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1 Introduction. Notation. Formulation of
results

In the present paper, we continue investigations begun in [1]. We consider
the equation

o+ f(u2)u = Mu, u=u(z), =€ (0,+00), (1)
supplied with the following boundary conditions:
u(0) = p, v'(0) =0, sup |u(z)| < oo. (2)
z>0

Hereafter all quantities are real, A € R is a spectral parameter, f is a
given function such that f(u?)u is continuously differentiable with respect
to u € R, and p is an arbitrary positive parameter fixed throughout the
paper. In this paper, it is proved that an arbitrary infinitely differentiable
function defined on the half-line z > 0, satisfying some conditions at z = 0
and rapidly decaying as ¢ — +oo, can be uniquely expanded into an
integral over eigenfunctions of this problem similar to the representation
of this function by the Fourier transform.

In view of our assumption on the function f, for the Cauchy prob-
lem for equation (1) with arbitrary initial data standard local existence,
uniqueness and continuous dependence theorems take place. The case
p < 0 can obviously be reduced to the considered one by the change of
variables u(z) — —u(z). In addition, since the boundary conditions (2)
contain Cauchy data as a part, for each value of the parameter A at most
one function u(z) satisfying the problem (1),(2) can exist. If a pair (A, u)
consisting of a real number A and a twice continuously differentiable func-
tion u = u(z) of the argument = > 0 satisfies the problem (1),(2), then
we call A an eigenvalue and u(z) the corresponding eigenfunction of this
problem. We call the set A of all its eigenvalues the spectrum of this prob-
lem. We shall also denote by u(\,z) eigenfunctions indicating explicitly
their dependence on A € A.

Throughout the paper, the assumptions about the function f are
the following.

(f) Let f(s) be a real-valued continuous nondecreasing function of
the argument s > 0, and let f(u?®)u be a ten-time continuously differen-
tiable function of the argument u € R.



We introduce the following notation. By Ls(a,b), where —oo <
< a < b < 400, we denote the usual Lebesgue space, consisting of real-
valued functions of the argument z € (a,b), square integrable between a
b

and b, with the scalar product (u,v)r,@p = [ u(z)v(z)dz and the norm

1w | Laa) = (u,u)i(a,b). We set e(k,z) = pcos If so that —el/ (k,z) =
= z(k)e(k,z), e(k,0) = p, €,(k,0) = 0 where z(k) = (1)2. Also, let

2%
l[(z) = 2z +1. We denote by S the Schwartz space of functions g infinitely

differentiable in R and such that sup |mm%l < oo forallm,n=0,1,2,...,
z€R
and by S., the space of restrictions onto [0, +00) of even functions from

S. For any ¢(-) € S, let g(-) € S. be its renormalized Fourier transform
so that

g(z) = /g(r)e(r"l,x)dr, z € [0,+00).
0
Finally, by C,Cy,C,,C",C", ... we shall denote positive constants.

Questions of expansions on a segment of functions from spaces, con-
taining as a part the set of all continuous functions, over eigenfunctions
of nonlinear boundary-value problems with denumerable spectra are con-
sidered in a number of papers (see, for example, [1-8]). In monograph [2],
some interesting results in this direction are established. The author’s pa-
pers [3-8] are devoted to proving the property of being a basis, in L, and
other spaces, of systems of eigenfunctions of nonlinear Schrédinger-type
eigenvalue problems on a segment; below we exploit some of these results.
In [1], it is shown that the set of functions g representable by the integral
(3) (see below) with finite functions g is dense in Ly(0, 00). In addition,
in this paper, some corrections to the paper [3] are presented.

In the present paper, our main result is the following.

Theorem Under the hypothesis (f)
(a) A = [£(), +o0) (we denote X = f(p?));
(b) for each A € (X,+00) there exists a minimal positive zero k = k(X)
of u(A,z) as a function of x € (0,400); the function k : (X,+00) —
(0,+00) is continuously differentiable, k'(A) < 0 for any A € (X, 4o0),

and lim k(A) = +oo, lim k(A) = 0. By A = A(k) we denote the
A=240 A—r4o0



function with the domain (0,+00) inverse to k(\);

(c) the family of eigenfunctions {u(X,z)}ren is uniformly bounded with
respect to x > 0;

(d) for any function g(-) € S, there exists a unique continuous function
G(+) such that for any z > 0 the following equality takes place:

[ee)

4(z) = / G(Eyu(A(K), z)dk (3)

0

and that there exist v € (0,1) and C > 0 for which

lg(k)| < CE Y1+ k)7, k> 0. (4)

Remark 1. The expansion (3) is obviously an analog in our nonlinear
case of the representation of functions by the Fourier transform; as it is
well known, the latter is associated with a linear self-adjoint eigenvalue
problem.

Remark 2. The author wants to note that, with the above theorem,
he did not strive to obtain a maximally strong result, but he aimed only
to demonstrate a possibility to expand an “arbitrary function” as in (3).
In this connection, it should be said that probably the assumption that
f(u?)u is a ten-time continuously differentiable function of v € R is tech-
nical and a sufficient assumption is the single continuous differentiability
of this function.

