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1 Introduction

Here we deal with nonrelativistic scattering theory. To be more precise we
shall speak about neutron scattering, elastic and inelastic, which is met
in condensed matter research. We limit ourselves to this case for the sake
of simplicity only. Everything we shall discuss here can be generalized to
more complicated processes.

The simplest process is elastic s-wave scattering on a fixed center, which
is described by the wave function

Y = exp(ikr) — gexp(ikr), (1)

containing an incident plane wave and scattered spherical wave with factor
b called scattering amplitude. This amplitude has dimension of length, and
it gives cross section 47|b|? with dimension of area.

We found that the SST is inconsistent with principles of QM. Thus we
need to improve it. However, it is so widely applied and trusted that our
claim looks like an Apocrypha to the Holy Bible. We recognize that, but
we are faithful to the Holy spirit of knowledge and will serve it even at the
menace of Crusiphication.

To prove that (1) is not consistent with SQM, we need to remind the
principles of SQM.

1.1 Canons of the SQM

According to QM, if a system has eigen states v, its initial state is ¢;, and
scattering is described by d1), then to find results of scattering we need to
expand Ji over eigen states, i.e. represent the total wave function in the

form
Y =1+ ; aify. (2)

The probability of scattering from the state 1); to state ¢y is described by

dimensionless magnitudes w;y = |a;f|?. In expression (2) for simplicity we

used summation as if the particle had a discrete spectrum, however it is

not essential, and we can (and shall) deal also with continuous spectra.
Let us show that (1) contradicts these principles.

1.2 The sin of the SST

What do we do in SST? Eigen states of a particle are described by plane
waves exp(ikr), and the scattered wave function dv after, say, elastic s-
wave scattering, is described by the spherical wave, 69 o< exp(ikr)/r, which
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is not an eigen state, and even it is not a solution of the homogeneous
Schrodinger equation, because

[A + k] = —47s(r), (3)

where the right hand side contains the Dirac §-function, which is not iden-
tical zero everywhere.

According to principles of SQM we must represent the scattered wave
function as a superposition of plane waves:

Y = exp(ikr) /f )dQ exp(ikqr), 4)

exp(ikr)
r

where (2 is solid angle of scattering, and f(Q) are dimensionless ampli-
tudes. Then the intensity of scattering into angle Q is described by the
dimensionless probability

w(Q) = |£(Q)[*dQ, | (5)

and total probability of scattering is the dimensionless integral
[ dw(@) = [ |f(@)]dq.

In the next section we show rigorous derivation of scattering probabili-
ties, find the probability for elastic and inelastic scattering of neutrons on
a fixed and moving center. Calculate scattering on an ideal monoatomic
gas, and show how to calculate inelastic scattering on other systems.

We shall show that rigorous derivation leads to some problems. The
main problem is met when we attempt to calculate transmission of a sam-
ple. With dimensionless probabilities we cannot introduce cross section,
and for that reason need to introduce area of the sample or an area of the
neutron wave front. However, if the neutron wave front has limited area,
its wave function cannot be a plane wave, and we arrive to notion of a wave
packet. This wave packet must not spread, because otherwise we should
observe dependence of transmission on distance of sample from a source,
and we did not do yet.

This consideration leads us very naturally to the de Broglie wave packet
(dBWP), for which we show, how to calculate reflection and transmission
of a one dimensional potential barrier. We justify correctness of such a
calculation comparing it to the same for a well known spherical wave,
which can be considered as a particular case of the dBWP.

At the end we formulate the problems which should be solved for devel-
opment of full quantum mechanics for dABWP.

The paper contains Appendix, where detailed calculations are given for
neutron scattering on monoatomic gas.

2



2 Treatment of the SST

Now we shall show how to improve the SST and to obtain the dimension-
less probability of elastic scattering. First we shall do it with the help of
standard stationary scattering theory. It is not satisfactory, however it is
instructive because it gives the same result as the more rigorous nonsta-
tionary approach.

2.1 Simplest, but not satisfactory treatment

The formula (1) can be improved immediately, if we use Fourier expansion
for the spherical wave:
exp(ikr) d’p)

i h :
=5 [ explipyr + v =)=, (6)

where p, = ,/k? — pﬁ. Every plane wave 1,(r) under the integral satisfies
the homogeneous Schrodinger equation (HSE)

[A + k), (r) =0

everywhere except one point z = 0. However, not all 1,(r) are plane
waves. Since integration in (6) extends over all p||, there are such pﬁ > k?
under the integral, for which magnitude of the component p, is imaginary,
and the wave v,(r) exponentially decays away from z = 0. If we neglect
exponentially decaying waves and limit integration in (6) only to pﬁ < k2,
then the integral in (6) can be transformed as follows

i : - d2p i ; ik
ipyT+ipsl2| C P _ iPTo 33 2 72 ikqr
27rp2</kz ’ Pz 27r/e 20~ k) 271'/(3 a4, (1)

i

where kq is a vector of length k, pointing into direction of solid angle €.
If we substitute (7) into (6) and subsequently into (1), we obtain (4)

with o 2
f@) =57 =75 = [dUfQF = 4n 33, ®)

where A = 27 /k is the neutron wave length. We see that, indeed, the total
scattering probability is determined by dimensionless magnitude.

Of course, such a simple derivation is not satisfactory because it is not
rigorous at many points. We decided to show it only because to our surprise
it gives the same result as the more rigorous derivation presented in the
next subsection.



2.2 The rigorous derivation of (4) for elastic s-wave scattering

Now we shall show a derivation which will be rigorous and appropriate for
all the processes: elastic and inelastic ones. In this approach we shall see
that scattering is a nonstationary process.

Suppose we have a single scattering center described by the potential

u(r,t)

5 = 27b6(r — ry).

