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1 Introduction

The classical Tamm-Frank theory [1] explaining the main properties of the Vavilov-
Cherenkov (VC) effect [2,3] grounds on the assertion that a charge uniformly moving
in medium with the velocity v greater than the light velocity in medium ¢, radiates
spherical waves from each point of its trajectory [4]. The envelope to these spherical
waves propagating with the velocity ¢, is the Cherenkov cone with a normal inclined un-
der the angle 8, towards the motion axis. Here cos 8. =1/Bn,fn=0n,p= v/e,en =cfn
(c is the light velocity in vacuum and n is the medium refractive index).

The radiation of a charge uniformly moving in a finite medium space interval is usually
studied in the framework of the so-called Tamm problem [5]. Under certain approxima-
tions (see below) Tamm obtained the remarkably simple formula which is frequently used
by experimentalists for identification of the charge velocity.

In Refs. [6,7] the VC radiation observed in the Tamm problem was interpreted as
interference of two bremsstrahlung (B:S) shock waves arising at the beginning and at the
end of motion.

On the other hand, the exact solution of the Tamm problem in the time representa-
tion was obtained in [8] for the dispersion-free medium. Its properties were investigated
in some detail in [9,10]. It was shown there that side by side with BS shock waves
the Cherenkov shock wave (CSW, for short) exists. According to [8-10], when a charge
moves in the interval (—zo, 20), the CSW is enclosed between the moving charge and the
L, straight line originating from the —zo point corresponding to the beginning of motion
and inclined under the angle 8, towards the motion axis. The CSW is perpendicular to
L,. When a charge stops at the moment o, the CSW detaches from it and propagates
between the L, straight line and the L; straight line originating from the zo point corre-
sponding to the termination of motion and inclined under the same angle 6, towards the
motion axis. The positions of BS;, BS; shock waves and the CSW are shown in Fig.
1(a). For an arbitrary moment of time ¢ > to, the CSW is always tangential to both BS)
and BS; shock waves. The length of CSW (coinciding with the distance between L, and
Ly) is L/Ba¥n, where L = 220 is the motion interval and vy, = 1/4/]1 — B2|. As time goes,
the CSW propagates between L; and L, with the light velocity in medium ¢, (Fig. 1
(b)). The BS; and BS; shock waves are not shown in this figure. In the spectral repre-
sentation ( since transition to it involves the time integration) one gets space regions lying
to the left of L; and to the right of Ly to which BS; and BS; shock waves are confined,
and the space region between L, and L; to which BS,, BS; and CSW are confined. Let
the measurements of the radiation intensity be made in the plane perpendicular to the
motion axis z. Then, CSW cuts out in each of the z = const planes the segment of the
length §p = L/, independent of z, with its center at Ro = 2/v (Fig. 1 (c)). This pic-
ture refers to a particular ¢ = const plane (¢ is the angle in the z = const plane). Since
the treated problem is the axially symmetrical one, the intersection of the CSW with
z = const plane looks like a ring with minor and major radii equal to Ry = Ro — L/2y,
and R, = Ro + L/27», resp (Fig. 1 (d)). This qualitative consideration implies only the
possible existence of the Cherenkov ring of the finite width. To find the distribution of
the radiation intensity within and outside it, the numerical calculations are needed.

When the ratio of the motion interval to the observed wavelength is very large (this
is a usual thing in the Cherenkov-like experiments), the Tamm formula has a sharp é-
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Figure 1: a): The position of the Cherenkov shock wave (CSW) and the bremsstrahlung
ones arising at the beginning (BS;) and the end (BS;) of the charge motion at the fixed
moment of time. The CSW is enclosed between L; and L, straight lines originating from
the points corresponding to the boundaries of the motion interval; (b): The propagation
of CSW between I, and L, straight lines; (c): In an arbitrary z = const. plane perpen-
dicular to the motion axis, the CSW , in the ¢ = const. plane, cuts off the segment of
the same length Ry — Ry for any z; (d) Due to the axial symmetry of the problem, the
CSW in the 2 = const plane, cuts off the ring with internal and external radii Ry and
Ry, resp. The width R, — Ry of the Cherenkov ring and the energy released in it do not
depend on the observation plane position z.



type peak within the Cherenkov ring. Due to this, it cannot describe a rather uniform
distribution of the radiation intensity inside the Cherenkov ring.