Remark 3. As it is proved in earlier papers, for any k& > 0 the func-
tiong

{u (/\ (ﬁ) , ) }n=0,1,2,... form a basis in L,(0,k). In view of this fact, a

proof of (3) may be reduced to the justification of formal relations (19)
(see Section 3). One of the main difficulties the author met in this way
was the problem how to estimate coefficients in the expansions of e(k,-)
over the above basis: as it is shown in what follows (see Lemma 1), the
functions e(k,z) and u(A(k),z) are arbitrary close to each other for suf-
ficiently small £ > 0 and in this case the problem is not difficult so far.
At the same time, the behavior of these functions is different as k — 400

3



and for large k > 0 the estimating of the indicated coefficients becomes
sufficiently difficult.

In Section 2, we present preliminary results being used in proving the
above Theorem. Section 3 contains the last part of the proof of Theorem.
In a short Section 4, we consider a nonlinear eigenvalue problem similar to
(1),(2) and establish a modification of the Theorem for this new problem.

Everywhere below we accept that hypothesis (f) is valid.

2 Auxiliary results

Consider the following Cauchy problem:
="+ f(y )y =Xy, y=y(z), >0, (5)

y(0) =p, y'(0) =0. (6)
Proposition 1.

(a) For any A\ > X the corresponding solution y(z) of the problem (5),(6)
can be continued onto the entire real line and there exists a continu-
ously differentiable function zo()\) > 0 of the argument A\ > X such that
zp(X) <0 for all X > X, y(z) > 0 in (0,20())) and y(zo(N)) = 0;
(b) if A = X, then y(z) = p and for X < X the solution y(z) of the
problem (5),(6) is unbounded in the mazimal interval of its existence from
(0, +00); B
(c) for any a,b: X < a < b for the corresponding solutions y,(z) and
ys(z) of the problem (5),(6) taken with A = a and X = b, respectively, for
all z € [0,k(b)] the following inequality takes place: y.(z) > yy(z). In
addition, |y(z)| < p for all X € A and all z € R;
(d) any solution y(z) of equation (5) is odd with respect to an arbitrary
its zero T and is even with respect to any point & such that y'(%) = 0,
e y@—z)=y(@+z) and y(T —z) = —y(T + z) for all z;
(e) lim zo(A) =0 and lim z¢()) = +oo;

A—=A40

A—=~+oco

(g) for any X > X zeros of the corresponding solution y(z) of the problem
(5),(6) are precisely the points [(m)zo()) where m = 0,41, 42, ...

For the Proof, we refer readers to papers [5,7].



Remark 4. Proposition 1 immediately implies statements (a) and (b)

of our Theorem with k()) = zo()).

In what follows, for simplicity of the notation we rename by u(k, z)
the eigenfunction u(A(k),z). Further, in view of Proposition 1, for any

k>0 L )
/\<W> <...<)\<W><...

are all values of the parameter A that are larger than X and for which the
corresponding solutions y(z) = y,(k,z) of the problem (5),(6) become
zero at * = k. In addition, for any n = 0,1,2,... and a fixed & > 0 the
function y,(k, z) has precisely n zeros in the interval (0, k).

Lemma 1. For any k > 0 there exists C > 0 such that for all k €

€ (0, k] one has

m

le(k,z) — u(k,z)] < Ck?® and dii-—[u(k,kx) — e(k,kz)]| < Ck?,
wm

z€eR, m=12,..,10.

Proof of Lemma 1 in fact repeats the proof of a similar statement
for a linear problem in [9] (see Lemma 1.7 in [9]). We sketch this proof
for the convenience of readers.

The uniform boundedness of the family of functions {u(k,z)}rs0
with respect to z € R, stated by Proposition 1, and the standard com-
parison theorem imply the existence of D > 0 such that

[A(k) = 2(k)| < D (7)

for all & > 0. Take an arbitrary & > 0. One can easily verify that for
any sufficiently small k£ > 0 the corresponding eigenfunction u(k, z) of the
problem (1),(2) for any z > 0 satisfies the equation

u(k,z) = pcos(Az(k)z) + /\_%(k) /sin{/\%(k)(x — )} f (P (K, t))u(k, t)dt
0
(8)
(since due to Proposition 1 klirilo A(k) = 400, the right-hand side in (8) is
_)

well-defined for all sufficiently small k¥ > 0). Making in equation (8) the
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changes of variables z = ky and ¢ = ks, due to the uniform boundedness
of the family of functions {u(k, z)}xs0, we get for all sufficiently small
k>0 and all y € [0,1]:

Ju(k, ky) — peos(AZ(k)ky)| < C1kA~ (k)

with a constant C; > 0 independent of the above y and k. Hence, since
due to (7) A(k) > Cok=2 and |A3(k) — 25 (k)| < Cyk for all sufficiently
small k£ > 0, we get

Ie(k> ky) - u(ka ky)| < C3k2

with a constant C3 > 0 independent of sufficiently small £ > 0 and
y € [0,1]. Due to the uniform boundedness of the family {u(k,z)}rso,
this estimate is also valid for any k € (0, k]. Finally, in view of Proposition
1 the latter estimate holds for all y € R. The other inequalities in Lemma
1 follow from (8) by similar arguments. Thus, Lemma 1 is proved.O]

One can easily see that for an arbitrary k > 0 and integer n > 0

the functions {e(l(n)kw, z} form an orthogonal basis in the space
m=0,1,2,...