In the following we shall use the units, for which hQ/m = 1, where m is
the neutron mass.
For scattering particle we use nonstationary HSE

a A u(rt)

et 3 T

’l,b('l’, t) =0. (9)
Solution of (9) can be represented in the form

Y(r,t) =o(r,t) — 5(r,t), (10)

where 1o(r,t) denotes an incident wave (v, t) = exp(ikor — iwpt) with
Wy = k§/2

Substitution of (10) into (9) gives equation for §¢)(r,¢). Its solution in
the first order of perturbation theory is

§(r,t) = /dST'dt'G(r — 7't —t)2mb6(r' — ro)ho(r',t),  (11)

where G is the Green function, which can be represented as the Fourier
expansion

1 d*pdw
—rt—t) = iplr — r'] —iwft - t]). (1
G(r -7/, ) @) /p2/2—w my exp(ip[r — r'] —iw[t — t']). (12)
The Green function is a solution of the equation
%%+%%ﬂr—ﬂﬁ—f):—&r—ﬂﬁ@—ﬂ) (13)

Substitution of (12) into (11) gives

27h / dpdwd®r' dt’

PP =T —iw[t—t'] 5(r' — o) ikoT —iwot! _
e r To)e
(2m)*

W(r,¢) = P?/2 —w — e



b [ Epexplian)

= — t =ky— = 2 2.
@] = —ic exp(ipr —iwgt),  q=ko—p, w,=p"/

(14)
We can add and subtract iw,t in the exponent, and represent the field
(14) as a superposition of plane waves

oY = /f p) exp(ipr — iwyt)d°p, (15)

with amplitudes

b exp(ifw, — wlt)
flp) = (2m)? wp — wpy — i€

exp(igry). (16)

Now we use the following relation

t

eXp(i[wp — wo]t) =1 / exp(i[wp — wo]t,)dt,, (17)

Wp — W — 1€

which is the main trick of our apocrypha. This relation is absolutely rig-
orous and shows that all the scattering processes are nonstationary ones.
We can find a definite result of scattering only in the limit t — oo, where
relation (17) gives the law of energy conservation:

¢ .
¢ im / exp(ifw, — wolt')dt' = 2mid(w, — wy) = 4mis(p? — k?).  (18)
Substitution of (18) into (16) and (15) gives
ib D ibk . . .
_ 27 iQTo iPT —iwyt 33 2 2y _ 2 igTy ik T —iwpt
(51/)—/7re e Ppd(p® — k2) = 2“[6 dQeifaT =it (19)

from which it follows that probability amplitude of scattering is

f(Q) = % exp(igro), (20)

and the total probability of scattering w = 4w|b/A|? is the same as above
in (8).

The result (20) immediately shows that scattering by a set of scatterers
is described by dimensionless amplitude

§®) = 52 % expliar), o)

J
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from which we can define coherent part

feon(Q) =< f(Q) >= %ij,coh exp(igr;) = i_F)(\q_), (22)

where F(q) is structure factor, and < g > means averaging over isotopes
or spin states of the scatterers.
Now we can define coherent and incoherent scattering probabilities

F(g)[

2
dwcoh(Q) = ’———— , dwmc(Q) =< |f(Q)I2 >= Z

: (23)

bjine
A

2.3 An important “defect” of the dimensionless scattering pro-
bability

The above result discloses a very interesting fact: with dimensionless prob-
ability we cannot define transmission of a sample as in SST!

Indeed, extinction of a plane wave depends on total number of scatterers
met along its way. The total number of scatterers in a sample of thickness
d and cross area S is NydS, where Ny is density of the scatterers. Thus
transmission exponent, which in SST is

T = exp(—Nyod), (24)
where o is scattering cross section, now becomes
T = exp(—NowSd), (25)

where w is probability of scattering. However this expression would mean
that the larger is cross area S of the sample, the larger is extinction. It
is evident that such a conclusion is not supported by experiments. Thus
we should conclude that the area S in (25) is not cross area of the sample,
but the front area of the incident particle, and we inevitably arrive at a
conclusion that the particle cannot be an infinite plane wave. It should
have a restricted front area, which means that the particle wave function
is a wave packet.

This wave packet cannot be spreading, because if it were, the transmis-
sion of the sample would decrease when sample is shifted from source to
detector, and no one had ever observed such a phenomenon.

If front area S is proportional to A%: S = a?)\?, where o? is a dimen-
sionless factor, then transmission T' becomes

T = exp(—4ma?|b|*Nyd), (26)
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which is the same as in SST, but the amplitude b is renormalized tod’ = ab.
The best candidate for the nonspreading wave packet is the singular de
Broglie wave packet (dABWP) [2, 3, 4]

exp(—s|r — vt

Yap(r,t) = ,/%exp(z’kr — wt) Xp[r p

where w = [k* — s%]/2, s determines the packet width, and v in our units
coincide with k. The front area of (27) can be estimated as Syp = 7/s%
If, for example, s is proportional to k: s = &k = 2x£/\, then Syp =
mA?/(2m€)?, and the renormalization factor is v = 1/2/7€.

3 Inelastic processes

3.1 Scattering on a free moving atom

Collision of two particles changes the state of both. Thus, to be correct,
we need to solve SE not for a single neutron but for both particles:
[ 0  Ar phAy  u(ry—re,t)

T T 2

'/1(7'1/"2775) = O’ (28)

where u(ry —r9) = 4wbd(r1 —79), p = m/M, r1 is the neutron coordinate,
and 79 is the one of the nucleus.
The Green function of the equation (28) is

exp(ip; 11 + pyre — iwt) dPp1d3padw
P24 up3)2 —w—ie  (2m)7 7

Gri,ryt) = [

from which it follows that
5 = 2mb / Bp1 B padwd®rl d®rlydt’
@m)") pt/2 4+ up3/2 — w —ic
xd(ry — 74) exp(ik1r] + thorh — iwig + wylt') =
b / &p1d®pyd(py + Py — ki — k)
(2m)% ) pt/2 + up3/2 — wig — wy — ie

(29)

exp(ip; [r1—r}|+ipy[ro—ry]—iw[t—t'])

exp(iplrl +ip2T2 - i[wm +L4J20]t),
(30)
where wyg = k¥/2, and wyy = pk? /2.
This wave function can be represented as a superposition of plane waves
describing final states of the neutron and nucleus

5 = /f(pl,pQ,t)d3p1d3p2 exp(ip;r1 + ipyry — iwit — iwat),



where wy = p?/2, wy = pp?/2, and

b §(p1+py— k1 — k2), exp(ilwy + wy — wig — waplt).

. ) =
f(p1, P2 t) (2m)2 w1 4+ wy — wig — wyg — 1€

Using the same trick as in (17) we find the probability amplitude for the
particle to leave in the state p;, and for the atom to leave in the state p,
is dF(k; = py, ke = py) =

ib
F(1, ) p1d’py = d3p1d3pz§;5 (P1+Py— k1 — k2)d (w1 +ws —wig —wyg) =

ib ib
Ep1—8(pt+ ks + ke —p1)* — k= uk3) = Epr—0(p® — ki +pi + 2uska),

(31)
where Kk = k; — p;.
Change of variables p; — k transforms (31) to
(13/4395(/1/@2 — k! 4 (k= &)? 4 2urky), (32)
T
and subsequent change
A pko — ky
+——— =g, 33
Kt = (33)
transforms (32) to
ibgdS,

ib ki — pky)*
dF (k1 — py, k2 = py) = ¥d3q5 (912(1 +p) = ( 11 +,uu g ) (1t p)
34

where ¢ = |ky — pkso|/(1+p) = |€]/(1+ 1), and € = ky — pk, is the relative
velocity.