It should be mentioned that under the "shock waves” used throughout this paper we
do not mean the usual shock waves used, e.g., in acoustics or hydrodynamics where they
are Lhe solutions of essentially nonlinear equations. The Maxwell equations describing
the charge motion in medium are linear , yet, they can have solutions (when the charge
velocity is greater than the light velocity in medium) with properties very similar to the
true shock waves. For example, there is no electromagnetic field outside the Cherenkov
cone, an infinite electromagnetic field on its surface and a rather smooth field inside the
Cherenkov cone. The analog of the Cherenkov cone in acoustics is the Mach cone.

The observation of the above shock waves encounters certain difficulties when the used
focusing devices collect radiation from the part of the charge trajectory lying inside the
radiator into the sole ring, thus projecting the V'C radiation and bremsstrahlung into the
same place. The typical experimental setup with a lense radiator and the corresponding
Cherenkov ring are shown in Fig. 2. In its left part, | means the proton beam with

Figure 2: Left: The scheme of experiment with the lense radiator; 1 is the proton beam,
9 is the lense radiator, 3 is the focused V(' radiation, 4 is the plane photofilm placed
perpendicularly to the motion axis, F' is the focal distance for paraxial rays; Right: the
black-white photoprint from the photofilm shown on the left.

the energy 657 MeV and diameter 0.5 cm, 2 is the lense radiator with refractive index
1.512 and the focal distance 2.27 em (for paraxial rays), 3 is the focused V' C' radiation
(Ocn = 35.17°), 4 is a plane photofilm (1824 cm). On the right side there is a black-white
photoprint of the photofilm shown on the left. It has the form of a narrow ring.

To see how the VC radiation and bremsstrahlung are distributed in space, we turn
to experiments in which the V' radiation was observed without using the focusing de-
vices. These successful (although qualitative) experiments were performed by one of the
authors (V.P. Zrelov, unpublished) in 1962 when preparing illustrations to monograph
[11] devoted to the V(' radiation and its applications. In this paper we processed these
experimental data. The results are presented in the next section.

The plan of our exposition is as follows. The experiments mentioned above are dis-



cussed in section 2. The main computational formulae {exact and approximate) are
collected in section 3. The analytic approximate formulae are needed for the qualitative
analysis of the exact calculations. Radiation intensities for a number of observation plane
positions are presented in section 4. In section 5, we discuss the results obtained and
compare them with experimental data of section 2. Section 6 contains a brief summary
and concrete proposals for the performance of new experiments.

2 Simple experiments with 657 MeV protons

2.1 The first 1962 experiment

The 657 MeV (8 = 0.80875) proton beam of the phasotron of the JINR Laboratory of
Nuclear Problems was used. The experimental setup is shown in Fig. 3. The collimated

Figure 3: The experimental setup of the discussed experiment (Zrelov 1962). The proton
beam (1) passing through the conical plexiglass radiator (2) induces the VC radiation
(3, shaded region) propagating in the direction perpendicular to the cone surface. The
observations are made in the plane photofilm (4) placed perpendicularly to the motion
axis.

proton beam (1) with diameter 0.5 cm was directed to the conic polishing plexiglass
radiator (2) (n = 1.505 for A =4- 10~% cm). The apex angle 109.7° of the cone enabled
the VC radiation (3) to go out from the radiator in the direction perpendicular to the
cone surface. The radiation was detected by the plane colour 18 x 24 cm photofilm
placed perpendicularly to the beam at a distance of 0.3 cm from the cone apex. Nearly
10'? protons passed through the conical radiator. The black-white photoprint and the
corresponding photometric curve (from which the beam background was subtracted) are
shown in Figs. 4 (a) and (b), resp. The photometric curve describes the distribution



i\

£

'g'mo .‘f \
= £t
% F |
504 g L]

Figure 4: Left: The black-white photoprint from the photofilm shown in Fig. 3; Right:
The photometric curve corresponding to the left part. One observes the increment of the

radiation intensity at p & 2.25¢m which corresponds to the Cherenkov ray emitted [rom
the point where the proton beam enters the radiator.

dE(p)jdp of the energy released inside the ring of the finite width. More accurately,
dp - d&(p)/dp is the energy released in the elementary ring with minor and major radii p
and p + dp, resp. It is seen from this figure that the increment of the radiation intensity
takes place at the radius p = 2.25¢m corresponding to the radiation emitted under the
Cherenkov angle @, from the boundary point where the charge enters into the radiator.

