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1 Introduction. Notation. Main result

Consider the Vlasov equation

%+v-vxf+vuf'9($»t) =0, (l’,v) € R3XR3, teR, f= f(t’x’v)’
1)
pla) == [ VUG-)fty,0dy b (2)
R3xR3
£(0,2,0) = fo(a,v). 3)

Hereafter all quantities are real, f is an unknown distribution function of
particles, U(-) is a given potential of interactions between particles and
a - b means the scalar product of vectors a,b € R® in R3. In view of the
physical sense of f it should be required

f>0 and / f(t,z,v)dz dv = 1. (4)
R3xR3

Associate also the following system of ODEs with (1)-(4):
&(t) = v(t), (3)

o(t) = p(x(t),1), (6)
(2(0),v(0)) = (z0,v0) € R® x R. (7)

Now, we introduce some notation. Let M be the space of nonneg-
ative Borel measures u in R® x R? satisfying u(R3 x R3) = 1 (we call
a measure a Borel measure if it is defined on the Borel sigma-algebra).
The space M is equipped with the topology of the weak convergence of
measures: a sequence {fn }n=1,23,. C M is called weakly converging to a
w € M (we write u, — p as n — o0o) if and only if for any real-valued
continuous bounded function ¢ in R?® x R? one has:

lim [ e = [ ().

n—00
R3xR3 R3xR3

Let for a real-valued function ¢ in R® x R?
lellzp = sup lo(z)+ sup 1=zl
3xR3

z€R 21,29 €8 xS |21 - 22|
21#2



and let L denote the space of all functions ¢ satisfying ||¢||Lip, < oo.
Then, (L, || - ||zip) is a Banach space. For py,pu2 € M, denote

dpnpn) = sup_ [ plln(de)  pa(d)]

el
In what follows, we apply the following result.

Proposition. Let {u,} € M and u € M. Then, u, = g asn —
if and only if d(pn, ) = 0 as n — co. In fact, d is a distance in M and
(M;d) is a complete metric space.

In fact, this result is well-known and it is exploited in [1-4] for an
analysis of Vlasov equations. Readers may consult with these papers and
the references in them for its proof.

For an interval I C R, C(I; M) denotes the space of continuous
functions from I into (M;d); the space C([; M) is equipped with the
metric v(p1(-), g2(-)) = sup d(p1(t), u2(t)). For a given measure-valued

tel

function u(t) € C(I; M), by S; we denote the operator mapping any
(z0,v0) € R? x R® into the point (z(t),v(t)) where (z(-),v(+)) is the cor-
responding solution of (5)-(7). As it is shown below (see Lemma in the
next section), under the assumptions we make S; is a diffeomorphism of
R? x R3 onto itself for any fixed t. By § we denote the standard Dirac
delta-function, interpreting it as a measure.

The standard result on the well-posedness of (1)-(4) well-known now
is the following (for its proof, see, for example, [1-4]).

Theorem 1. Let U(:) be an even two times continuously differen-
tiable function in R3® all whose first and second partial derivatives are
bounded and let po € M. Then, problem (1)-(4) has a unique weak solu-
tion u(t) € C(R; M) where p(0) = uo.

Remark 1. Here, we do not specify in what sense our weak solution
of (1)-(4) is understood because this is not used in what follows. On such
a definition, see, for example, [1]. For the indicated solutions relations



(2) are replaced by the following:

pla,t) = — / VU(z — y)u(t)(dy dv),
R3xR3

and conditions (4) by the nonnegativity of u(t) and the equality u(t)(R3x
R3 =1.

Remark 2. It is known (see, for example, [5]) that under the assump-
tions of Theorem 1 problem (1)-(4) possesses continuously differentiable
solutions, too, when fy is smooth. The connection of these solutions with
solutions of (5)-(7) consists in the relations f(¢,z(¢, o, v0), v(t, 0, v0)) =
fo(o, vo) taking place for all (zo,vo) and t where (z(¢, zo, v0), v(t, zo, Vo))
are the solutions of (5)-(7).

Here, we want to prove the following.

Theorem 2. Under the assumptions of Theorem 1 one has
p(t)(Se82) = po(R) for any Borel set @ C R3 x R3.

Remark 3. Since S; is a diffeomorphism as a map from R2 x R? into
itself, it transforms Borel subsets of this space into Borel ones.

Remark 4. In [5], invariant measures for the Vlasov equation analo-
gous to those presented with Theorem 2 are constructed in the case when a
solution of this equation is smooth. In the indicated paper, these measures
are used to prove the existence of a weak solution for the Vlasov equation
with the singular potential of interaction between particles U(z) = |z|~2.

2 Proof of Theorem 2 on invariant mea-

sures
N
Consider the following measures: p) = N~!' Y §(z — 29) x §(v — v2),
n=1

where z9 € R® and v2 € R3 are arbitrary constants. It is known that
for any po € M there exists a sequence of measures of the above kind
weakly converging to uo. So, we accept that po and the above sequence
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are already chosen. The result we apply in the present article states
that, denoting by (¢ (t), 0¥(t)) = (¢2(£), 02 (t) ncz,..v the sequence of
solutions of the following system:

@y (1) = vy (1),

oY (t) = pV(aN(t),t) == — N~ ‘ZVU t) -z (1)),

xi\/(o) = xn,O € Ra’ UN(O) = vn,O € R3

n

N
where p) = N1 3 §(z — zl) x §(v — v]y), one has that for any T > 0
n=1

the sequence of corresponding measures

=N- Z §(z — 2N (1)) x 8(v — vV (t))

converges to the corresponding solution u(t) of (1)-(4) in C([-T,T]; M)
(for the proof, see, for example, [1-4]).
Consider now the system

Zn(t) = vn(t), (8)

on(t) = pn(an(t),t) = — / VU(zn(t) — y)p™ (t)(dy dv), (9)
R3xR3

zn(0) = 2o € R?, un(0) = v € R3, (10)

where now (o, vo) runs over the whole R3®x R3. Clearly, (zn(t),vn(t)) =
= ((1), oM (1)) if (2(0), v7(0)) = (2 (0), o (0)).