Ly (0, %) Hence, we have

«(757) = mi bon®e (g ) s n=0120s ()

in L, (0, l(_knj) where b, (k) = 0 if [(m) # {(n)l(r) for all r = 0,1,2,....
Since due to Proposition 1 the function u (ﬁ,x) is even and since
e (W, a:) are even, t0o, these expansions also hold in L, (—I(Ln), ﬁ)
Since according to Proposition 1 the functions u (ﬁ,x) are odd with

respect to their zeros and since the functions e (W, a:) are odd with

respect to these zeros, too, the expansions (9) hold in Ls(a,b) with arbi-
trary finite a < b.

So, for any k > 0 we have the sequence of expansions (9) held in
Ly(0,k) and in Ly(a,b) with arbitrary a,b : —oo < @ < b < oo, where
bom(k) = 0 if {(m) # I(n)l(r) for all r = 0,1,2,.... Note also that
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B(k) = (bpm(k))nm=0,12,. is an upper triangular matrix and, for any n,

= [ (5 W - (5) < (5

because the functions u (%, x) and e <i a:) are of the same sign. So,

i(n)
in (9)

bnm(k) = 0 if [(m) # I(n)l(r) for all r = 0,1,2, ... and b, (k) > 0

foralln =0,1,2,... (10)
We also remark that generally speaking the properties (10) do not yield

the completeness of the system of functions { u ( in the

k.
() ) =012,
space Ly(0,k) (see a counterexample in [8]).

The following statement is proved in [5,7].

Proposition 2. For any fized k > 0 the system of functions
{Yn(k, ) tn=0,12,... is a basis in the space Ly(0,k), i. e. for any g € Ly(0,k)
there exists a unique sequence {a,}n=0,1,2,. of real numbers a, such that

9() = X2 anyn(k,-) in Ly(0,k). In addition, clearly y,(k,z) =u (ﬁ, 1:)
n=0

According to Proposition 2, for any £ > 0 there exists a unique
sequence of real numbers {d,(k)}n=0,12,.. such that

e(k,) = gdn(k)u (% ) (11)

in Ly(0,k). As in the case of the expansions (9), the equality (11) holds
in Ly(a,b) with arbitrary a,b: —oo < a < b < +00.

Lemma 2. For any k > 0 u(k, z) regarded as a function of z € (0, k)
is concave and there exist 0 < ¢ < C such that

ck? < ||u(k, )|z,000 < Ck?

for all k > 0.



Proof follows from Proposition 1 which in view of equation (1) im-
plies in particular the concavity of u(k,z) for z € (0,k) that yields the
estimates in Lemma 2.0

Corollary 1. There exist 0 < ¢ < C such that ¢ < b, (k) < C for all
k>0 and n.
Proof is obvious.OI

In the next part of this section, we shall derive estimates for the co-
efficients b, ., (k) and d,, (k) of two types. According to Lemma 1, u(k, z)
and e(k, z) regarded as functions of the argument z € (0,%) become ar-
bitrary close to each other as k& — 0. Using this fact, we shall obtain
estimates that show, in particular, a sufficiently rapid decay, as m — oo,
of the coefficients d,, (k) uniform with respect to k from an arbitrary in-
terval (0,k]. At the same time, the behavior of these functions for large
k > 0 is different which does not allow us to extend this approach to
get smallness of these coefficients uniform with respect to all £ > 0. Be-
low, applying another method, we shall only obtain certain upper bounds,
uniform with respect to & > 0, of the absolute values of the indicated co-
efficients. The estimates we shall get are rough enough, but they suffice
our goals.

Lemma 3.

1) For any k > 0 there ezists C = C(k) > 0 such that |by (k)| <
< CEM™(n)l="%(m) for all numbers n < m and all k € (0,1(n)k].

2) For any k > 0 there exists Cy = C1(k) > 0 such that |b, (k)]

< C1k™17'%(m) for all k > kl(n) and all numbers n < m.

Proof. Let us prove the first statement. In view of (10), it suffices
to consider coeflicients b, ,,(k) where I(m) = I(n)l(r) for some nonneg-
ative integer n,m and r > 1. By Lemma 1, for any £ > 0 we have
|-L[u(k, kz) — e(1,2)]] < Ca(k)k? for all k € (0,F], all m = 1,2,...,10
and all z € R. Hence, it easily follows from equation (1) that

12

deZ

u(k, kz) — d(k) cos ’;—x < C5(R)K?, z €0, 1],

for a function d(k) of k > 0, any k > 0 and k € (0,%]. Therefore, using



also Proposition 1, we deduce:

s (k)

-2
/u <——k—,m> cos wl(m)mdm =
L(0,k) l(n) 2k

0

< ] 1y ) o] <

° (12
where k € (0,1(n)k].