In laboratory reference frame differential probability of scattering into
the element of solid angle dQ}, is accompanied with change of absolute
magnitude of the neutron momentum k; — p;, and to find probability of
total scattering we need to find ratio of fluxes in all the directions to the
incident flux. In other words probability of total scattering on a nucleus
with the given momentum ky is

b2 q2 P b2

_ _ 2
U ) BT R e [ridfy(3)



3.1.1 Total scattering

To get total scattering we should integrate over §2,. According to (33)

1§ + 1P| 1

where P = ky + k3, and we substituted ¢ = &£/(1 + p), Q; = Q.
Substitution of p; into (35) gives

2w
9y = g gl + PP = 16— nPF) =
T[4 3 PYO(E < puP) + o [3E + y2PPO(E > uP)
3Pu(l+ p) 3E(L+ p) !

(36)
where ©(z) is a step function equal to 1 or 0, when inequality in its argu-
ment is satisfied or not, respectively.

Now, probability of total scattering for given ky is w =

b*¢ § 12, o 2p2 2, 2p2
S a7 (Pl + 3P < uP) + 3+ i PHO(E > k),
(37)
and we need to average it over distribution M (uk2/2T)d%ky of momentum
ky of initial nucleus. If the nucleus is initially at rest, then distribution is

M = 6(ky), which gives kg =0, = P =k, £ > pP and
_ DR+ 4%/3)

<w > TR P (38)
For Maxwellian distribution we have:
ng 2
<w >= C/M ?f dekg/dCOS’&kQX
2
{516+ 02 PY0(e < uP) + €036 + wPl0(E > W)} )
where
20° pks p\2 pk3
“=sirem M (ﬁ) =(507) oo “ﬁ) 1)

and at T' = 0 expression (39) must be reduced to (38).



Calculation of the integral (39) is done analytically in Appendix A. The
result (118) is a complicated function of two dimensionless parameters:
p=m/M and 7 = T/E, where T is temperature, and E; is the incident
neutron energy.

The dependence on 7 in the range 0.1 < 7 < 10 for x4 = 0.25, which
corresponds to “He gas, is presented in fig. 1. For comparison here also
the dependence of scattering cross section of standard scattering theory [1]
is presented:

2

o= 47T(l-ib-4p)2 (exp(—l/m’) /';TT + [1 + _112_7] <I>(\/1—/,u_7')) . (41)

Of course, we cannot compare dimensionless probability with dimensional
cross section, so we imagine some extinction by a thin sample, and for
convenience normalized two curves to the same magnitude at 7 = 2.

Asymptotic behavior of (41) and (118) are different. At large 7 the
expression (41) gives

P2 uT
= 4T ——=2 [ —
o 7r(1 Ll g (42)
and for small 7 it gives \
— 47rb—’
(14 p)?

whereas the expression (118) have asymptotics (119) and (120) which for
large 7 grows more steep than (42). It is very interesting to check the result
(118), and even, if it will be found to contradict experimental data, it will
mean that the whole quantum theory needs some revision.

3.1.2 Partial scattering

We can also find scattering with given energy. For that we represent (35)
in the form

¥ p (k1 — pks)®
d = k - k d3 5 2 . =
WS S g ik P T HRalT ((1+u)q i,
b? b1 3 2
mk—lm — pkao|d’p18(pk/2 — w + pkak), (43)

where w = (kf —p})/2, k = k1 — p;. If we represent d®p; as pyd(p}/2)dQ,1,
then we can define

d*w _ b? p?

dEpldel - 471'2(1 + #)2 k1

|k1 — pkao|d(ux?/2 — w4 pkok). (44)
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Temperature dependence

s

Total scattering
N

N

= apocripha
seer SST

Figure 1: Total scattering probability as an extinction of a beam by a thin sample of *He
gas (4 = m/M = 0.25) in dependence on ratio of temperature T to the incident neutron
energy . The curve for standard scattering theory is plotted according to (41). The
curve for apocrypha is plotted according to (118). For comparison the two curves are
normalized to the same magnitude at T'/E = 2

Now we must average this expression over distribution of k. For Maxwel-
lian one we have

d*w _/ ,uk2 b2 dPko|ky — ,uk2|p15( 2/9
< 4E,d0,; a1+ p)?  ky

—w+ pkok).

(45)
It is a complicated integral, because it depends on angles between k9 and &,
and also between ks and k1. For some particular cases it can be represented
analytically, but we shall not do it here.

3.1.3 Dull rules of SST

It is useful to compare our approach with that of the standard textbooks.
Let us follow, for instance, the book [1] from the very beginning, where
elementary theory of scattering is explained, and no correlation functions
introduced yet. We can find a list of rules one must to follow to put down
an expression for cross section.

1. According to Fermi golden rule one defines a probability of scattering
from state |k; > to state |k; > in a unit time

w(i = f) =2n| < ks|VIki > %, |kif >= L3/2 exp(tk;sr), (46)
where V is interaction potential, < k 7IV|k; > is matrix element of

scattering, L is some dimension of a space cell, and the law of energy
conservation is assumed.
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2. Then we multiply (46) by

5(Ef - Ei)v
3. by number of final states
L33
(2m)?
4. and divide by the incident flux
ki
ﬁ-

5. After that we sum over final states of scatterer, average over initial
state of scatterer and find do/dQsdEy.

Let us see how it works for gases.
Atoms are also described by plane waves L~3/2 exp(ip;sr), and the ma-

trix element is

4mb

—5 (2m) 0(ki+ pi — ks — py).

