscalar
mesons) is in satisfactory agreement with experiment. However, we would like to
make some notes regarding the definition of f, and f;y used by authors of [1].
In [1], fp are obtained from the tabulated data on the decays P — 7, using the
low-energy limit of the process amplitude:

Tp(0,0) ~ 1/(4n*fp) (39)
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(see (6) in [1]). This works well for the pion, but the case of the 7 and 7' mesons
is rather different because of the singlet-octet mixing. The quark-meson model
calculation gives for fp defined by (39) in the limit Q% — 0 the following:

©) 5.y, V2, -
I 3 fitsin(6p — 0) — =5 f5 " cos(6o — 6) (40)
-1
f,Sf)) [g ftcos(6p — 6) + —\g—gf;l sin(fy — 0)] . (41)

We marked these constants by the superscript (0) to distinguish them from those
defined in (26) and (27). In the limit Q? — oo, one should expect:

lelm Q2TP(Q27 1) = 2fP7 (42)

where fp are not the same as f,(,o) as one can see from comparing (26) and (27) with
(40) and (41). That is why the CLEO fit noticeably disagrees with the limit 2f,
(see (5) in [1]) drawn in Fig. 23 [1]. Therefore, it is not correct to use the equation
(7) in [1] to perform a fit. From our calculation, we see that, taking into account
the singlet-octet mixing, one can avoid the discrepancy in the description of the
Pryy interaction both in the low and high @2.

The results presented in our paper are in accordance with the conclusions made
in [5, 10, 18] within the QCD sum rules. A more complete analysis of the light
pseudo-scalar meson transition form factors will be done later, where effects of the
finite hadron masses, nonlocality of the quark-photon vertex, m — A, transitions etc.
will be considered. It is of interest also to consider the transition form factors on a
wide energy scale, including not only the small and large Q? but also intermediate.

The work is supported by RFBR Grants 00-02-17190 and 01-02-16431 and by
Grant INTAS-2000-366.
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AMITIMTYIBI pacnpefeseHus MCeBIOCKAISIPHBIX ME30HOB
Ha CBETOBOM KOHYCE B KMPAIbHOM KBapKOBOM MOIEIH

UB)xU (3) kupanbHad KBapKOBas MOIENb HCIIONB30BAHA I BBIYUCIEHUS aMIUTMTYH
pacrpesie/ieHus n-, M- U 1-Me30HOB. UTOObI HAMTH 5T aMIUTUTY/bI PaclpeneieH s, paccMo-
TPeHa acUMNTOTHKa hopmdakTopa epexona ICeBIOCKANSIPHBIX Me30HOB (P) 11 IpoLeccoB
Y'Y »>Puy*y" — P npu GonblUMX NPOCTPAaHCTBEHHOMONOOHBIX (hOTOHHBIX HMIyNbcax. Io-

Ka3aHO, YTO B aCHMMIITOTHYECKOM PEXHMME MPOMCXOOUT (haKTOpH3auus GONBLIMX U MasibIX
paccrosuuil. Koadumentnas ¢pynkuus naercs CTaHIapTHBIM BBIDaXEHHEM epTypOaTUB-
Ho#t KX]I, a muHaMuKa GOMNbLIMX PacCCTOSHUI COCPENOTOYEHA B aMIUIMTYAAX PacIIpenesieHys.
B paMkax ucmosnb3yeMoit Moziesu BUA BOJTHOBOI (PyHKIIMM 3aBHCHUT OT OTHOLUEHMS [TapaMeTpa
YO perynapusauuu A K KOHCTHTYEHTHOM Macce KBapKa. IToka3aHo, YTO pe3y/bTaTsl KHpallb-
HOi KBapPKOBOM MoIenu G/TM3KM K BBIYUCIICHHUAM B MOJE/IM HHCTAHTOHHOTO Bakyyma. YucrneH-
Hble NPeICKa3saHhs KUPaIbHON KBapKOBOM MOJENH UIS aCHMITOTHK NCEBIOCKAISIPHBIX (hop-
M(aKTOPOB st 1IpoLEeccoB y *y — P G/M3KM K naHHbM Kosnab6opauuu CLEO.

Pa6ora BemonHena B JlaGoparopuu Teopernyeckoit ¢usuku um. H.H.BoromoGosa
OMSIH.

Ipenpunt O6bEAMHEHHOIO HHCTUTYTA SOEPHBIX McciegoBanuit. JyGHa, 2001

Dorokhov A.E., Volkov M.K., Yudichev V.L. E4-2001-162
Light Cone Distribution Amplitudes of Pseudoscalar Mesons
within the Chiral Quark Model

A U (3)xU (3) chiral quark model is used to calculate the light cone distribution ampli-
tudes of the m, n, and n" mesons. To find these distribution amplitudes, the asymptotics
of the transition pseudoscalar meson (P) form factor for the processesy "y - P andy *y* =P
at large space-like photon momenta were considered. It is shown that in the asymptotic
regime a factorization of large and small distances occurs. The coefficient function is given
by the standard pQCD expression, and the large distance dynamics is accumulated in distri-
bution amplitudes. Within the model used, the form of a wave function depends on the ratio
of the UV regulator parameter A to the constituent quark mass. It is shown that the results
of the chiral quark model are close to the instanton model calculations. The numerical pre-
dictions of the chiral quark model for the asymptotics of the transition pseudoscalar form
factors for the processes y *y — P are close to the CLEO data.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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