To prove statement (b) of our lemma, let us multiply equation (1)
by 2u;(k,z) and integrate the result from 0 to z. We get the identity

—[ua(k, 2))” + F(u*(k, z)) = F(p*) = A(k)[u?(k,2) = p), k>0, z €R,

where F'(s) = 1 [ f(t)dt. This identity yields the existence of C4 > 0 such
0

that |ul(k,z)| < C4 for all k > k and 2 € R. Therefore, it easily follows
step by step from equation (1) that

dm
Mu(k,:v) S 05, m = 2,3, ceey 12,
and hence
d12
‘ﬁu(k, k:c) S Cek'm
Xz

for all £ > k and = € R. Proceeding now as in (12), we get the second
statement of Lemma.O

Lemma 4. b (k)[bom (k)| < 1 for all k > 0 and all numbers n
and m. :
Proof. In view of (10), we have only to prove the statement of Lemma

4 when [(m) = [(n)I(r) for some nonnegative integer r,n and m. Let b, =
1
= [le(7(n); Myou) [ S e (n), 2)dz

= 2["Y(n) where n = 0,1,2, ...
0 T




If we prove that by §(k)[bon(k)| < (bo)~1|bn|, where (b))~ |b,| = I~ ( ) for
all £ > 0 and all numbers n, then, since b, (k) = by, (L) fl(m

= l(n)l(r) for some nonnegative integer r and bnm(k) herw1se we
get the statement of Lemma 4.

So, let us denote here by b, the coefficients by ,(k) and take an
arbitrary £ > 0 and a number n > 0. Let z,, = 22’:;11 and r,, = 227:;11
where in both cases m = 1,2,...,n+1. Then, z,, are zeros and r,, are the
points of extremum of e({7!(n),z) = pcos @ regarded as a function of
ref0,l]and 0=r; <z; <ry <2y < ... <7Tpyy < Tpyy = 1.

(a) Let 9(z) = u(k,kz) and I(p,z1,22) = pjzc,o(:c)cos Mgﬁdaz.

z1
Then, we state that, for any m = 2,3, ..., n, the absolute value of
I(¢,rm—1,7m) is not larger than the absolute value of I(t), 7y, 7m41) and
that the signs of these two quantities are opposite; in addition, I(3,ry,72) >

> 0.

Let us prove this statement. Here, we exploit geometric arguments
that are more clear visually on a picture. First of all, for any constant
c € R we have I(¢,rm,rmi1) = —I(¥(- + r2) + ¢,7m1,7m). Take an
arbitrary m = 2,3,...,n and set ¢ = —¢)(zm41) + ¥(zm). Let also for the
definiteness (), 7m—1,7) > 0. Then,

I(Y, Ty Tig1) = I(=[¥(-+r3))+¢],Tm-1,mm) and Y(@m+rs)+e=P(zn).

Clearly, since ¥(z) and ¢’(z) are respectively positive and negative de-
creasing functions in (0,1), in (rp-1,7n) (x4 r2) + c is larger than
¥(z) from the left of z,_; and is smaller than 1 (z) from the right of
Tm-1, where z,,_; is the middle of the interval (r,—1,7,). Furthermore,
in view of the hypothesis (f) and equation (1), ¢”(z) is a nonincreasing
negative function of z € (0,1), therefore 1y (z) = (z + ry) + ¢ — () is
a concave function in (rm—_1,7y), hence I(¥1,7,_1,7,) < 0. By analogy
I(3,r1,72) > 0. So, the statement (a) is proved.

(b) A simple corollary of the statement (a) and the arguments in (a)
is that 1(¢,0,1) = I(v, %, 1) for some T € [rn41,1) so that in particular
sign 1(¢,0,1) = sign I(¢,rp41,1).
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and )
/1/)(3:) cos %dm = 1/J(w2)/cos 7;—xdx
T T
where 21, %, € (T,1). We state that z; > 5.
Let us prove this statement. For this aim, let us show that

1

[sz cosﬂgﬁ dz !cos"“”c

T - T - (13)
J¥(z) cos G dz Jcos Fdz

Let J(g,n,r1,ry) = f[¢ )]? |cos M

lations with the use of Taylor expansions and the fact that due to (1) and
(f) (1) > 0 show that

dz, where ¢ = 0,1. Simple calcu-

J(1,n,z1,1)  J(0,n,z,1)
J(1,0,21,1) = J(0,0,21,1)

for all z; from a sufficiently small left half-neighborhood of 1. To prove
(13), it suffices to prove the latter estimate for all z; € [z,1). In contra-
diction, suppose the existence of Z € [z, 1) such that

J(1,n,21,1)  J(0,n,z,1)

14
J(1,0,21,1)  J(0,0,21,1) (14)
for all z; € (Z,1) and
J(L,n,2,1)  J(0,n,2,1)
— = . (15)
J(0,0,z,1)  J(0,0,%,1)

Observe that the values of the left-hand and right-hand sides in (14) and
(15) do not vary if we change v (z) by v1(z) = ri¢)(z) where r is an
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arbitrary positive constant. We take r > 0 so that, if we change ¥ (z) by
P1(z), then J(1,0,2,1) = J(0,0,2,1). Consequently, J(1,n,2,1) =
= J(0,n,&,1) after this change. Everywhere in the proof of (13) we accept
that (z) is changed by 11 (z). Note also that obviously t;(#) > 1.