2.2 The second 1962 experiment

In another experiment performed in the same 1962 year, the radiation intensity maxi-
ma corresponding to the radiation from the boundary points of the radiator are more
pronounced. The experimental setup is shown in Fig. 5.

The radiator was chosen in the form of the crystalline quartz cube of side 1.5 cm.
The proton beam (1) passed through the cube (2) along the axis connecting opposite
vertices. In this case, the V€ radiation went out through the three cube sides inclined
under the angle ¥ = 35.26° towards the motion axis. Likewise in the first experiment,
the plane colour pholofilm was placed perpendicularly to the beam axis, at a distance
of I = 2.35¢m from the cube vertex. This guaranteed a smaller (as compared with a
previous experiment) proton beam background in the VC' radiation region. The direction
of VC radiation rays (4) through one particular cube side ¢ is shown. The black-
white photoprint and the corresponding photometric curve measured along the direction
"a-a” (Fig. 5) are shown in Fig. 6. To make the rough estimates, we averaged the
crystalline quartz refractive index over ordinary and nonordinary wave vector directions,
thus obtaining n = 1.55 for A = 5 10~°cm. The corresponding Cherenkov angle was
0, = 37.09°. In this case, the VC radiation rays emitted from the cube vertices should be
at the radii By & 1.4em and Ry & 2.3em in the photofilm perpendicular to the motion
axis. There is a rather pronounced radiation maximum in Fig. 6 only at R, & 2.3cm .

Theoretical consideration and numerical calculations presented below show that the
just mentioned radiation intensity maxima should indeed take place and they are due to

the discontinuities at the beginning and the end of the charge motion interval.
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Figure 5: The experimental sctup of another experiment (Zrelov 1962). The proton
beam (1) propagates through the quartz cube (2) along the axis connecting the opposite

cube vertices. The observations are made in the plane photofilm (3) placed behind the
quartz cube perpendicularly to the motion axis; (4) is the direction of the Cherenkov
rays passing through one of the cube sides.
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Figure 6: Left: The black-white photoprint from the photofilm shown in FIG. 5; Right:
The photometric curve corresponding to the left part along the direction a — a; T means
the distance along a — a. The increments of the radiation intensity at radii Ry ~ 2.3cm
and Ry & 1.4em corresponding to the Cherenkov rays emitied at the vertices where the
beam enters and leaves the cube, resp. The radiation intensity for negative z describes the
superposition of the V' radiations passing through two sides of cube (2
maxima relating to the

). The radiation
ends of the Cherenkov rings are more pronounced than in Fig 4.



3 Main computational formulae

Formerly, the finite width of the Cherenkov rings on the observation sphere S of the finite
radius r was studied numerically in [12], and analytically and numerically in [13]. It was
shown there that the angle region to which the Cherenkov ring is confined, is large for
small r and diminishes with its increasing. However, the width of the band corresponding
to Cherenkov ring remains finite even for infinite values of r. Since the measurements
in the discussed experiment were made in the plane perpendicular to the motion axis
(which we identify with the z axis), we should adjust formulae obtained in [12,13] to the
case treated.

3.1 The exact formula

In the spectral representation, the nonvanishing z component of the vector potential
corresponding to the Tamm problem is given by

Az(a:,y,z) = %aTv (31)
where , ,
— = di ; =k f_ (2 _ N\211/2
ar = R exp(ub), d) = (ﬂ + nR)7 R= [P + (Z Z) ] )
—z
pP=at+y’, k= “—C) (32)

and g is the magnetic permittivity (in the subsequent concrete calculations we always
put p=1).
The field strengths corresponding to this vector potential are

eknp , a1 1
28 [ et exp(it) g (~i + )

H, =

_ iekpp . Lz —2 3 3 _
B, =22 / & explit) (1 + T~ ) =

(we do not write out the z component of the electric strength since it does not contribute
to the z component of the energy flux which is of interest for us).

