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1 Introduction

A spherical probe is allowed one to roll on the outside while main-
taining contact with the van der Waals surface. The accessible surface
is a continuous sheet defined by the locus of the centre of the probe.
The accessible surface area of the macromolecule is crucial for comput-
ing the effect of protein solvation. The free energy of protein-solvent
interaction can be approximately derived from the solvent-accessible
surface areas A; of atoms by the relation

Epya = Y 0iAq, (1)

where o is an empirical solvation parameter depending on the atom
type.

Except the top point, there exists a natural continuous correspon-
dence between the points of the sphere and the points of the plane.

2 Parametrization of the Sphere

Let (z;,1:, 2;) be Cartesian coordinates of the centre of the i-th sphere
of the accessible surface of a molecule and r; be the radius of this
sphere. So,

(@—z)’+ @y —w)’+(—-z)=r (2)



for every its point (z,y, z). Equations

€=z + 4ri2t =y + 47‘35 2=z 41 87'1.3
- 4 t2+52+47";’ y - yl t2+52+47‘?’ - ~ 7 t2+82+41"?

(3)
describe a relation between the points of the plane (¢,s) € R? and the
points of the sphere, except the point (z;,y;, z; + r;). Indeed, it is a
projection of points of the i-th sphere from the top point of this sphere
onto the plane. The reverse correspondence is

t= -2, %
Z=2i =T
— (4)
§= —2p; 4
Z—2;—1r;

The part of the ¢-th sphere which is not covered by the j-th sphere,
satisfies (2) and the following inequality

(0= 2;)2+ (y = y)? + (= = 5)2 > r. (5)
We only need a relation
(> + 8%) + Uit + chs+ df > 0 (6)
to describe the corresponding area in the plane where
a5 = (zi = 2;)* + (i — 9;)* + (s +ri = ) = 1}
b; = 8r2(zi — z;j)
(7)

cé =872 (yi — y;)
i = 4r? [(mz -2+ (yi —y)2+ (2 — i — 7)) — rf] .

Part of the surface area A; parametrized by (3) can be computed
by the following form

e )
l_Q ot' ot’ ot ds’ s’ Os

It can be easily shown that

B 16r2dtds
Ai = é/ (12 + s2 +4r?)2 (9)

i dt ds. ®)




where

Qi ={(t,s) € RZ; aé(t2 +s2) +b§~t —|—c§s+ d; >0 forall j#1}.
(10)

3 Calculation of the’Area

Inequality (6) presents a subset of R? that can be only of the next
type:

a) empty set

o

singleton

o

o,

half plane (a; =0)
exterior of a circle (aé > 0)
f) all plane R2.

)

) .

) interior of a circle (a} < 0)
)

)

So, by (10) the region €; is an intersection of such sets (see fig. 1).
There is a possibility to exclude lines and circles with big radius to
avoid inaccuracy in computation. We can turn all molecular body by
matrix
cos pgsinyg —singy oS o cos Yo
sinpgsinyy €osgpg  sin @ cos Yo (11)
— COs Yo ' 0 sin o

to come an appropriate point (z; + r; cos g €0s Yo, ¥; + 4 Sin g cos Yo,
zi + r;sinyo) of the i-th sphere in the top.

Suppose, §; is bounded and of nonzero measure, N; is the set of
order numbers of the spheres which intersect the i-th sphere and A; ‘
is the number of arcs which generate the boundary of €2; and descend
from the 7-th sphere. Greenes theorem allows one to express the inte-
gral (9) as the sum

sd
0> / T (12)

JEN; A= 1



Figure 1: Region €2; with three vertices

where all arcs C’;:, ) together design the boundary of Q; and are orien-
tated positively with respect to §2;. The image of each arc C’; ) is part
of a circle or a line.

If % \ is the circle arc

bi' bi-2+Ci»2—-4ai-di-
=+ [ s
J J

i [0 242 —daids for ¢e (a;’)\; ﬂ;‘,k% (13)
S = — 21(%'— + _LW_L sin ©
J J
we get (dropping the upper index 7) the next integral IJ’:’/\ in the form

2 tds—sdt __ .. 2 .
| 2ripiae = [(O‘M_
Cia ¢

BRI Ny Gtaria; [ ]
ﬂj”\) Slgn(a]) + 2 ™ - 2arctan 2a?Vj sin ——;Bj'/\;‘a'm ,
(14)
where
Uj = |aj[(bj2 + cj2 — 2a;d; + 8ri2a]2) cos M—
(15)

% \/()J2 + CJ2 —4a;d;(b; cos zl#u + ¢jsin S2ATELA “;‘ﬁ"*)
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and

%:\/(4ri2aj—d) +4r(b? +c?). (16)
If the arc C’; is a full circle and §; — a; = 27, we can write I; as

, tds — sdt ) d; + 4rla;
o 2 _ 2 X J )
/27} m—? = 27“2~ - (—slgn(aj) + T) . (17)
ct
J

