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1 Introduction. Definitions. Results

In a number of recent author’s papers, basis properties in standard spaces
of functions for eigenfunctions of nonlinear ordinary differential operators
are considered. Earlier, some interesting results in this direction were also
established in monograph [1]. Since the question is studied very little and
because of the difficulty of the problem, only the simplest ODEs were
considered. For example, in [2-4], the following problem is analyzed:

—u" + f(u®)u = My, u=u(z), z€(0,1),

1

u(0) = u(1) =0, /u2(m)d:c =1
0
where all quantities are real, A € R is a spectral parameter, and it is

assumed that f(s) is a smooth nondecreasing function of s > 0. In these
publications, it is proved that for any integer n > 0 the problem has
an eigenfunction u, possessing precisely n zeros in (0,1) and that such
an eigenfunction is unique up to the coefficient +1. The main result
states that the sequence of eigenfunctions {uy, }rn=0,2,.. is a Bary basis in
Ly = Ly(0,1), i. e., it is a basis and there exists an orthonormal basis
{€n}n=01,2,. in Ly for which i [|un — en||%2 < oo. We also note that the
author’s first paper [2] ContaTiL;g certain errors; corrections to this article
were published later in [5]. In [6,7], some modifications of the above
nonlinear eigenvalue problem are studied and similar statements on basis
properties of their eigenfunctions are obtained. In [8], an analog of the
Fourier transform associated with an eigenvalue problem for a nonlinear

ordinary differential operator on a half-line is considered.
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In the present publication, we aim to present an improvement of our
result from [9] where the following nonlinear problem without a spectral

parameter is considered:
v = f(uP)u, u=u(z), z€(0,1), (1)

u(0) = u(1) = 0; (2)

here all variables are real-valued. Everywhere we assume the following:

(f) Let f(u?)u be a continuously differentiable function of u € R and
let f(0) >0 and f(+00) = —c0.
It is very well known now (and partially proved in [9]) that under as-
sumption (f) for each integer n > 0 problem (1)-(2) has a solution wuy,
which possesses precisely n zeros in (0,1) and that generally speaking
this solution with precisely n zeros is not unique. We call a sequence of
solutions {uy }n=0,1,2,.. of problem (1)-(2) standard if any nth solution wu,
has precisely n zeros in (0,1). The main result in [9] states the existence
of a so < 0 such that for any s < sp an arbitrary standard sequence
of solutions {un}n=0,1,,.. is a basis in H*(0,1); in addition, the sequence
{u”/l|u"“H’(011)}n=0,1,2,... is a Riesz basis in H*(0,1) (here H*(0,1) are
well known Sobolev spaces of negative indices). In the present paper, we
in particular improve this result showing the above properties of a stan-
dard system {un}n=0,1,2,.. in Ly (see Theorem 3 below). Partially for this
aim, we first obtain a result of general type on bases in L, (see Theo-

rem 1 below); we believe that this result is of a separate interest. Also,



a direct corollary of Theorem 1 is Theorem 2 below; we establish it for
completeness of our presentation.

Now we introduce some notation. First, everywhere by
¢,C,Cy,Cy, C",C", ... we denote positive constants. By Ly(a,b) we denote
the standard Lebesgue space consisting of functions square integrable be-
tween a and b, in which we take the standard inner product (g, h)r,() =
= fbg(x)h(x)d:c and the corresponding norm ||g||z,(5) = (9, g)}l/:(a,b). We
a,ls((l) denote by (-,-) and || - || the quantities (-,")z,(0,1) and || - ||z,(0,1), Te-
spectively, and set Ly = L;(0,1). Let l; be the standard space of square
summable sequences @ = (ao, a1, az, ...), b= (bo, by, by, ...) of real numbers
G, by, ... with the scalar product (@, 5)12 = i anb, and the corresponding
norm |||, = (@, 6)112/2‘ For a Banach sp:c—e? X with a norm || - ||x, let
L(X;X) be the linear space of linear bounded operators acting from X
into X, equipped with the norm ||A||zx;x) = sup  ||Az||x. We

z€X: |lellx=1

also set || - [|c(zyL,) = I - I

Now we recall, for convenience of readers, some definitions partially

known.

Definition 1 A system {en}n=01,2,.. C L2(a,d) is called a basis in
Ly(a,b) if for any g € La(a,b) there exists a unique sequence {an}n=o12,..
of real numbers a, such that g =Y ane, in Ly(a,b).

n=0
There' are different definitions of Riesz bases. In accordance with

the classical paper by N.K. Bary [10], where this concept was introduced



for the first time, we accept the following definition.