The energy flux emitted in the frequency interval dw and passing through the circular
ring with radii p and p + dp lying in the z = const plane is equal to

d2£
dp—2
du pdpdw’
where 2 242003
LI . _ERNEP ’
Ipde 27rp2(E,,H¢ +c.c.) 5o (LIl + LI,). (3.3)



Here we put

_ , 1 sin ¢y ) 22 3 B sin ¢
Ic = /dz ﬁ(COS’K,[)l - knR )7 Ic - /dl R® [(1 kZRz)Cos 1/)1 3 kﬂR ]7
_ 1 cos ¥y , =23 cos Py
I,_/dz R2(51n¢1+—_—knR )s Is—/dz & (1 ———szZ)smz/)l+3 W R 1

!
1/)1=%:+kn(R—r), r?=p* + 22

3.2 The Tamm approximate formula

Imposing the conditions: i) R >> 20 (this means that the observation distance is much
larger than the motion interval); ii) knR >> 1, kn = w/c, (this means that the
observations are made in the wave zone); iil) nzd/2rd <<, A= 2mc/w (this means
that the second-order terms in the expansion of R should be small compared with = since
they enter into 11 as a phase; ) is the observed wavelength), Tamm [7] obtained the
following expression for the magnetic vector potential
kLn 1

in[——(— — cos 9)]. 3.4

) (34)
Here L = 2z is the motion interval and B, = fBn, B =v/c. Using this vector potential,
one easily evaluates the quantity similar to (3.3)

ep . 1
z = k ) = TTa ...
A P exp(tknr)g, ¢ T —cosb sin{

&€ 2e?uzp® ,
5:(T) = dpdw(T) = et 1 (3.5)
where cosf = z/r and r = /p? + 72. The value of (3.5) at cos 8 = 1/f, is given by
e2uk?L? 1
Sz(T)lcosO:l/ﬂ,. = 21rcn4ﬂ5'yﬁz’ Yn = |1 — ﬂﬁl (36)
For large kL, (3.5) is reduced to
etukL 1 z
So(Dkeo>r = ——(1— E?:)(S(p - ;;)- (3.7)
Integration over p gives the energy flux through entire z = const plane
d€ e?ukL 1 w
%(TF) = (- B—ﬁ)’ k= < (3.8)

which is independent of z and coincides with the Tamm-Frank value [1] (as it should be).
Tamm himself evaluated the energy flux per unit solid angle and per unit frequency
through the sphere of the infinite radius r

d*€ (T) = et

dQdw T nnc
This famous formula obtained by Tamm refers to the spectral representation and is
frequently used by experimentalists for identification of the charge velocity.

g’sind. (3.9)
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3.3 The Fresnel approximation

This approximation is valid if the terms quadratic in 2’ in the development of R are
taken into account while the cubic ones are neglected. The condition for the validity of

the Fresnel approximation is nzj/2r*A << 1. In this approximation,

e*ukpz
2cr?

%(F )= [(S4 = S-)? +(Cs = C-)) (3.10)

Here
knr . 1—B,cos8 2o
Cy =C(2ze), Sz= S(zg), 2x= \[—z—sm()( Gusin? 0 + . ),

C(z) and S(z) are the Fresnel integrals defined as

S(z) = \/%/dtsint2 and C(z)= \/?r-/dtcost2.
5 0

From the asymptotic behaviour of the Fresnel integrals

2

1 1 cosa? 1 sinz

1
S(w)Né.__\/—T; - 5 C("E)N'i‘i‘ﬁ z
as ¢ — oo and their oddness (C(—z) = -C(z), S(-z)=—5(z)) it follows that for
large kr (3.10) has a kind of plato (if pz — p1 << p)

e?ukpz

2 )

3.11

= (3.11)
for p, < p < p2, where p and p, are defined by the vanishing of the Fresnel integrals
arguments. For r >> 2o, they are reduced to

pra =/B2— 1z F )

Outside the plato, for the z fixed and p — oo, (3.10) decreases like 1/ p? coinciding with
the Tamm formula (3.5). Mathematically, the existence of a plato is due to the fact that

for py < p < p2 the Fresnel integral arguments z; and z. have different signs. At the
Cherenkov threshold (8 = 1/n)

ke . 1 Zo
=\ 5l mEm = 7

have the same sign for r > L and the radition intensity for kr >> 1 and r > L should
be small (as compared with the plato value (3.11)) everywhere.