T' .
47Tb/ FGXP(Z["%‘ +p; — ks —pslr) =

The square of this matrix element, according to step 1, gives the square
of 0-function, which is transformed as follows: 62 — [L3/(27r)3]5( i+ p; —
k;—py), after which we have

47h
w(i — f) —27r| 79 | -(2 7T)35(ki+pi—kf—pf)'

After steps 2, 3 and 4 we have
|47b|?
k;L3

where Ej = k?/2, and E, = up2/2 The number of final states of scat-
terer is L3d®p;/(2m)3, and averaging is done over the same Maxwellian
distribution as above. So, after step 5 we have d%0/dFEydQ; =

do =27

(ki +p; — kf — pp)d(Eki + Epi — Exy — Epp)d’ky,

k
|b|2k—}.r/d3pf5(ki +p;,— ks — pf)5(Eki + Epi — By — Epf)M (/Lpz) d3
The total scattering cross section we obtain immediately:

1 2
0 = 20b*—d’kyd (k] + p(P — ky)* — K} — pup}) M (%1;—) &*p;
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It can be easily integrated over d®k; as above and we obtain

_Awlb]? ki — il (19F)
(T Hp)? ks M 2T i

After integration over p; we obtain the above expression (41).

Along this derivation we made several artificial steps. First, it was in-
troduction of the space cell L, second, it was a strange rule to replace
square of d-function, third, we did not introduce the outgoing flux, though
we divide by incoming flux, and the last, it was a strange rule to introduce
the law of energy conservation only at the final stage of cross section cal-
culation. Sometimes it is introduced at the stage of evaluation of matrix
elements, but then we obtain a square of this delta function and need to
replace it with 27td, where some time cell ¢ is introduced, and consequent
division by it gives a rate of the scattering process.

In short, everything is artificial and has no relation to quantum me-
chanics. We are dealing with some rules invented by somebody, and have
no firm theoretical grounds under them. Even if we have good agreement
between these rules and experiment, we need to understand why do these
rules work. The good agreement of these rules with experiment tells noth-
ing about validity of standard quantum mechanics.

3.1.4 Inelastic scattering on an arbitrary system

To show that this approach can be used for more complicated processes
let us consider neutron interaction with an arbitrary system described by
Hamiltonian H’, which, for simplicity, is assumed to have a discrete spec-
trum F;. The Schrodinger equation for the full system is

: B u(ry — 7y, t)
ot 2 2
where u(ry — r9) = 47bd(ry — r3), the coordinate r; is related to neutron,

and 7y is related to the scattering system.
A stationary solution without interaction is described by

Wk (r1,79,t) = @ (1) exp(ikry — i[Ey + Eyt), (48)

where ®,,(r) and E, are eigen functions and eigen values of the Hamiltonian
H', and Ej = k*/2 is the neutron energy.
The Green function of the equation (47) without interaction is

Y(r1,me,t) =0, (47)

Z/ exp(ip[r1 — v] — iwt) @, (re) D% (rh) dPpdw
E,+ E, —w —ic (2m)t’
(49)

!
G(’"l - 7“1,7'2,7'2,
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and scattering in perturbation theory is described by

27b Bpdwd®r| d3rhdt’ . : B *
W= i S B B i PRI =T il ) @a(ra) 2 (1))

XB(r — 7)oy (1) exp(ikrs — i[ By + B J¥) =
_ b >/ d*pMy n,(k — p)
T @n2% /) By + By — By — Eny —

where

e exp(z'prl - Z[Ek + Eng]t)a (50)

M, . (q) = /d3r<I>n0(r) exp(igr)®;,(r) (51)

is a matrix element of the interaction.
It is evident that the scattered function is representable in the form

p(r1,19) = X [ Fang(p, K, t)d*p®, (r) exp(ipry — iyt — iByt),

and the probability amplitude to find the particle in a state p, and the
system in the state F, is

dF(k — P,y —) n, t) = fn,no,t(p, k)d3p
Thus
3
dF(k - p,ny —> n,t) et MMn,no(k - p)

(2n)?

This result is representable in the form

exp(i[Ep + E, — E — Ey,t)
By, + En — By — By, — ic

ibd®p f . )
dF(k — p,ng — n,t) = WMn‘no(k—p) / exp(i[Ep+ E, — Ex — Ep Jt'),

and in the limit £ — oo, we obtain dF(k — p,ng — n) =

) .
Ep s Mok = D)S(By + By = B = B) = pds My (ki — ), (52)
where p = \/k? + 2(E,, — E,), and in the last equality we integrated over
dp.
From (52) it follows that the differential probability of scattering is equal
to dW(k — p,ny — n)/dQ =

b 2

/\_p'Mn,nO(k - p)

“p(Q)

k

dF(k — p,ng — n)
dQ

)
R
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where we introduced the ratio p/k of particle fluxes after and before scat-
tering.

To get total probability of scattering we must sum (53) over all possible
states n, average over ng, and integrate over dQ:

k 2
W (k — p) /dQZ<’dW( _’dg’”(’_)") > =
; n0
()
T < an,nO(k - p)|2 >n0 - (54)

where < f >,= ¥, f(n)p(n), p(n) is corresponding distribution density,
and A\, = 27 /p.

3.1.5 Some remarks

Again, we obtain a dimensionless probability, and need to define front area
of the incident particle wave function, which leads naturally to dBWP.
We also need to point out that the considerations with an arbitrary sys-
tem above are valid only if both systems are described with the same
Schrodinger equation. However this equation has a single derivative on
time. If an interesting for us system obeys a different equation with double
derivative on time, we need to consider not the Schrodinger but different
equation. What to do in this case will be considered in a next paper.

4 Introduction to quantum mechanics of the de Brog-
lie wave packet

Now we see that the dBWP naturally appears in a rigorous theory of scat-
tering, however from the very start we should confess that there are no
quantum mechanics of the de Broglie wave packet (IBWP) yet. We have
some hints, some ideas, which seem to be interesting, and give a new life
to the de Broglie hypothesis advanced almost at the birth days of quan-
tum mechanics (QM). He himself abandoned his hypothesis, because not
he not anybody till recent times could tell, what can one do with such
a construction. Only recently the dBWP was revived, and it happened
because standard quantum mechanics was not able to explain a phenom-
enon, which is known as ultracold neutrons (UCN) anomaly - two orders of
magnitude higher losses of UCN at a single collision with the wall, than is
predicted by the standard QM. After its resurrection, however, it became
clear, that dBWP deserves its own life independent of UCN anomaly.
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The dBWP is described by the function (27)

Yap(r, K, s,t) = ,/21 exp(tkr — iwt)
m

It contains two parameters: the wave vector k related to velocity v: k =
mv/h = v (i/m = 1), and the parameter s, which determines the width
1/s of the packet in coordinate space.