Definition 2 Let {e, }n=0,1,2,.. be a basis in Ly(a,b). Then, it is called

(oo}
a Riesz basis in this space if the series Y, ane, with real coefficients a,
n=0

converges in Ly(a,b) when and only when Y a2 < oco.
n=0
Remark 1 It is proved in the above-mentioned paper [10] (see also
[4]) that if {e,}n=0,1,2,. is a Riesz basis in Lj(a,b) in the sense of this
definition, then there exist constants 0 < ¢ < C such that

2

o0 oo (e o)

2 2

c E a, < E aney <C E a.
n=0 n=0 Ly (a,b) n=0

for all @ = (ao, a1, az,...) € l5. These estimates have been often used to

define Riesz bases.
We also accept the following two definitions.

Definition 3 A system {gn}n=01,2,. C La(a,b) is called w-linearly
independent in Ly(a,bd) if the equality > ang, = 0, where a, are real

n=0
numbers, holds in Ly(a,b) when and only when 0 = ap = a; = ay = ....

Definition 4 Two systems {hy}n=0,1,2,. and {en}n=01,2,.. belonging
to Ly(a,b) are called quadratically close to each other in Ly(a,b) if

o0
ZO lhn = €nll?,(ap) < oo
n=



Our first result is the following.

Theorem 1 Let {hy }n=0,1,2,.. be a sequence of real-valued, three times
continuously differentiable functions h,, of the argument x € R and let for
each integer n > 0 the following take place:

(@) ho (& + 5) = —ha(@) and b (52 +7) = b (3 —2) for al
z€eR;

(b) B () > 0, hi(w) < 0 and hY(x) <0 for all = € (0
(c) there exist 0 < ¢ < C' such that ¢ < h, (

1 .
3 m))
+1)> < C for all n.
Then, the system {hy}n=012,.. 15 a Riesz basis in L,.

Remark 2 Clearly, it follows from Theorem 1 that if a system of
functions {hn}n=0,1,2,.. satisfies all conditions of this theorem, maybe ex-

cept (c), then it is a basis in L.
The result below is a direct corollary of Theorem 1.

Theorem 2 Let h(x) be a real-valued three times continuously differ-
entiable function of x € R satisfying the following:
(a) (1 4+ z) = —h(z) and h(1/2 + z) = h(1/2 — z) for all z € R;
(b) k'(z) >0, h"(z) <0 and h"(z) <0 for all z € (0,1/2);
Then, the sequence of functions hy(z) = h((n+1)z), wheren =0,1,2, ...,

ts a Riesz basis in L.



We apply Theorem 1 to prove the following statement related to
problem (1)-(2).

Theorem 3 Let assumption (f) be valid and let in addition f(u?) +
+ 2u?f'(u?) < 0 for all sufficiently large u > 0. Let {un}n=o012... be an
arbitrary standard sequence of solutions of problem (1)-(2). Then, the

sequence {||un||" un},_o, , . is a Riesz basis in Ly.

When we prove this result, we exploit the following theorem of N.K.
Bary.

Bary Theorem Let {€,}n=01,2,.. be a Riesz basis in Ly(a,b) and let

a system {hp}n=01,2,. C La(a,b) be w-linearly independent and quadrati-
cally close to {e,}n=0,1,2,.. in La(a,b). Then, the system {hn}n=012,. is @

Riesz basis in Ly(a,b).

This result, in a somewhat weaker form, is proved by N.K. Bary in
[10] and, just in the present form, it is proved in [4].

In the next Section 2, we prove Theorem 1, and in Section 3 Theorem

2 Proof of Theorem 1

Let en(z) = V2sin m(n+ 1)z, n = 0,1,2,..., so that {e,}n=0,12,. is an

orthonormal basis in L.



Lemma 1 Let a function g satisfy condition (a) of Theorem 1 with
an integer n > 0 and let it be positive in (0 L) Then,

Yn41/°
o0
= E Cmem(s) In Ly
m=0
for some real coefficients c,, where co = ...=c,_; =0 and ¢, > 0.