One can easily derive from (14) the relation we will need below

i, | ey = 1
c(r) ’

where C'(r) is a positively orientated circle part with the fixed centre
point accordant to the radius r and the angle ~.
If €\ is the line segment

t=to+cj ¢
for ¢ € (a;x 850, (19)
s=s9—bj-p

the curvilinear integral I2 s
/ op tds — sdt
i g2 2+ 52 +4r2 4r2

2ri2d]~ (bj2 + Cf)ﬁj,)\ + ¢t — bjso
- 2(12 2 - | arctan 2 2(12 2 -
\/d]2+4ri (b7 +c?) \/dj +4r2 (b7 +cf)
(ij + C]-Q)O(j,,\ + Cjto — bjso
\/d]-2 +4r2(b? + CJZ)

Substitution a; = 0 in (17) or B; = oo and a; = —oo in (20) brings
the integral I}

(20)

— arctan

/ o tds — sdt _ 2ri27rdj

T3 2 L A2 - — . (21)
Bosdn® o Jag s arf(0} + )

ct
J

over the full line C'.
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" An unbounded area €; forms the whole plane except some rmgsm
(fig. 2) or an angle of size ¥ without exempt bounded part (fig. 3). So,
by (12) and (18) the surface area is

Figure 2: Full angle around Figure 3: Restricted angle
tds — sdt
A= +zz/f 5 (22)
jemi At 12 4+ s2 4 4r; ‘
where

0, €, is bounded
4rr?, Q; is all plane except several rings
2r2y, €, is an angle of size y with some
picked bounded part.

X () = (23)

4 Implementation in ACCAR

The system ACCAR was originally created for the MATLAB environ-
ment. Every spherical part A; of the accessible surface area is calcu-
lated particularly in several cycles. In the first cycle all spheres which



do not achieve the i-th sphere are removed from the list of meaningful
spheres. If some sphere in full cover the i-th sphere, partial calculation
is stopped with result A; = 0.

Figure 4: Visualization in ACCAR

The further cycle compares each pair of relevant regions (6). The
region which is a superset of another is removed. If an intersection of
two regions is of measure zero, we have A; = 0 again. In this cycle the
vertices are calculated. Let the vertices [t; k15 5; k1], [tj k2, Sjk 2] come
from the intersection of borders of the regions 7 and k. If this borders



are circles, then
—2(bj =) (dj —dj. )~ (b e —bjcp ) (e —¢j ) E (i = )/ Dj
2((b—b},) 2 +(cf—c)?)

—2(c} e} )(dj—d}, ) —(cf b= ;b)) (b =by ) F (55 =5}, )4 /D ,,;
2((b;—b;€)2 (c]—ck)2)
where D;j = 4(b;cd;~ - b;d;c)(b; - bl )+

ik =

Sk =

+4(crd; — chdy) (s — cf) — 4(d — d})? + (e} by — chby)?

(24)
b b

forb’—;L,cg EL,d;——Lb' &= —l’jd’— and v € {1;2}.
If the j- th region is bounded by circle and the k-th one-by line,

L . —2bkdk—ck(b;ck—bkcg):i:ckw/Dj,k

ki = (747 7)

s _ _chdk+bk(bgck—bkc‘;‘)q:bk1/Dj,k

Ry = 2(bF+<2)?) ’ (25)

where Djyk = 4(bé-dk. —_ bkd;)bk—l—
+4(c;~al;C - ckd;)ck —4d? + (ckb; - c;bk)2

b . d . o« e,
for b} = E,L-’ ;= %, d; = Ej' and v € {1;2}. If [t;x;s;k) is an initial

point or an endpoint of an arc on the j-th circle then

B> ) . 7
Z(lj . S],k + Cj

tany = ——m——
2(1} -tj‘k-l-b;' ’

(26)

where v = oz;'» ory = ﬁ; respectively. The following implicit equation is
preferred in the ACCAR for computation of the gradient

(ajbr — akbj)* + (ajcr — akcj)® + (b2 + c —4dajd;) - af -

—(bF + ¢} — dardy) - a} +2,/b} + c? — dajd; - @y (27)

-sign a; - ((a;bp — axb;) cosy + (ajcr — axc;)siny).



The intersection of two lines is evidently

tik = —Zjvdk_zkdjf

ST (28)
P djby—dib;

3k = bjck—bgc; *

Subsequently three lists are built up:

a) the list of circles (lines) with no vertex,

)
b) the list of vertices with record of order numbers of pertinent
circles (lines),

c) the list of circles (lines) with vertices.

The procedure is completed by integration over the relevant circles,
lines and arcs by (17), (21), (14) and (20) and summarized by (22).