It can be easily verified that |cos ﬂ(g&‘ cos %F is a strongly increas-

ing positive continuous function in [Z,1). Hence, there exists a unique
& € (#,1) such that the left-hand side in (15) (with ¢, in place of %) is
equal to ’COSM‘ cos Z2. Let a4(21) = J(g,n,21,%), ¢ = J(g,n,z,1),
by(z1) = J(q,0,21,%) and d; = J(q,0,%,1). For any sufficiently small
€ > 0 we have the following Taylor expansions:

al(:% + 6) + (&}

bi(z+e)+d

~ wl(n)&
a1(%) + a1 1+ et (&) cos 5 hi(#) }COS : + 0(€%)
= —=— - - ¢
bi () + dy bi(Z )+d1 ai(Z) +
and
" ml(n)&

ao(Z +€) +co  ao(®) + co ecos ‘ \COS 2 + O()
bo(i +¢) +do  bo(2) + do b T4 a0ld) T e '

Therefore, due to our supposition and the above arguments, we get for
sufficiently small € > 0:

e1 () cos I ey (&) |cos T2 cos THr)E

2 - € cos 2A € 2
by(2) + d; ai1(2) + bo(Z) +do ao(&) + co
that easily implies

+0(e?)

. wl(n)z wl(n)z
a(3) + e - ‘cos . cos ™=
bi(2) +di = cosZE cos 2=’

which is a contradiction. Thus, the statement (c) is proved.
Now, in view of (a)-(c) we have for some z’ € (0,7):

bo _ (“f)“’s_ Ll 1

') fEcos—dac + ¥(z2)
0

cos —dac

sl .

12



cos wl!n T

]

!
cosﬂzﬁlgE d

and the proof of Lemma 4 is complete.[]

For an arbitrary positive integer n the number [(n) can be uniquely
represented as pi!'..p;" where m,r; and p;; are positive integers and
3 =p < py <..<p; <..is the sequence of all prime numbers ex-
cept 2. For a given positive integer s, denote by 6(s,n) the number of all
possible positive integer m; < my < ... < mg, where m; > 1 and m, < n,
such that —i——L) are positive integers for each 7z and, also, %—L) is a positive

integer. Let 0(n) = Z 0(s,n). Then, for a given n, 8(n) is the number of

s=1
all possible sets {s,my, ms,...,m;} satisfying the above conditions.

Lemma 5. 6(n) < [I(n)]” logs l(n), where o = logze € (0,1), for all
n=1,2,3,... so that, in particular, for any € > 0 there exists C = C(e) >
> 0 such that 0(n) < C[l(n)]°*¢ for all n.

Proof. Note first that [(1) = 3. Therefore, admissible values of s, for
each of which numbers my, ..., m, can exist, can be estimated from above
as follows:

s < logsl(n). (16)
Further, for a given s, the number m, can be chosen as pﬁp:;" where
0 < rj < r; are arbitrary positive integers such that there exist ;' and
" for which 0 < rf and rin < rjn. By analogy, m,_; can be chosen as

-1

r re=1 o s . . . .
Pl -.pir where 0 < 37! <r? and again there exist j/ and j” such that

0 < rs ! and o < ris. Continuing these arguments, we come to the
estlmate
ryr rm i r3 T rioors "o
0(s,n) < E E E X _;_ E E E E E X
ri=0r;=0 Tm= rit=0r571=0 ra = r?=0r3=0 r2,=0
P22 r2, r4l e+l oi+1
XE g E IS/d:vi/dxf_l.../dzix
ri=0r}=0 rl,=0 0 0 0



0 0
_ re o (r1) (r1)® ry  (r2)? (r2)°
= (Ut gr T ) (1 T S )
"m (T'm)2 (rm)s ri+ro+..+rm
><<1+1,+ S et ) et .

Hence, since obviously ry +ry + ... + r,, < logsl(n), we obtain:
0(s,n) < [[(n)]°.
Finally, due to (16) 6(n) < [{(n)]" log, {(n).0

Remark 5. One can easily verify that if I(n) = 3¢ with a positive

d—1
integer d, then precisely f(n) = > (Z =22 = [I(n)]"#? — 2 so that
s=1

in any estimate 6(n) < h(I(n)) it should be A(l(n)) > C'[I(n)]® for some

constants C’ > 0 and b > 0 and some values of n.

Proposition 3. Let again o = logz e € (0,1).

(a) For any € > 0 there exists C = C(c) > 0 such that for any nonnegative
integer nand any k > 0 the following estimate takes place: |d,(k)| <

S C(]. _I__ k)121‘7+6_12(n).

(b) For any € > 0 there exists C = C(e) > 0 such that |d,(k)| <

< Clot(n) for all k > 0 and all n = 0,1,2, ....

Proof. One can easily see that, since the matrix B(k) is upper trian-
gular and the elements of its principal diagonal are nonzero, each coeffi-
cient d,(k) is equal to the element to,(k) of the matrix 7"(k) = [B"(k)]~!
where B"(k) = (bym(k))rm=0,1,..n. Let B ,.(k) be the matrix obtained
from B"(k) by putting away the mth row and the rth column of the latter.
Then,

dn(k) = (—1)"det[ B, o(k)] x det[T™ (k)] (17)
where
b() 1 bo 2 e bO,n—l bO,n
bl,l b]_’z ....... bl,n—l bl n
By o(k) = 0 byy ... b2 1 b2
0 0 ... bp—in-1 ba—in



In this matrix, let us, for each m = 0,1,...,n — 2, subtract the last row,
multiplied by bn 1 1bm n—1, from the mth row and then, subtract the
next to the last column, multiplied by b, n 1bn—1,n, from the last column.
Further, let us, for each m = 0,1,...,n — 3, subtract the next to the last
row, multlphed by b1 2.n—20mn—2, from the mth row and then, subtract
the column with the first index (n — 2), multiplied by b7, | _,(bu_2, —
— b,y 1 1bu_1mbu2,4-1), from the last column, and so on. As a result
of this procedure, we obtain a matrix, all elements in the last column of
which, except the element in the upper row, are equal to zero, and the
element & , in the upper row is equal to by, — S where S is a sum of
terms of the kind
bt bt L Y SO S

mi,my “ma,m2"

with coeflicients +1 or —1, where s,m,, ..., m, are arbitrary positive inte-
gers satisfying s <nand 0 < m; < my < ... <my < n.