Proof repeats the proof of a similar statement from [9]. We have the
above expansion in L, (0, +1) with ¢, = 0if m # (n+1)({+1)—1 for all
integer [ > 0 (this occurs because the functions {€(n+1)(m+1)-1}m=0,12,...
obviously form an orthogonal basis in L, (0, ﬁq)) Therefore, in partic-

ular ¢g = ... = ¢c,—1 = 0. We observe that each function €(n+1)(m+1)—1

_2

becomes zero at the points - 1, )

., 1. Further, since due to condition
(a) of Theorem 1 the function g is obviously odd with respect to these
points and each function e(,11)(m+1)-1(2) is odd, too, this expansion also

holds in each space Ly (n+1’ n+1) L, (n+1’ n+1) o L (n+1, ) Finally,

¢, > 0 because e,(z) and g(z) are of the same sign everywhere.(]

Due to Lemma 1, we have the following sequence of expansions:

Za em(-)in Ly, ag =...=ar_,=0anda? >0, n=0,1,2,....
m=0
(3)
Lemma 2 In (3), (a?)~ lla’(n+1)(m+l 1l £ (m+1)72 for all n and m.
In addition, @lupr)miry—1 = 0 f m =2l +1 for some [ =0,1,2,....
Proof. The second claim of this lemma is obvious because

€(n+1)(2i+2)-1(2) is odd with respect to the middles of the intervals ( , +1)

7



(nlﬁv nz?) s eees (n”?, 1) and the function h,(z) is even so that

Alnt1)(2i42)-1 = (€(n+1)(2142)-1, hn) = 0. Let us prove the first one. Due

to the properties of the functions A, and e(n41)(m+1)-1, where m = 21, we

have the following sequence of equalities:

hy(z)sinm(n+ 1)(m + 1)zdz

o,

(aZ)_lla?n+l)(m+l)—1| = 1
[ hu(z)sinm(n + 1)zdz
0

1/2(n+1)
hy(z)sinm(n + 1)(m + 1)zdz

0
1/2(nt1)
[ ha(z)sinm(n + 1)zde
0
1/2(n+1)
| Ri(z)cosm(n+ 1)(m + 1)zdz
— -1 0 _
= (m+1) 1/2(n+1) -
| Ri(z)cosm(n+ 1)zdz

0

1
h! s ) cos Zlmtl)s
o n \ 2(n+1) 2
- .

A (2(n+1)) cos %2ds

0

=(m+1)7"

It is in fact proved in (8], Lemma 4, that under the conditions

B! (m) > 0, k" (-2—(—+—1)) < 0 and h;;'(z(n;l)) < 0 for s € (0,1)

immediately following from assumption (b) of Theorem 1, the expression

in the right-hand side becomes maximal when &/ (-) is a positive constant.

Hence, we easily get

(@) " Mafustymiry—1] < (m+1)72.0



Since due to the conditions of Theorem 1 we have 0 < ¢ < |a?| <

< C, clearly, to prove this theorem, it suffices to prove that the system
{En}nzoylyzym with A, = (a?)~'h, is a Riesz basis in L.

Lemma 3 Let {gy }n=01.2,.. be a sequence of functions such that each
nth function g, satisfies condition (a) of Theorem 1 and is positive in
(0, 'n+1) Then, the system {gn}n=0,1,2,. ts w-linearly independent in L.

Proof. Suppose the contrary and let io: dngn = 0 in L, where real
coefficients d,, are not all equal to zero. Lzointeger [ > 0 be such that
do = ... = di_; = 0 and d; # 0. Then, we multiply this equality by ¢
in Ly and, due to Lemma 1, we obtain ¢;d; = 0 where ¢; # 0 is the [th

coefficient in the expansion of g; over the basis {€,}n=01,2... This contra-

diction proves Lemma 3.0

Let b7 = (a?)"'a?, Id be the unit operator in L,, for each in-
teger m > 0 B, € L(Lg;Ly) be the operator mapping any e, into
b?n+1)(m+1)—le(”+1)(m+1)—1’ and let B = )  B,. We obviously have for

m=1
each m:

| Bml| < S:P |b?n+l)(m+1)—1| = bp.

Further, by Lemma 2,

(e}

ibm i 20+1)” /(2x+ 1) %dz = 1/4,

m=1 =1 1/2

hence, B € L(L3; L;) and || B|| < 1/4; therefore, the operator A = Id+ B
has a bounded inverse A™! = Id+ Y (—1)"B". Note also that Ae, = h,,.

n=1
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(o]
Take now an arbitrary v € Ly and let u = A7'v = 3 cpe, € Ly

n=0

o0
where ¢, are real coefficients. Then, 3 ¢2 < oo because {e,}n=0,1,2,. is
n=0

[o.e]
an orthonormal basis in Ly. Since the series Y c,e, converges in L,, we
n=0