This packet is not a solution of the usual Schrédinger equation (SE). It
is a solution of the equation

i+ 3] ) = —am [ e — w), (56)

where Q = [k? + s?]/2, and the right hand side contains the Dirac -
function, which is not zero at one point » = wt. This fact should not be
considered as a reason for immediate rejection of dBWP from the very
start, because in everyday life we routinely use the construction, which
is also not a solution of the homogeneous SE. I mean the spherical wave,
described by the spherical Hankel function.

exp(—s|r — vt|)
|r — vt]

(55)

4.1 Genesis of dBWP

We want to show here that dBWP is a particular case of a spherical wave.
Indeed, let us look at a spherical wave

P(r,t) = &I)Sfﬁexp(—is2t/2), (57)
which satisfies the equation
z% + %] Y(r,t) = —2n8(r) exp(—is’t/2). (58)

This spherical wave corresponds to energy E = s?/2 and has a fixed center.
Now, let us transform our reference frame to a coordinate system moving
with velocity v = k. The Schrodinger equation will preserve its form if we
not only change » — r — vt, but also multiply function (57) by the phase
factor exp(ikr — ik?t/2), which transforms (57,58) to

exp(is|r — vt|)

U(r, k,s,t) = exp(ikr — iwt) . (59)

|r — vt|

[z% + %} Y(r,t) = —2m8(r) exp(i[k? — s7t/2), (60)
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where w in (59) is (k* + s%)/2. :

Thus we see, that dABWP is immediately obtained from (59), if we sup-
pose that s? < 0 and s is purely imaginary. It means that dBWP can be
interpreted as a spherical wave bound by a universe negative potential.

The expression (59) shows that, if we accept a possibility to consider
singular spherical waves, we should accept also the whole set of possible
states like (59), and also their superposition:

(v, B,t) = exp(—iBt) [ §(E — k*/2 — 5*/2) A(k)¥(r, k, 5)d°k.

In (57) we considered only s-wave spherical function, but we can also
consider other spherical functions, singular and nonsingular ones, with dif-
ferent orbital moments . However the dBWP is the simplest one, and we
want to limit ourselves to it now.

In the papers [3, 4] there was considered transmission of dBWP through
a thin layer of matter, which is described by a rectangular potential. Here
we want to present some justification for these calculations. For justifi-
cation we compare our approach in [3] with the well known one for the
spherical function. We shall show that our approach applied to the spher-
ical wave gives well known correct result. This demonstration serves as a
justification for our approach to the dBWP.

5 Spherical wave

Let us consider transmission through the rectangular barrier of the familiar
stationary spherical wave

W(r) = M (61)

|’!‘—’I’0|

It is not a solution of the Schrodinger equation

[A + K Jp(r) =0, (62)
but it is the solution of the inhomogeneous one
[A + EJy(r) = —4nd(r — 7o), (63)

where the right hand side is the Dirac é-function, which is not zero at the
point r = 7o. However it is zero at all other points, and equation (63) at
all but one points coincides with (62).

The equation (63) is for free space, but it can be easily generalized to
the case of the space with an external potential. In particular, we can
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imagine a some matter layer of thickness d, described by optical potential
of height u/2, then (63) becomes

[A+E —u0(0 < 2 < d)ih(r) = —4nd(r — o), (64)

where O-function is equal to 1 or 0, when the inequality in its argument is
satisfied or not respectively. We can solve (64) precisely for 7y inside and
outside the potential. Here we consider it outside i.e. zy < 0

The equation (64) can be solved in two ways, but in both ways we use
Fourier expansion. The Fourier expansion of (61) is

() = exp(ik|r — 7'0| s / exp zp['r — ro])d3 .

|r — 7| p? — k% — (65)

We can easily check it. Indeed, integration over angles in the last integral
gives

1 2

2mi|r — 7y

dp

—5— (66)

(o]
exp(iplr—rol) —exp(~iplr—ro]))
0

p(r) =

which after transformation of variable p? = z can be represented as an
integral over contour C around the cut in complex z-plane from 0 to co
as is shown in fig. 2. This contour can be closed by the infinite circle and
transformed into a little circle around k? + ie, as is also shown in fig. 2,
and as a result of complex integration around the pole we obtain

1 ]{ exp(iv/z|r — ro|)dz _1_?{ exp(i/z|r — 7"0])(11‘

. _ 2 _ . - . _ 2 _
271 & z—k 1€ 21 &, z—k 1€

= expliklr — o),

which after substitution into (66) gives the function identical to (61).

The Fourier expansion (65) can be integrated over, say, p, component of
the vector p, closing the contour of integration by a semi circle at infinity
in the upper or lower half of p, complex plane. Then (65) is reduced to
the form: (ikr) ’ 2

exp(ikr) 1 . . Y4l
— = E;/exp(zp”r + zpz|z|)—pT, (67)
where p, = ,/k? —pﬁ.

Now we shall see how to find the solution of equation (64) with rectan-
gular potential taking (61) as the incident wave. This solution will give
us transmission through the rectangular barrier, and we can obtain this
transmission in two ways. They both use Fourier expansions either (65)

r (67). However the last case is simpler, and for that reason we start
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with it. Of course we can also consider the case, when 7 is inside the
potential. Here, without accounting for boundaries, the spherical wave for
k? < u looks like a ‘localized* function exp(—vu — k?r)/r, but this case is

not interesting for us now.

2
T k24 k G,
T _
0 C p? 0 p? 0 p?

Ch

Figure 2: Contour of integration C; in (65) can be closed by an infinite circle and trans-
formed into a little circle around the pole at p? = k% + i¢

5.1 Transmission of the rectangular barrier calculated with ex-
pansion (6)

In the free space every plane wave component 1,(r) = exp(ipr) of the
Fourier expansion (67) satisfies equation (63). When we have a potential,
the plane waves should be replaced with some functions ,(r) satisfying
the equation

[A+E —u0(0 < 2z < d)]ipy(r) = 0. (68)

In our case potential depends only on z, and the function ,(r) can be
represented as the product exp(ipr)y,(z), which after substitution into
(6) gives '

' 2
90 = 3= [ explimyfr = rl) () 2L, (69)
where 1,(z) is a solution of one dimensional SE equation
d2
L+ K~ g~ u0(0 < = < Ay (2) =0 (70)

with incident wave exp(ip,[z — 2(]), and we suppose for now that zy < 0,
i.e. it lies outside of our potential.
Solution of (70) is