Let us prove the second statement of Proposition 3. We obviously
have:

|det( |_|b nIHbT’ra

therefore, in view of Corollary 1 and (17), |d,(k)| < Ci|bf,,| where the
constant C; > 0 does not depend on k& > 0 and n. Now, in view of
(10) and Lemma 5, for any € > 0 there exists C, > 0 such that for any
n =1,2,3,... the number of nonzero terms in the sum S is not larger than
Cal7*¢(n). Also, due to Lemma 4 and Corollary 1, the absolute value of
each term in this sum is not larger than C3/~*(n) with a constant C5 > 0
independent of £ > 0 and nonnegative integer n, and thus, we get the
second statement of Proposition 3.

Let us prove the first claim. Fix an arbitrary k& € (0,1) such that
Ck < 1 where C' = C(k) > 0 is the constant from the first statement of
Lemma 3. Take arbitrary & > 0 and a number n and let b be the absolute
value of the term

b0,y (B)07n3 iy (60 e ()07} iy ()b s (k) - b3k ()b (R)
contained in the sum S. First, we study the case when there exists

s0 € {0,1,...,s} such that k < kl(mg41) and k > El(m,,) where mg = 0
and m,y; = n. In this case, in accordance with Lemma 3, we estimate the

15



. 12
rmepr| forr=so+1,... s by CE (l—(lfn%) , the co-
factor bm1 e Oy imagys| DY Cak™172(mgy 1), and, for r = 0,1, ..., 50— 1,
we estimate the cofactors bt s |Omymoy | by 1. We get: b < Cyk'2[~12(n).

Now, suppose that the number s, defined above does not exist.

If k < k, then we estimate all cofactors bt i lbm,m,y, | from above by

-1
cofactors b.!  |by,

12
Ck’ <%m—L)> and, consequently, arrive at the estimate b < C5{=1%(n).

If k > kl(m,), then, in accordance with Lemma 3, we apply the estimates
bt i lbmn| < Cs k”l P(n) and b, | 1bm, iy, | < 1forr=0,1,...,5—1;
we get b < Cgk'2(712(n).
In view of the above estimates of the nonzero terms contained in the
sum S, applying Lemma 5, we obtain the first claim of Proposition 3.0

Corollary 2. Coefficients d,(k) are continuous in k.

Proof. On the contrary, let for some ko > 0 and n  d, (k) 4 dy (ko)
as k — ko. Let k, — ko (r =1,2,3,...) be such a sequence that d,(k.) —
dn # dy(ko) as v — co. Then, due to Proposition 3(a)

mi [ (755.) = dn(hol ()] 0

in Ly(0,ko) as r — oo, and we get

oo

> [dn—d (ko)]u( (’:{L) ):o in Ly(0, ko),

m=0

where d,, # d,(ko), which contradicts Proposition 2.0

3 Proof of Theorem

Let g € S, and let f;() € Se be its renormalized Fourier transform so that

[ee]

g(z) = /Q(r)e(r_l,m)dr, x>0, (18)

0

where the improper integral in the right-hand side converges absolutely
uniformly with respect to z > 0. We shall make a procedure which is

16



formally the following. First, we make the change of variables k = r~!
obtaining from (18):

o) = [ L etk i,

0

where again the improper integral in the right-hand side converges ab-
solutely uniformly with respect to z > 0. Representing the function
e(k,z) as in (11), we get formally

= / G(k)u(k, z)dk. (19)

In this section, to prove that (3) and (4) take place, we shall justify these
formal relations. This justification easily follows from the following two
lemmas.

Lemma 6. For any R > 0 the series ) Mfc;—lldn(k) converges ab-
n=0

solutely uniformly with respect to k € (0, R).
Proof in view of the estimate |§(k™')| < C(1 + k=1)~? follows from
Corollary 1 and Proposition 3(a).0)

17



Lemma 7. The series Z —L%i—ﬁd (kl(n)) converges absolutely

uniformly with respect to k 6 (a b) with arbztmry a,b: 0<a<b< o

and is continuous in k > 0; the sum Z ﬂk—k%—szn(kl(n))] satisfies
n=0

estimate (4) with some C > 0 and vy € (0,1).

Proof. The first two claims follow from Corollary 2 and Proposition
3(b). Let us prove the last claim.

First, in view of Proposition 3(b), for & > 1 this estimate holds.
Consider the case k E (0,1). Due to Corollary 1 and Proposition 3 and the
estimate [g(s)| < we get for an arbitrary § > 0 and a sufficiently
small € > 0:

S(k>=( > o+ oy )iy <

n: 0<l(n)<k=1=8  n: l(n)>k—1-3

(1+s)12 ?