0 00 _

have v = Au = ) c,Ae, = Y cnh, where all infinite sums converge
n=0 n=0

in Ly, too. Therefore, in view of Lemma 3, the system {h,}n=01.2,. is

o0 oo
a basis in Ly and, if 3 ¢2 < oo, then the series 3 c,h, converges in

n=0 n=0
o0
L;. Conversely, let a series u = > Cnhy converge in Ly. Then, we have:
oo Oon:O
A™'w = 37 cpe, in Ly; hence Y 2 < oo, Thus, {hn}n=012,. is a Riesz
n=0 n=0

basis in Ly, and Theorem 1 is proved.O

3 Proof of Theorem 3

As it is proved in [9] (see Proposition in [9]), any nth solution u, of prob-
lem (1)-(2), that possesses precisely n zeros in (0,1), satisfies condition
(a) of Theorem 1 and, in addition, it is strictly monotone (ul,(z) # 0)
in the interval (0, 2—(#10 Let @ > 0 be an arbitrary number such that
f(u?) <0 and f(u?) 4 2u?f'(u?) < 0 for all u > @. Let {tn}n=o1.2,. be
an arbitrary standard system of solutions of problem (1)-(2). We accept
that un(z) > 0 for € (0, 37) for each n which is possible without
the loss of generality due to the invariance of equation (1) with respect
to the change u(z) — —u(z). Due to the standard comparison theorem
|f(u?)] = 400 as n — oo; hence u, (%LI—H—)) — 400 as

w0 un(1/20n+1)]

n — oo. For each sufficiently large n denote by z,, € (0 ) the point

) 2(n+1)

for which u,(z,) = u.
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We have

1/2(n41)

Tn

for some &, € (xn, N ! ); hence, since u),(z,) > ul,(Z,) (because

n+1)
f(u?) < 0 for u > u and, therefore, u”(z) < 0 for z € (xn, '2_(;114-—1)))7 we

derive

, 3 1
(@) 2 o (577 ) (D) )

for all sufficiently large n. Since in view of equation (1)

" ! o /
sup max, lun(z)] < C', we have ,Doin lul,(z)| > un (2(n+1)) (n+1) for
all sufficiently large n; therefore,

0<z,<(n4+1)7" [un (2(7111))]_1 (5)

for all sufficiently large n.

Take an arbitrary integer sufficiently large n > 0. We now want,
using the function wu,, to construct a function h,, that satisfies the condi-
tions of Theorem 1. Introduce the linear function /,(z) = %x equal to 0
at z = 0 and to U = u,(z,) at = = z,. Multiply equation (1), written for
U = Uy, by 2ul (z) and integrate the result from 0 to . Then, we obtain

the identity
{[un(@)]” + F(up(2))} =0, z€R, (6)

where F(s) = —ff t)dt. Since due to condition (f) F(u?) — +o0o as
u — 00, without the loss of generality we can accept that w > 0 is so

large that [af(@?®)| > |uf(u?)| and F(u?) > F(u?) for all u € [0,%). Then,
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it immediately follows from (6) that
un(n) < uy(e), z €10,2n), (7)

for all sufficiently large n. By (7), we have

Tn

U= /u;(x)dm > zoun (T5);

0

therefore,

w(2a) < — = I1(a) (8)

for all sufficiently large n.
Take a sufficiently small A € (0, %) and a continuous function w; (z)
equal to ul'(z) for z € [zn, 2(711—_,_1)} and such that u!'(z) < w(z) <0 for
z € [z, — A, z,] and wy(z) = 0 for z € [0,z, — A). For g;(z) we take the

function equal to u,(z) for z € [xn, m} and for z € [0,z,) defined by

the rule
91 (z) = up(z,) —/wl(t)dt, 91(z) = up(zn) — /91'(f)dt,

m@=w@0—/dwﬁ (9)

Then, obviously g;(z) is a function three times continuously differentiable
in [0, 2(Tl+1—)] and satisfying condition (b) of Theorem 1. It is very easy
to see that if A > 0 is sufficiently small, then gi(z, — A) and ¢}(z, — A)
are arbitrary close respectively to un(z,) and u),(z,), and that g{(z) is

arbitrary close to u;(z,) for all z € [0,z, — A]. Now, due to our choice
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of @ > 0, we get that if A > 0 is sufficiently small, then ¢,(0) is arbitrary

close to
2

tn(2n) = @nti(20) + (@) (10)

which is negative because

0 = un(0) = un(zn) — Tpu, (z,) + /dx/ux(t)dt
0 z

where due to our choice of @ and equation (1) the last term in the right-
hand side of this equality is larger than the last term in (10). We fix a
function ¢;(z) satisfying ¢;(0) < 0.