Pp(2) = e P {[ePO(2g < 2 < 0) + p(p,)e”P*O(2 < 0)]+
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7(p.) exp(ip.[z — d])O(z > d)} + exp(—ip.[z — 20])O(z < %), - (71)
where p and 7 are reflection and transmission amplitudes for rectangular
potential of height v and width d:

p(py) = Lolp)ll = expCipld)] -y explipd)[L - p(p:)]
1= ph(p.) exp(2ip,d) ’ 1 = pf(p:) exp(2ip,d)’
P, — plz
po(pz)=p T P =Pl —u=[k? - p} -, (72)
and for simplicity we omitted the part of 9),(z) inside the potential 0 <
z < d.
For z > d after substitution of (71) into (69) we obtain
)

z

2% / 7(p:) exp(ip”[r — 7o) +ip.[z — d — %)) (73)

This can be called transmitted part of the wave (61). The total transmis-
sion is the normal flux through an infinite plane, which is perpendicular to
z-axis at some point z > d:

—i d
Jz = 7/d2r” <¢*(T)E¢(T) — Q,b( ) /|7’ pz I:” pz > O)
(74)
Integration over p| can be reduced to integration over p, as follows: d2p“
d¢p.dp,, which transforms (74) into

7. = 2 [ 10 Pis. (75)
0

All the factors here have very clear physical meaning. The factor 27, for
instance, means that every infinite plane subtends solid angle 2.

Transmitted part (75) can be compared with the flux Jy incident onto
the plane at z = 0:

p
Jo= [ —LO(p? > 0) = 2nk.
o=/ P )
Thus transmission probability is
dp,
W= / Ir(p) P Pz (76)

If the total energy k* is less than u, then transmission is exponentially
small, because according to (72)

|7 (p:)[? o¢ exp(—2y/u — p2d) < exp(—2v/u — K2d).
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5.2 Transmission calculated with expansion (65)

We can also use the expansion (65). In this case the exponents 1,(r) =
exp(ip(r — r¢)) do not satisfy equation (62), but instead they are solution

of the equation
[A+p*Jy(r) =0, (77)

and with potential u we should replace them with the solutions of the
equation

[A+p" —uB(0 < 2 < d)y(r) =0. (78)
Since our potential depends only on z, we can again represent ¢,(r) as the
product
Up(r) = exp(ipyr)ip(2), (79)
o (65) is represented now as
exp(ik|r —r exp(ip[r — ro])d®p
vir) = p?T I— ol 0| m)? / ppp”—[ k% — z]e) ¥pl(2); (80)

where 1,(2) is a solution of the one dimensional equation
[d*/dz* + p? — uO(0 < 2 < d)]ih,(2) =0, (81)

with incident plane wave equal to exp(ip,[z — z]).

Solution of this equation is the same as (71), but p, is now an indepen-
dent variable. After substitution of (71) into (80) we obtain transmitted
wave at z > d equal to

d3p

— k2?2 — e (82)

47 . .
(2—7[_)3-/T(pz) exp(ipy[r — ro] +ip.[z —d — zo])p2
where p, now is not equal to /k% — pﬁ.
According to (74) and (82) the flux through the plane at z > d is
_ 7 dplz 7 dp2z * D1z +p22
Jz - / T / T T(plz)T (P?z)—2‘><

—00 —00

/ ( d2p” eXp(i[Plz - p2z][2 —d- ZO]) (83)

pﬁ +p%z — k2 — lé)(pﬁ +p%z — k2 + iE)’
where 7*(z) is complex conjugate of 7(z). We see that now we should take

into account both positive and negative values of p;, and ps,, because we
need the total flux. After integration over d2p“ we obtain

- —2) AP12AP2. T (p12) T (p22) P2, — k% +ie
J, = i(p1z—p2:z)(z—d—20) 1 2z )
// 27[py, — p1.(1 — i€)] . P, — k% — e (84)
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For further integration we need to identify all singular points of the function
under the integral in complex planes of p;, and py,. The singular points
are contained in transmission amplitudes 7, under the logarithm function
and there is also a pole at py, = po,.

5.2.1 Geography of cuts, poles and paths in (84)

Now we shall analyze where lie all the singular points in the integral (84),
-and where lie the paths of integrations.

Function 7(p,) depends on p, = /p? — u, which means that there are
two branch points at p, = £+/u that can be connected with the cut between
them as is shown in fig. 3. The path of the integration over p;, should
go above this cut because transmission amplitude 7(p;,), which contains
exp(2ip,) for pf, > u should become exponentially decaying. It means
that, when p;, crosses the point \/u, the magnitude \/p?, — u becomes
+iy/u — p},, i.e. integration path should turn 7 counter clockwise and go
above the cut.

B S
T | TR T7u Lz
o= e

Figure 3: Contour C of integration over py, lies above the cut #+/u and below the cut
+k. The contour C; of integration over p,, lies below the cut £+/u and above the cut
+k. After closing C; by a semi circle in the low half plane we obtain contribution of the
pole and cut *k.

The logarithm function also gives two branch points 4k which also can
be connected with the cut. It is easy to see, that integration path over pi,
should go below this cut, because when going from p;, > k the path crosses
the point pi, = k, the logarithm argument becomes —ie, which means that
the path near the point k makes clockwise turn over /2.

The analogous considerations show that integration path over py, lies
below the cut —/u,++/u and above —k,+k. We can close this path by a
semicircle in lower half of the complex py, plane because z —d — 25 > 0,
and obtain two contributions: contribution of the pole and the cut. The
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pole contribution is

2 .
P1. k* —ie
J, =—1i [ dpy, In|=*————| =0, 85
Z/ P17 (p12) ] n(plz'—k2_7'€) (85)
because we should substitute p, = p?, — 2ie and took into account that
the pole gives contribution only for p;, > 0. For p;, < 0 the pole lies in
the upper half plane.
The cut contribution is

. oo J k ; e ~exp(ilp1; — p2.][z — d — 2)) "
Jz =1 / plz / p?zT(plz)T (pQZ) p2 _pl (1 — 26) ) ( )
—00 Zk 2 ;

In this integral only the pole is remained and the integration path can be
closed in the upper half of the complex plane, which gives

k
Jo=2m [ dpylr(pa) 2. (87)
0

It is identical to the result (75), which shows that both ways of calcula-
tions give the same result and we are justified to calculate transmission by

looking for transmission of every plane wave component of the expansion
(65), and apply to it the equation (81).

6 Transmission of the de Broglie wave packet

Now we are ready to start our calculations with dBWP. It is meaningless
to suppose that in the equation (27) right hand side has the same value
along all the trajectory even inside the potential. If it were so, no reflection
at all would happen. So we suppose that equation (27) holds only in free
space, and transmission should be calculated quantum mechanically.