(1 + kl(n))'?
<0G Y — ) n
n: 0<l(n)<k—1-4 k21 (n)(l + k=1l l(n))IZ

1 10—(146)(o+¢ —24(1468)(1—0—¢
+C, Z m303[1+k (A+8)(ote) | p=24+(1+8)( .

n: I(n)>k—1-¢

Now, we observe that, since logy e < 13, there exist § > 0 and a sufficiently
small €>0 satlsfylng the conditions 10 — (1 + é)(0 + €) > —1 and —2 +
+ (14 6)(1 — o —€) > —1. Taking these values of § and ¢, we get from
the above estimate:

S(k) < C4k™, k€ (0,1),
with some Cy > 0 and v € (0,1). So, the proof of Lemma 7 is complete.(]

So, for any g(-) € Se, the existence of a continuous function g(-)
satisfying (3) and (4) is proved.

Now, we turn to proving the uniqueness of the function g(k) sat-
isfying (3) and (4). Suppose the opposite. Then, clearly there exists a
continuous function g(-) # 0 satisfying (4) with some v € (0,1) and C' > 0
and such that

0= /g(k)u(k,x)dx, z > 0. (20)

18



In what follows, we rename the coefficients by (k) by b, (k). Substituting
the expansion of u(k,z), regarded as a function of z, over the functions

€ (ﬁ, -), where n = 0, 1,2, ..., into the right-hand side of (20) and taking
into account (4) and Lemma 3, we come to the following:

oo

R
. _ Z k _
0= RHI_II:IOO J g(k’) Obn(k)e <W,$) dk =

n=

= lim Z/X[OYR](kl(n))l(n)?]’(kl(n))bn(kl(n))e(k,x)dk (21)

where x[o,r)(r) = 1 if r € [0, R] and 0 otherwise.
Lemma 8. The right-hand side in (21) is identically equal to

fgl e(k,z)dk, where gi(k) = i [(n)b,(kl(n))g(kl(n)); the function
gl( ) is continuous and it satisﬁesnt?z(;f estimate
()| < CRH 1+ k)77 (22)
with some constants C > 0 and v € (0,1) independent of k > 0.
Proof. Consider the function Si(k) = fo 1(n) b, (kI(n))g(kl(n))]. To

prove Lemma, it suffices to show the existence of C > 0 and v € (0,1)
such that
Si(k) <CE™'(1+k)™'™, k>0.

Let first & > 1. Then, using the fact that g satisfies (4) and applying
Corollary 1 and Lemma 4, we come to the estimate:

k)<CZk 2172(n) < C1k~2.

Second, let k € (0,1). Then, due to Lemmas 3 and 4 and Corollary
1, we have :

Si(k) < oo+ >+ Y |«
n: 0<l(n)<k=t k—1<l(n)§k_§‘ n: l(n)>k_§

19



xl(n)|bn(kl(n))| [g(ki(n))| <
e G DR (0 FoRD S R (N

n: 0<l(n) <k~ n: k=1<i(n)<k~%

1 2

— ) < "kT%,

o2 k2z2(n)) SO+ 0%
n: l(n)>k_§'

Thus, Lemma 8 is proved.[]

In view of Lemma 8, making in the integral in the right-hand side
of the identity

0= /gl(k)e(k,x)dk, z >0,
0

the change of variables r = k=1, we get

(o]

0= /Q(r)e(r_l,a:)dr, z >0,

0

where g(k) = ﬂ,g;ll so that g(-) € Ly(0,00) and § is continuous. By the
well-known property of the Fourier transform we have §(r) = 0.

Now, to prove our Theorem, it suffices to show the existence of £ > 0
such that g;(k) # 0. Let us do this. In view of Lemma 8 and Corollaries
1 and 2, one can easily see that for any § € (1,2) there exists a k > 0
such that s

) bfE) > suplKg(0)] (k)] > 0.
>

Using this fact and the expression for g;(k), we deduce:

[908) bo(%) < [5(F) bo( zz-

[eo]

< |g(k)|bo( G(k)|bo(k).
[9(R)lbol® /2 Ty < 7))
So, we get a contradiction and, thus, our Theorem is completely proved.
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4 A variant of Theorem

A result similar to our Theorem takes place for the following problem:

—u" + f(W®)u = I, u=u(z), z€/(0,00), (23)
(0) = 0, 4(0) = p, sup u(e)] < oo (24)

where again all quantities are real, p > 0 is an arbitrary fixed parameter,
and A is a spectral parameter. We also denote eigenfunctions by u(, z).
The result for this problem we establish here is the following.