Take now a sufficiently small A € (0, ’”2—") and a continuous function

wz(z) < 0 equal to u”'(z) for z € [wn, 2(n1+1) and to 0 for z € [0,z, — A)

such that

Tn

[ rto)de = i)

Tn—A

Then, defining the function g,(z) just as g;(z) in (9) with the substitution
of wy in place of w; and of g, in place of g;, we get that if A > 0 is
sufficiently small, then g;(z, — A) and gj(z, — A) are arbitrary close,
respectively, to u,(z,) and u}(z,), and ¢§(z) =0 for 0 < z < z, — A.
Therefore, due to (8) g2(0) > 0 if A > 0 is sufficiently small, for all
sufficiently large n. We fix a function g,(z) satisfying g5(0) > 0.

Now, consider the family of functions gx(z) = Agi(z) + (1 — N)gz(z)
where A € [0,1]. Clearly, there exists a unique Ay € (0,1) such that
9x(0) = 0; in addition, g,(z) satisfies condition (b) of Theorem 1. Con-

tinue gy,(z) onto the entire real line R by the rules: gy, (n—ijl— + :v) =
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= —gx, () and gy, (m + x) = gx (m - :c) and take the obtained
function for h,(z). Then, this function h, satisfies conditions (a) and (b)
of Theorem 1.

So, we have constructed, for all sufficiently large n, a sequence of
functions h,. For all other, small values of n for h, we take arbitrary
functions satisfying the conditions of Theorem 1. By construction, the
functions {hn }n=0,1,2,.. satisfy conditions (a) and (b) of Theorem 1.

Let o, = [hn (m)] _1. Then, by Theorem 1, the system
{@nhn}n=01,2,. is a Riesz basis in L,. Further, by Lemma 3, the system
{anUn}n=012,.. is w-linearly independent in L,. Also, due to equation (1)

and by construction, there exists C; > 0 such that

" — 2 <C
Un(@)l = max [uf(u’)] < Oy

and

max [k (z)] = |hy(2n)| = |up(2n)] = [@f(3*)] < Cy

z€[0,zn)
for all sufficiently large n. Hence, |ul,(z)—hl(z)| < Cyz,, for all sufficiently
large n and for all z € [0, z,]. Hence, due to (5),

|ttty — anhn||* < Caz? < Cy(n+1)*

for all sufficiently large n and therefore, the systems {antn}n=01,2,. and
{anhn}n=0,1,2,. are quadratically close in L. Thus, in view of the Bary

Theorem, Theorem 3 is proved.(]

The author is thankful to Mrs. G.G. Sandukovskaya for editing the

text.
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Kupkos ILE. E5-2001-203
IpuMmeps! cucteM (pyHKLWMIA, sBnsoomuxcs 6asucamu Pucca
B L,(0,1). IIpunoxenue x HEMUHEHHON IPaHUYHOMN 3a1aye

IpencraBneHsl IpUMepPhl CUCTEM (PYHKIMI, ABagomuxca 6a3ucamu Pucca
B L,(0,1). 3areM 3TOT pe3yabTaT IPUMEHEH I YCHICHHUS MPENCTaBIEHHOIO B pa-
6ote [9] yrBepXaeHHs: MOKa3aHO, YTO MPOU3BOIbHAd «CTaHAApTHasA» CUCTEMA pe-
LIEHWI HEKOTOPOM HEMHEHHOHN IPaHUYHOM 3aJa4H, HOPMUPOBAHHBIX HA €AUHMILY
B TOM Xe IPOCTPaHCTBe, ecTh 6a3uc Pucca B 3ToM mpocrpaHcTse. IlpuBeneHHbIe
B HaCTOSINEH paboTe HOKa3aTenbCTBa BEChMa BJIEMEHTAPHBI.

Pa6ora BeinonueHa B JlJaboparopuu teoperuyeckoit ¢pusuxku uM. H.H.Boromio-
6oBa OMSIN.

Ipenpuar OGbENMHEHHOTO HHCTHTYTA SNEPHBIX HccnenoBaHui. Ty6Ha, 2001

Zhidkov P.E. E5-2001-203
Examples of Systems of Functions Being Riesz Bases in L,(0,1).
Application to a Nonlinear Boundary Value Problem

We establish examples of systems of functions being Riesz bases in L,(0,1).
We then apply this result to improve a theorem presented in [9] showing that
an arbitrary «standard» system of solutions of a nonlinear boundary value prob-
lem, normalized to 1 in the same space, is a Riesz basis in this space. The proofs
in this work are quite elementary.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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