The easiest way of calculation is the one, explained in section (5.2). The
Fourier expansion of (27) is

CE 1+ expliplr — of)
Yap(r,t) = %exp(zkr - zwt 2/ PSR (88)

Or, after change of variables p — k — p, it can be represented as

exp(ipr + i[k? + s% — 2pv
¢d3(r,t)=\/~ 3/ i, PP +p[ kJ)r i poli/2) g
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Every plane wave exp(ipr) satisfies the equation (77), and in the potential
u it should be replaced with 1, (r), which satisfies (78), and can be repre-
sented as (79), where 1),(z) satisfies (81) with incident plane wave equal to
exp(ip,z). Thus the transmitted function is equal to

ap(r,t) = E (;T)g [ dpr(p) Z2UET J(rpi[f k;zf':; 212 (g9)

and total number of particles having crossed an z,y-plane at some point
z>dis

N, = :gl_Z dt [ diry (¢*(r)%¢(r) - ‘b(r)%’/’*(r)) -

2Pz__d3p_
= 27r 3/I R (91)
After integration over p it is reduced to
2pz dpz
i / I7(p.)| PR (92)

We are to compare this magnitude with the flux through the plane, say at
the point z = 0 before the potential. This flux, calculated in the same way
will give

_ 5 Tpe dp, _s T dz
NO—W/kz(pz_kz)2+s2_7T_Zo x2+52_1’ (93)

—00

which could be expected, because from normalization
[ [as(r, t)PdPr = 1 (94)

we have a single particle in all the space. Thus expression (92) gives trans-
mission probability. We can estimate the integral as
2s d
W 28 / T

= 2 arctan (i 28 (95)
T

z? + 5° ﬁ) Tl

Thus we can tell that because of the wave vectors spectrum, there is always
some non exponential transmission through the rectangular potential, even
if neutron velocity is lower than the limiting one: k? < w.

Vo
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6.1 Wave function of transmitted particle

We suggest that the wave function of transmitted particle should be the
same wave packet (27), and the magnitude (92) gives only probability
of transmission. In principle we can represent the transmitted function
as a superposition of dBWP. Indeed, let us represent the transmission
amplitude as a Fourier expansion:

I )
7(p:) = %—Zo exp(ip:C)7r()dC. (96)
Then the wave function (90) becomes

_JE T ae© ik(r—C-d)—ivt €XP(=s|r — { — d — vt|)
z//dB(T‘,t)—-\/;_[odC 5 T ¢ Sl dol

(97)
where vectors ¢ and d have components ¢ = (0,0,¢), d = (0,0,d). The
expression (97) means that with some probability |7(¢)|*> we register the
transmitted neutron at time ¢ = (( +d)/v,, because it is delayed by (. It is
interesting to investigate how to discriminate this time delay from inelastic
scattering, which is measured by time of flight technique. We cannot do
it for now, and for that reason too, we can tell that there is no QM of the

dBWP yet.

6.2 Wave function in the potential

We can easily find the wave function inside the potential, because we know
it everywhere. From (89) it follows that

+ i[k? + s? — 2pv]t/2
Van(r,t) =15, (27) 3/ iy 2R pl[ k)2 132 POl )%(z)’ (98)

where 1, (z) outside of the potential looks like (71). Inside the potential it
is

Up(2) = A(p){exp(ip,2) — exp(ip,d) po(p.) exp(—ip,[z — d]) }O(0 < z < d)

where

70(p2) ’ 2p,
Alp,) = , ) = L=
(+:) 1 — p§(p-) exp(2ip.d) mo(p:) P, + 1.

Somehow this wave function should be represented as a superposition of
different dBWPs with different trajectories and velocities. We cannot rep-
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resent such a superposition now, because we do not know trajectories ve-
locities and widths of dBWP in the potential. If we apply the SE operator

to the function (98), we obtain

Lipa(r,t) = ~E5(r” — oyt) exp(i[k® + s%t/2)0(0 < 2 < d) x

[ dp.A(p.) exp(—ip et {exp(iplz) — expliptd)po(p:) exp(—i [z — ).

(100)
It follows that along the surface trajectory is the same as in the original
dBWP (27), but the motion along normal z is not of the d-function type.
It is very complicated, we cannot characterize it, and because of that, we
cannot tell that we know QM of the dBWP.

7 Conclusion

Simple consideration of scattering processes shows a contradiction hidden
in the standard approach. On one side we use plane waves as eigen states of
a particle, and on the other side describe scattered particles with spherical
waves, which are not even solutions of the Schrodinger equation. Rigorous
approach improves the theory, however it is unable to describe even the
simplest experimental process — transmission of particles through a sam-
ple. When we try to do that we arrive at necessity to limit wave front of
particle plane wave, i.e. we need to use wave packets instead plane waves.
The wave packet should not spread and we naturally arrive at the de Broglie
wave packet. However we have not yet a mathematical apparat to describe
even a simplest scattering of dBWP on a fixed center. We hope that it can
be elaborated, because at least we can correctly describe transmission and
reflection of dABWP by one dimensional rectangular barriers. Investigation
in this direction will help to understand the role of wave function and its
relation to trajectories and to motion of the particle itself.

A Calculations of total scattering on monoatomic gas

We need to calculate

2
<w>=C[M (’;—’;3) kydky [ dcos9x
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{P—;[s%w?zﬂ]e(g<uP>+a3g2+ﬂ2P21e<s>ﬂP>}. " o)

where 9 is the angle between neutron, k;, and nucleus, ks, moments,

20 k3 g\ k3
C=savpm M (“ﬁ = (oop) e (-57). (o

£ = |ki—pksy|, P = |ki+ks|, E = k?+ pk2, and inequalities in ©-functions
are equivalent to

€ # PP = (ky — pk)® # i’ (ky + ko) =
(1= 1)k} # 20(1 + pkiky = (1 — )k} # 2uksks.
At the beginning we need to integrate over angle.
Al &< uP

Since €2 = (1 4 p)E — pP?, we have €2 < p?P? — P? > E/u, and the
integral over angle in the first term of (101) is equivalent to integral over
P

nth) = [ LT 4 08 — s — 3 PapO(P > B =
2 2 Py
[(1 + )’ B*P — (14 ) (2 - 3u) BP* +5-(1 - 3u)P5] OP" > E/) k;j /1) )

where Py = ki +ky, and P_ is defined below. It is evident that the integral
is not zero if at least upper limit satisfies P2 = (k; + k9)? > E/p. It is
satisfied only for ky > (1 — p)k1/2p.