Denote by SN (zo,v0) = (zn(t,Z0,v0),vn(t,Z0,v0)) the evolution
operator and solutions of system (8)-(10) (one can easily verify that the
standard local existence and uniqueness theorems hold for this system).
Since in view of conditions of Theorem 2 the function py(z,t) is bounded
for each N uniformly in = and ¢, it easily follows that solutions of (8)-(10)
are global, that is, they can be continued onto the entire real line t € R.

Lemma. Under the assumptions of Theorem 2 for any fized t SN and
St are diffeomorphisms (i. e. they are one-to-one mappings continuously
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differentiable with their inverse) of R® x R® onto itself. For any T > 0
one has SN (zo,v0) = Si(zo,v0) as N — oo uniformly in (zo,vo,t) €
R3 x R® x [-T,T].

Proof is very simple. The fact that S and S; for any fixed ¢ are
diffeomorphisms follows by the standard existence, uniqueness and con-
tinuous differentiability theorems for a system of ODEs. As for the second
claim of Lemma, we have by Proposition from Section 1:

VU(z — y)[u(t)(dy dv) — pN(t)(dy dv)] — 0

R3xR3

as N — oo uniformly in (z,t) € R x [-T, T] because {VU(z — y)}.cr?
is a family of uniformly globally Lipschitz continuous functions. So,
SN(z0,v0) = Si(z0,v0) as N — oo uniformly in (2o, vo,t) € R® x R3 x
X [-T,T] and Lemma is proved.O

Fix an arbitrary ¢ € R and consider a ball B.(a) = {(z,v) €
R3xR3: |a—(z,v)| < r} where a € R3x R®and r > 0. It is easy to see
that, for a fixed a, there exists at most a countable set of values r > 0 for
each of which po(9B,(a)) > 0 where 0A denotes the boundary of a set
A (because otherwise we would have uo(B,(a)) = +oo for all sufficiently
large r > 0). By analogy, for a fixed a, there exists at most a countable set
of values r > 0 for each of which p(t)(0(S:B,(a))) = u(t)(S:(0B.(a))) >
> 0. So, for a fixed a, the set of values r > 0 such that po(9(B,(a))) =
= u(t)(9(S¢B,(a))) = 0 is dense in (0, 00).

Let now A C R3 x R2 be a union of a finite number of open balls
such that po(0A) = u(t)(9(S:A)) = 0. Let us prove that

po(A) = u(t)(S:A)- (11)

Let {u)}n=123,.. be the above sequence of measures weakly converging
to po. Take an arbitrary € > 0. Then, since u(t)(9(S:A)) = 0, there exists
a neighborhood A, of 9(S;A) of the kind

A ={(z,v) € R®x R?: dist ((z,0);0(S:4)) < c},
where ¢ > 0 and dist (z; B) = ixelg |z — y|, such that
Yy
u(t)(E) < /2 (12)
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(here A, is the closure of A,). In addition, as earlier, we can accept that
w(t)(0A.) = 0 easily varying ¢ > 0 in the definition of A, if necessary.
According to the lemma above,

(S:A\ A) C (SNA) C (S, AU A,) (13)
for all sufficiently large N. In addition, obviously
po (A) = uM(2)(S A). (14)

Now, we apply the well-known property of weakly converging sequences
of measures according to which

N (s)(B) = u(s)(B) as N — oo, s =0,t, (15)

for any Borel set B C R? x R3 satisfying u(s)(0B) =0, s = 0,t. Due to
(12)-(15) we have |u(t)(S:A) — po(A)| < € and in view of the arbitrariness
of € > 0 (11) follows.

For an arbitrary open set A C R3x R? equality (11) can be obtained
by approximations of A from inside by the above unions B of finite num-
bers of balls satisfying uo(0B) = u(t)(9(S:B)) = 0. For an arbitrary
Borel set A (11) follows by approximations of A from outside by open
sets. So, Theorem 2 is proved.[]
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XKunkos II. E. E5-2003-15
O6 uHBapHaHTHBIX Mepax i1 ypaBHeHus Bnacosa
C PETY/ISIpHBIM MOTEHLHATIOM

PaccmatpuBaetca ypaBHeHHe BiiacoBa ¢ DIaKMM OrpaHHYEHHBIM MOTEHIHA-
JIOM B3aMMONICHCTBHA MeXIy YaCTHLIaMH B Kjlacce OOOOIIEHHBIX PEIEHHI CO 3Ha-
YeHHSAMH B IIpocTpaHcTBe Mep. 1 310 3amayH NMocTpoeHa Mepa, HHBAPUAHTHAS
B HEKOTOPOM CMBICJIE.

Pa6ora Boinomiena B JlaGoparopuu Teoperndeckoit ¢usuku um. H. H. Boro-
mo6osa OUSIH.

Ipenpunt OGBENMHEHHOTO MHCTHTYTa ANepHbIX HccrenoBanuil. MyGHa, 2003

Zhidkov P. E. E5-2003-15
On Invariant Measures for the Vlasov Equation
with a Regular Potential

We consider a Vlasov equation with a smooth bounded potential of interaction
between particles in a class of measure-valued solutions and construct a measure
which is invariant for this problem in a sense.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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