These asymptotic expressions are not valid at p = p; and p = p2. At these points the
radiation intensities are obtained directly from (3.10)

e, | _ €pkzp %n . 2 2%kn . 9
M(P =p1)= {[C(\/’;‘Zosmal)] +[S( 71‘20511191)] b

2
2cri
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dzg( = ) = eZunkzp;

{ic( 2—Zrizosin02)]2+[5( ngnzosin02)]2}, (3.12)

2
2cr;

where 1y, 73, 81 and 8, are defined as

ro=Jpt+ 22, re=1pi+2?, cosb= z[r1, cosfy =z/ra.

For k2%/z >> 1, one gets

&€ e*ukzp, &€ _ ’unkzps

M(P =p)= “do? dpdw(p =p2) = ol (3.13)

that is four times smaller than (3.11) taken at the same points.
For k22/r << 1, the radiation intensity (3.10) outside the Cherenkov ring coincides with
the one given by the Tamm formula (3.5).

3.3.1 Frequency distribution

Integrating (3.11) over p from p; t0 p; ( suggesting that outside this interval, the radiation
intensity (3.10) is negligible), one gets the frequency distribution of the radiated energy
d€ e2ukL

o ="

1

(1_ﬁ%)7 k=

w
(&

, (3.14)
which coincides with the Tamm-Frank frequency distribution (3.8).

3.3.2 Energy radiated in the given frequency interval per unit radial distance

Integrating (3.11) over w from w; to ws, one gets the space distribution of the energy
emitted in the frequency interval (wi,wz). It equals

(@} —wl) (3.15)

for py < p < pz and zero outside this integral. When performing the w integration, we
disregarded the w dependence of the refractive index n. This is valid for a rather narrow
frequency interval.

The same conclusion is valid for (3.10) since the square bracket in it depends on w
only through the refractive index n. Integrating (3.10) over w one gets

d€ P e2u(w? — w?)pz

% () = (S - S 4 (04 = O (3.16)

3.3.3 The total energy radiated in the given frequency interval

Integration of (3.14) over w or (3.15) over p gives the total energy emitted in the frequency
interval (wy,w2)
etulL

£ = Shr (- w1 - ﬂi}’,)' (3.17)

(Again, the medium dispersion is neglected).
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3.4 Quasiclassical (WKB) approximation

To make easier the interpretation of the numerical calculations presented in the next sec-
tion, we apply the quasiclassical approximation for the evaluation of the vector potential
(3.1). For p < (z — 20)/¥n and p > (z + 20)/7w (that is, below L3 or above L,) one gets

A.(BS) = Ay(BS) — Ax(BS), (3.18)
where reu 1 ouf 1
_depf 1 , _tepB 1 )
A (BS) = Smch B, exp(ith), AaBS) Imck exp(is),
1 1 20 )
R Y gt =k —2), =kt ),
= TEET TRy MMk ket )

g8

w

=P+ (z+2)2 ra=yPr+(z—2) k= o

1t is seen that if 8 > 1/n, then A% is infinite at p = (z—20)/¥n and p = (z+20)/7a, that

is, at the border with CSW. There are no singularities in A2** for 8 < 1/n. Expanding
ry and ro up to the first order in zo {ri=r+ 20cos 8, 7, = r — zg cos §), one gets

B

AT = Trillzgzr exp(iknr) (3.19)
which coincides with the Tamm vector potential (3.4). Due to the approximations in-
volved, the singularities of A;(BS) and A;(BS) compensate each other, and the Tamm
vector potential (3.19) is finite at all angles. Thus, A.(BS) is the quasiclassical analogue
of the Tamm vector potential.