To find the lower limit we notice that 2k;kq cos 9 > (1 — p)k?/p, i.e. for
p < 1 it is positive, which means that at lower limit P_ = /E/u. Thus we

have " . )
ko) = © [ 22 ;'“>_
wilk) =0 (>, Fukan
2,2 _ (k1+k3)
(14 p)2E2P — ML%iEP3+,u21—5&P5} . (103)
VE/u

If we introduce new variable = ky/k;, denote x1 = (1 —p)/2u, P = 1+,
and E = 1 + pa? we represent (103) in the form
3

wy (ky) = Oz > xl)% {(1 + u)2E? [p - ﬂ _
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u-z—_—‘-‘?:—?’“?E [P3 - <§)3/2] Y Ll [P5 - (5>5/2] } . (104)

A2 ¢>uP
Now we consider the second term in (101).

wo(ky) = / €136 + 2 PYO(£2 > p2P*)d cos V. (105)

Because p?P? = p(p+1)E — pé?, we can represent £2 > p2P? as £2 > uE,
and the integral (105) over angles can be transformed into the one over ¢2
in the interval (ki — pks)? < €% < (ky + pky)%:

&t 2d 1
wll) = | G- (1] = — L

3— 1+ b
S By p—Fpes
5 3 ¢

(106)

The upper limit {; = ki + pky for p < 1 is always higher than uP =

p(ky + ko). The lower limit is £ = max(|k; — pks|, vVRE). For 0 < ky <

(1—p)k1/2p we have ky > pky and (kg — pko)? > pE. Thus - = ky — pks.

For (1 — p)ki/2p < ko we have (k; — pks)? < pE, and for £_ we must take
(- = VuE.

We again can introduce variable = ky/k;, then (106) is representable
as wa(z) =

N e
O > a1) (2L~ 2w — (uBY}t
pERBI( = ) - (uB) ) (107)

The first term in (107), which is valid for z in the whole range 0 < z < oo,
can be rearranged as follows

1 2
wyi () = 2k] {3 + 0+ 321 = 2p+ ph)e i + (T4 p)atut| - (108)

15

A.3 Integration over ko

Integration over ky in (101) after change of variables ky — z = ko/k; is
reduced to the form

T 2dx 9, 9
<w>=C [ 5z (=" )wi(2) + war(2) + waa()],  (109)
0
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where o? = 2T /uk} = T/uEy, E; = k}/2.
For wy; (108) integration can be easily done, and we obtain

b2k? 1 1
— 3 2 2(21 =2 2\ 2,2 (7 4 4]
< wyy > ——%(H”)E)[ + p +2( B+ p)atp +2( +p)atut|,
(110)
or after substitution of a? = 2T/k?y, it is
b’k 2, Tn o, 0’
=-—13 —(21 -2 7 .
<wn >= g 3 + 35, u+u)+2E12( + 1)
(111)
In particular, for 4 = 1 we have
b2 k? 5T T?
S 1 112
<> 247r[+2E1+E12}’ (112)

for p = 0 we obtain the result of elastic scattering on a fixed center:

b2k2
< W >= Tl’

and at T = 0 we obtain the scattering probability

< wyy > Gl (14 4?/3)
Wy D= ———
21 71_(1 + #)5 ©m
on a free nucleus at rest.
The terms < w; +wyy > after summation of (104) with the second term
in (107) is: w(z) + wes(z) =

o > xl)% {(1 + p)?E? [P - E] - f—"‘g‘—&‘%E [P?’ - (5)3/2] +

7
21=3u [ s (B
”T“[P - (%) ]+
S0 - o - B+ LB - ) - (P (113)

This expression contains a polynomial of 5-th order in power of z, and the
term proportional to E%/2:

(o) 4 (o) = 0(e > 2 5[5 st ) (%)5/} ()
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where ag = (4 + p)(3 + 2u + 3u?)/15,
2

2

a = (1—p)%, ay= %(19—2;&3#2), a3 §(1 1) (4+17p—10p2+ ),
4 2 2 34 2ﬂ2

ag =8y, ay = TE’)‘(4+13M+15/1 =T —pt), A(p) = 15 — o (4p) (14p)°.

(115)
After substitution of (114) into (109) and calculation of the integral by
parts we obtain

<wetn >= =01t +a(irle (~CZE) 41600, ()

where Cy = b%k?/3(1 + p)n

T:—-’ 1 _ ka l'k 2_5A (___) _ 1_ 2’

B ¢ (w) o LZ::? k(1)) (1) o (1-p)
—1 14 p] 4413 —10p% + b

q2(p)= 02 [8a4( )+ 15a5(p) a1 —15A(p) 2uﬂ]: p . pAp

The first term in (116) for small u7 — 0 decreases exponentially, and
for uT — oo grows in absolute magnitude as

([91 + q2(p)7]

The second term in (116) i

I(t,p) = \/Zﬁ\/—/ ( > dxx
[a3(1) + Taa(p) + g5 (1) — 7 q6(1)y/ 1/ (1 + pa?)], (117)
() = () = (=)', () = 5-09(0) = S AT 102415,

15 1
1a0(1) = 54+ 18+ 150" — 7’ — i),

4p
g6(p) = 41—5214(/%) = %(4 +u) (1 +p)’,

The integral (117) is equal to

107) = 52l + o) + st (32) -

45 =
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g6(1) 2 exp q:(”“)}.

2/
Here we introduced the function ¥(z — ®(z), where
U(z) = ﬁz/e_ﬂdx =1-®(z), where &(z)= %O/exp(—xg)dx
is the error function. The total result is
<w>:—b2k—%—{[3+ + £ (21—2u+y) T2'u2(7+,u)]—
3m(1+ p)s 2

\l—% [(1 — )+ %(4 +13p — 1042 + u3)] exp (—(—14—”—7/_1)2) +

21/1 [[(1_ W 5 (L= W)+ 17 = 100 4+ )+

2 .
_ 1 2 L
2(4+ 3u+15p% — 7l )]\11(2\//7)

%2(4+M)(1+M) eXp<1)\11<21;u_’7{)]} (118)

This function has asymptotics (k* = 2mE/h%):

b2k? Ty T
TY>=—w —2(21 — 2] for p=— —
w(p, B,T) > Sl 1 [3+ +2E( 2p + p)|, or pr 0,
(119)

212 3/2
and <w(y,E,T)> bk (T) 16

T
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It is shown that the Standard Scattering Theory (SST) does not correspond
to the principles of Standard Quantum Mechanics (SQM). The more consistent
theory is formulated. Some new results are obtained. Reflection and transmission
of the de Broglie wave packet by thin layers of matter is considered.
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