5 Calculation of the Gradient

The calculation of the gradient of the surface area dependent upon a
position of the centre of j-th sphere bears on derivation of I]’: in (17),
(21), (14) and (20). If the j-th circle on the border of Q; contains no
vertex, then

04 _ 9L 9(aj, b, ¢;, d}) (29)
Oej yjnz) — 0ay, b, ¢ d)  Oliyyirz)
where
Al B A g 2@ — @) 20y —yi) 20z —zm— )
o) [ mr o ;
0 ¥502) 0 —8r? 0
8ri(zj —wi) 8rf(y;—wi) 8ri(zj —zi+ri)
(30)
by (7) and |
3]} B
9(a} b5 5> &)
8rim 2(pi2 1 (2 _ 94 i 1
B -2-'<4’"i(z‘+cj— ajd;)+ (31)

((47“22(1; - d;)2 + 4ri2(b§~2 + 03-2))
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+2d§2,‘ —b; (d; + 47"2-2(13-), —cé(dé- + 4ri2a§~), b;'? - 032 - 2a§d§» + 8ri2a§2)

by (17).
Let the j-th circle on the border of Q; consist of A; arcs (see 12).
Then

AS ) 7 4
04 Ot T, i) o)
a(at, by el di) o O(alk, b d)

where Clix,m is part of the kj-th circle on the border of ; that takes
up C’;M\ in the initial point and CIZA»V)\ is part of the [)-th circle that
takes up C7 , in the endpoint. There was used (27) in differentiation
of the right side of (32).

References

[1] R. Fraczkiewicz, W. Braun Ezact and Efficient Analytical Cal-
culation of the Accessible Surface Areas and Their Gradients for

Macromolecules Journal of Computational Chemistry, Vol. 19, No.
3, pp. 319-333 (1998).

[2] B. von Freyberg, W. Braun Minimization of Empirical Energy
Functions in Proteins Including Hydrophobic Surface Area Effects
Journal of Computational Chemistry, Vol. 14, No. 5, pp. 510-521
(1993).

(3] T.J. Richmond Solvent Accessible Surface Area and Excluded Vol-
ume in Proteins Journal of Molecular Biology, No. 178, pp. 63-89
(1984).

Received by Publishing Department
on October 23, 2001.

10



Aitps D.A. 1 1p. E5-2001-225
Pacuer obsactu, JOCTUKHUMOIA pacTBOPHTENIEM,
nyreM npeoGpa3oBaHus B [UIOCKOCTb

TpamguLMOHHBIE METONbl AHATMTHYECKOTO BBIYHCIEHHS XOCTHXHMMOH NOBEPXHOCTHOM
obyacTi OCHOBaHbI Ha TeopeMe I'aycca—BoHH®. DTa MOBEpXHOCTh COCTaBIIEHA W3 YacTei
chep, OrpaHHYEHHBIX AyraMd. Mbl mpeoGpa3oBaiy NMpoGiieMy BHIYMCIIEHHS YacTH IOBepX-
HOCTHOI 00/71acTH Ha KPMBOJIMHEHHBIH MHTErpai Ha IVIOCKOCTH. YpaBHEHUs

2 2 3
4ri’t 4r;’s 8r;
X=Xx;+ 7. Y=Yit 3, I=Zj+ri—
t2+s2+4r,~ 12 2

+s +4r t +s2+4r,-2

OIUCHIBAIOT OTHOLIEHUE MEXAY TOYKaMH MOBEPXHOCTH (f,5) € R 2 4 Toukamu ccbepsl, Kpome
TOYKH (X;,Y;,2; + ;). [L1omane He3aKphITOH YaCTH MMOBEPXHOCTH i-H chepbl MOXKET OBITH BbI-
paxeHa KaKk

Al

24‘ 272 tds— sdt

i 5 2
EN A=1 t“+s“+4r;
J C/,kz i

IMockonsKy cepruyeckue Kpyru npeoOpasyioTcs B INIOCKOCTH Ha KPYTH WM JIMHUH, pac-
CMaTPHUBAIOTCS TONBKO MHTErpasibl MO YacTIM KPYroB M JIMHHH.

Pa6ora BrinonneHa B Jlabopatopun MHGOpMaLHOHHBIX TexHonornin OWSIH.

Coobuienre O6beIMHEHHOTO HHCTHTYTA SIePHBIX HccnenoBanuid. dyOHa, 2001

Ayrjan E.A. et al. E5-2001-225
Solvent Accessible Surface Area Calculation Using Transformation
into the Plane

Traditional routines for analytical calculation of the accessible surface area are based
on the global Gauss—Bonnet theorem. This surface is composed from parts of spheres bound-
ed by circle arcs. We transformed the problem of calculation of the part of surface area
onto curvilinear integral in the plane. Equations

4ri2t 4r,-2s 87‘,‘3
X=Xi+—5—5—5, Y=Y+~ 75, I=2j+tl——5 55
' 1‘2+s2+4r,~2 ' t2+s2+4r,-2 Y t2+s2+4r,~2

describe relation between points of the plane (#,5) € R 2 and points of the sphere, except the
point (x;,y;,z;+r;). The surface area of the exposed part of ith sphere can be expressed as

2 I 2 _ tds—sdt

jeN lc 2 1245 +4r,

As spherical circles are mapped by this transformation onto circles or lines, only inte-
grals along parts of circles and lines are considered.

The investigation has been performed at the Laboratory of Information Technologies,
JINR.
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