On the other hand, in the space region (z — z0)/7m < p < (2 + 20)/¥x (that is, between
L, and L;) one has

A, = A,(BS) + A:(Ch), (3.20)
where A,(BS) is the same as in (3.18) while
ep ) 213
A:(Ch) = 5= explitbon)y[ = Olp — (2 — 20) /1]l + 20) /1 — o), (3:21)
where ©(z) is the step function and
. kz 7w kp
Yon = F + 1 + m

It should be noted that A,(Ch) exists only if 8 > 1/n. Otherwise (8 < 1/n), the vector
potential is given by (3.18) in the whole angular region.

One can ask on what grounds we separated the vector potential into the Cherenkov
(A.(CPR)) and bremsstrahlung (A,(BS)) parts? First, A;(BS) and Ag(BS) exist below
and above the Cherenkov threshold while A.(CR) exists only above it. This is what
intuitively expected for the V' C radiation and bremsstrahlung Second, A,(Ch) originates
from the stationary point of the integral ar (see Eq. (3.1)) lying inside the motion interval
(—z0, 20). For A{(BS) and Az(BS) the stationary points lie outside this interval, and their
values are determined by its boundary (%z) points. Again, this is intuitively expected
since the VC radiation is due to the charge radiation in the interval (—20, 20) while the

12



bremsstrahlung is determined by the points (F20) corresponding to the beginning and
the end of motion, resp. Third, to clarify the physical meaning of A,(Ch), we write out
the vector potential corresponding to the unbounded charge motion. It equals

= P (R (T
A, = o exp( /3 )KO(,B7H)

for 8 < 1/n and
iey tkz 1) kp :
A, = —exp(—- — 3.22
L x5 (52) (322
for B > 1/n. Since this vector potential tends to (3.21) as p — oo, A,(Ch) is a piece
of the unbounded vector potential (3.22) confined to the (z — z0)/¥n < p < (z + 20)/¥n
region.

It is seen that for kr — 0o, A,(BS) and A,(Ch) decrease like 1/kr and 1/Vkr, resp.
This means that at large distances, A;(Ch) dominates in the (z=20)/ " < p < (24+20) /7
region. Thus, A, has a kind of plato inside this interval with infinite maxima at its
ends (quasiclassics does not work at these points) and sharply decreases outside it. The
corresponding quasiclassical field strengths are given by

E = E(BS)+ E(Ch), H =H(BS)+ H(Ch), (3.23)
H(BS) = Hy(BS) — Hy(BS), E(BS)= Ey(BS) - Ex(BS),
Hl(BS) = —‘iﬁ'p—(kan + Z) exp(id)l), Hz(BS) - —eﬁ—p‘—z(knR2 + l) exp(ilbg)

Inckry R? 2mckry RS
_ efp .
Ey(BS) = 2mcek?riR? exp(it) X
(1 = ik )(1 ik B 252 4 T @ — ibn Ry (22 - B,
1 1 1
_ efp ,
Ey(BS) = 2mcek?ri RS exp(in) x
x[(1 = sknra)(1 — iknRg)Z : L ;—2(2 —iknRy)(E ; 2 B
2 2 2
__e [tBm 1 Zikp : -1
H(Ch) = ~5 % 2p( o 1)exp(ivon), E(Ch) = ﬂH(Ch).

Here ¢ is the electric permittivity (n? = e). It should be noted that when evaluating
field strengths, we did not differentiate step functions entering into (3.21). If this were
done, the & functions at the ends of the Cherenkov ring appeared. Due to the breaking
of the WKB approximation at these points, the vector potentials and field strengths
are singular there and the inclusion of the just mentioned § functions does not change
anything. The energy flux along the motion axis is

&€ . .
5= d_p?dE(WKB) = npc(EH* + HE"). (3.24)

In (3.23) and (3.24), E = E, and H = H, (in order not to overload formulae, we dropped
the indices of E, and Hy).
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We estimate the height of the plato to which mainly H(Ch) and E(Ch) contribute.
It is given by

Zuk
S, (plato) = mpel E(Ch)H*(Ch) + H(CR)E*(Ch)} ~ ;57 : (3.25)

Since S, is negligible outside this plato and since infinities at the ends of the Cherenkov
ring are unphysical (they are due to the failure of the WKB method at these points) the
frequency distribution is obtained by multiplying (3.25) by the width of the Cherenkov
ring

d€ etky L epklL 1

= = LR, .