Theorem’ Under the hypothesis (f)
(a) there exists X > f(0) such that the spectrum of the problem (23),(24)
is either (X, +00) or [\, +o0);
(b) for each A € (X, +00) there exists a minimal positive zero k = k())
of u(A,z) as a function of x € (0,400); the function k : (), 400) —
(0,+00) is continuously differentiable, k'(A) < 0 for any A € (X, +00),
and lim k(A) = 4oo, lim k(A) = 0. By A = A(k) we denote the
A—=240 A=+00
Junction with the domain (0,400) inverse to k(\);

(c) let uy(N,z) = | r{]gi}lc)({/\)]u()\,:c)]_lu(/\,x). Then, for any odd function
z€|0,

g(+) € S there exists a unique continuous function g(-), defined in (0, c0),
such that for any x > 0 the following equality takes place:

aw=/awmxmm&

and that there exist v € (0,1) and C > 0 for which
[g(k)| < CE Y1+ k)", k>0,

Proof. Statements similar to Propositions 1 and 2 for the problem
(23),(24) are proved in [7]. They imply the statements (a) and (b) of
Theorem’. The further proof of Theorem’ in fact repeats the above proof
of Theorem.O

21



References

(1]

[2]

3]

[6]

[9]

Zhidkov, P.E., Eigenfunction expansions associated with a nonlinear
Schrodinger equation on a half-line. Prepr. JINR, E5-99-144, Dubna,
1999.

Makhmudov, A.P., Fundamentals of nonlinear spectral analysis.
Azerbaijanian Gos. Univ. Publ., Baku, 1984 (in Russian).

Zhidkov, P.E., On the completeness of systems of eigenfunctions for
the Sturm-Liouville operator with potential depending on the spec-

tral parameter and for one nonlinear problem. Sbornik: Mathematics,
1997, 188, No. 7, 1071-1084.

Zhidkov, P.E., On the completeness of the system of normalized
eigenfunctions of a nonlinear Schrédinger-type operator on a seg-
ment. Int. J. Modern Phys., 1997, A12, No. 1, 295-298.

Zhidkov, P.E., On the property of being a Riesz basis for the system of
eigenfunctions of a nonlinear Sturm-Liouville-type problem. Sbornik:
Mathematics, 2000, 191, No. 3, 43-52.

Zhidkov, P.E. Eigenfunction expansions associated with a nonlinear
Schrédinger equation. Communications of the Joint Institute for Nu-

clear Research, E5-98-61, Dubna, 1998.

Zhidkov, P.E., Basis properties of eigenfunctions of nonlinear Sturm-
Liouville problems. Electron. J. Diff. Eqns., 2000, 2000, No. 28, 1-13.

Zhidkov, P.E., On the property of being a basis for a denumerable set
of solutions of a nonlinear Schrodinger-type boundary-value problem.
Nonlinear Anal.: Theory, Meth. Appl., 2001, 43, No. 4, 471-483.

Titchmarsh, E.C., Eigenfunction expansions associated with second-
order differential equations, Part I. Oxford at the Clarendon Press,
1946.

Received by Publishing Department
on April 9, 2001.

22



Kupxos ILE. E5-2001-63
Amnaror npeo6pazopanusi @ypse,
CBS3aHHBIN C HETMHEHHBIM ONHOMEPHBIM ypaBHeHHeM llIpenunrepa

PaccMarpuBaercs 3amaya Ha COOCTBEHHbBIE 3HAYEHMs, BKJIIOYAIOINAs HEIHHEH-
Hoe ypaBHenue Illpenunrepa Ha nomynpamoi [0,ec) U HEKOTOpHIE IDaHHYHbIE
ycaous. Iloka3aHo, 4TO CIEKTp 3TOH 3a1a4yu 3aIl0IHAET HEKOTOPYIO MOJIYNPSIMYIO
U YTO KaXIOH TOYKE CIIEKTpPa COOTBETCTBYET SAMHCTBEHHAS COOCTBEHHAS (PYHK-
uud. [maBHbIN pe3ynbTar paboThl COCTOUT B JOKA3aTe/IbCTBE TOTO, YTO IMPOU3BOIIb-
Hast OeckoHeyHO nuddepeHUpyeMas (YHKLHUs, KOTopas ObICTpo y6bIBaeT
IIPU X — co U YNOBJETBOPAET NOAXONALIUM IPaHMYHBIM YCJIOBMAM B Touke x =0,
MOXeT OBITh CIUHCTBEHHBIM OOpa3oM pa3ioXeHa B HHTETpajl IO COOCTBEHHBIM
(yHKIMAIM MMOXOOHO NMPEACTaBIECHHI0 (PYHKLUH IpH IOMOLIM IpeoOpa3oBaHMs
®Dypre (mocnenHee, 0OYEBUIHO, ACCOLMUPOBAHO C JIMHEHHOH 3ana4eil Ha cOOCTBEH-
HbIE 3HAYEHUS ).

Pa6ota BemonseHa B JlJaboparopuu teoperuyeckoit ¢puzuku uM. H.H.Borosmo-
6osa OMSIN.

Ipenpunt O6BbeAUHEHHOr0 HHCTHTYTA SAEPHBIX MccnenoBanuid. dy6Ha, 2001

Zhidkov P.E. E5-2001-63
An Analog of the Fourier Transform Associated
with a Nonlinear One-Dimensional Schrédinger Equation

We consider an eigenvalue problem which includes a nonlinear Schrédinger
equation on the half-line [0, ) and certain boundary conditions. It is shown that
the spectrum of this problem fills a half-line and that to each point of the spectrum
there corresponds a unique eigenfunction. The main result of the paper is that
an arbitrary infinitely differentiable function g(x) rapidly decaying as x— o
and satisfying suitable boundary conditions at the point x =0 can be uniquely ex-
panded into an integral over eigenfunctions similar to the representation of func-
tions by the Fourier transform (the latter is obviously associated with a linear
self-adjoint eigenvalue problem).

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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