ZVED= e TR (3:20)
This coincides with the Tamm-Frank formula (3.8). It is rather surprising that quite
different angular distributions corresponding to the Tamm intensity (3.5), to the Fresnel
one (3.10) and the quasiclassical one (3.24) give the same frequency distribution (3.8).

4 Numerical results

In Fig. 7, the radiation intensities are presented for various distances 6z of the observation
plane (§z is the distance from z = %o point corresponding to the termination of motion).
We observe the qualitative agreement of the exact radiation intemsity (3.3) with the
Fresnel one (3.10). Both of them sharply disagree with the Tamm intensity (3.5) which
does not contain the C'SW responsible for the appearance of plato in (3.3) and (3.10).
Fig. 7 (d) demonstrates that at large observation distances (6z = 100cm) the Tamm
radiation intensity approaches the exact one outside the Cherenkov ring .

In Fig. 8, the magnified versions of exact radiation intensities corresponding to 8z =
0.3cm and 8z = lem are presented. In accordance with quasiclassical predictions, one
sees the maxima at the ends of the (z — 20)/m < p < (2 + 20)/m interval. In Sec. 1
it was mentioned about the special optical devices focusing the rays directed under the
Cherenkov angle into one ring. In the case treated, it is the plato shown in Figs. 7 and 8
and the BS peaks at its ends that are focused into this ring. The remaining part of BS
will form the tails of the focused total radiation intensity. Probably, for such compressed
radiation distribution the Tamm formula has a greater range of applicability.

5 Discussion
5.1 Vavilov-Cherenkov radiation and bremsstrahlung on the
sphere

In the original and in nearly all subsequent publications on the Tamm problem, the
radiation intensity was considered on the surface of the sphere of the radius 7 much
larger than the motion interval L = 2zp. It is easy to check that on the surface of the
sphere of the finite radius 7, the intervals

p> (24 20) /% (2= 2)/1m<p<(z+z)/m and p< (z = 20)/ M

14
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Figure 7: Theoretical radiation intensities in a number of planes perpendicular to the
motion axis for the experimental setup shown in Fig. 3; 62 means the distance (in cm)
from the cone vertex to the observation plane. The solid, dashed, and dotted curves refer
to the exact, Fresnel and Tamm intensities. In this figure and the following ones, the
radiation intensities are in €%/czo units.
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Figure 8: Exact theoretical radiation intensities in the 8§z = 0.3cm and 6z = lem planes.

correspond to the angular intervals
6>0, 6,<0<6, and 0 < 0y,
where 0; and 8, are defined by

€0 1 €0 \271/2 ‘o ! €0 _\211/2
cosby=———+ 1 —(— and cosby=-—-—+—=—|1 —(— . (5.1
=gt el (G = mat T G O
Here ¢p = z/r. For r >> 2o,

o =0c+ ﬁe‘; s 0, =00_ ﬂef; )

where 6, is defined by cos8, = 1/8n. In this case, the Tamm formula (3.9) is valid for
§ < 0, and 0 > 6, that is, nearly in the whole angular region. It should be added that
the existence of the Cherenkov shock wave on the sphere is masked by the smallness
of the angular region to which it is confined. It seems at first that on the observation
sphere of infinite radius there is no room for CSW. This is not so. Although Af =
8, — 05 = 2€0/Bn7n is very small for r >> z, the length of an arc corresponding to Af
in a particular ¢ = const plane of the sphere S is finite: it is given by £ = 220/fn¥n and
does not depend on the sphere radius r (for r >> zg). Due to the axial symmetry of the
problem, on the observation sphere S, the region to which the VC radiation is confined
looks like a band of the finite width £. Thus, the observation of the Cherenkov ring on
the sphere is possible if the detector dimensions are much smaller than L.

5.2 Vavilov-Cherenkov radiation and bremsstrahlung in the plane
perpendicular to the motion axis

More pronounced the separation of the VC radiation and the BS looks in the plane
perpendicular to the motion axis. We illustrate this using the quasiclassical intensities as
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Figure 9: (a) Quasiclassical radiation intensity in the §z = 0.3cm plane. It coincides
with the exact one shown in Fig. 8 (a) everywhere except for the boundary points of the
Cherenkov ring where the quasiclassical intensities are infinite due to the breaking of the
WXKB approximation; (b) The quasiclassical bremsstrahlung intensity (solid curve) and
the Tamm one (dotted curve) in the §z = 0.3cmm plane. The sharp disagreement between
them is observed.

an example. In Fig. 9 (a), we present the quasiclassical intensity (3.24) for §z = 0.3cm.
We observe perfect agreement between it and the exact one shown in Fig. 8 (a) everywhere
except for the boundaries of the region to which the VC radiation is confined. The
quasiclassical approximation is unique in the sense that contributions of the VC radiation
and the BS are clearly separated in the vector potential (3.20) and field strengths (3.23).
To see the contribution of the BS, we omit A,(Ch), E(Ch) and H(Ch) in these relations
by putting them to zero. The resulting intensity describing BS is shown in Fig. 9 (b). It
sharply disagrees with the Tamm intensity (3.5). From the smallness of the BS intensity
everywhere except for the boundaries of the Cherenkov ring it follows that oscillations of
the total radiation intensity inside the Cherenkov ring are due to the interference of the
VC radiation and the BS.

5.3 On the nature of the bremsstrahlung shock waves in the
Tamm problem

Some words should be added on the nature of BS shock waves discussed above. In Refs.
[6,7] they were associated with velocity jumps at the beginning and the end of motion.
On the other hand, the smoothed Tamm problem was considered in [14] in the time
representation. In it, the charge velocity v changes smoothly from zero up to some value
v > ¢, with which it moves in some time interval. Later, v decreases smoothly from vy to
zero. It was shown in [14] that at the moment when v coincides with the light velocity in
medium ¢,, 2 complex arises consisting of the C.SW with its apex attached to a moving
charge, and the shock wave SW; closing the Cherenkov cone (and not coinciding with
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shock wave originating at the beginning of motion). The inclination angle of the normal
to SW, towards the motion axis (defining the direction in which SW, radiates) changes
smoothly from 0 at the motion axis up to the Cherenkov angle 8, at the point where SW;
intersects the Cherenkov cone. Therefore, the radiation produced by the SWi fills the
angular region 0 < < .. As time goes, the dimensions of the above complex grow since
its apex moves with the velocity v > ¢n, while the shock wave SW, propagates with the
velocity ¢,. Formerly, on the existence of radiation arising at the Cherenkov threshold
and directed along the motion axis was pointed out by Tyapkin [15].

Since in the original Tamm problem the charge velocity changes instantly from 0
to vo, the BS shock wave is in fact a mixture of these three shock waves having zero
dimensions at the initial moment of time. Due to the specificity of the Tamm problem,
the CSW and SW, are not separated in subsequent moments of time too. They are
marked as CSW in Fig. 1 (a,b). The smoothed Tamm problem was also considered in
[10] in the spectral representation. It was shown there that when a motion length along
which a charge moves nonuniformly tends to zero, its contribution to the total radiation
intensity also tends to zero. There are no velocity jumps for the smoothed problem and,
therefore, the BS cannot be associated with instantaneous velocity jumps. However,
there are acceleration jumps at the beginning and the end of motion and at the moments
when the accelerated motion meets the uniform one. Thus, BS can still be associated
with acceleration jumps. To clarify the situation, the Tamm problem with absolutely
continuous charge motion (for which the velocity itself and all its time derivatives are
absolutely continuous functions of time) was considered in [16]. It was shown there that
a rather slow decrease in the radiation intensity outside the above plato is replaced by
the exponential damping (formerly, for the charge motion in vacuum, the exponential
damping for all angles was recognized in [17-20]). It follows from this that the authors
[5,6] were not entirely wrong if under the B S shock waves used by them, one understands
the mixture of three shock waves mentioned above and originating from the jumps of
velocity, acceleration, other higher velocity time derivatives and from the transition of
the medium light velocity barrier.

This is also confirmed by the consideration of radiation intensities for various charge
velocities. Figure 10 (a) demonstrates that the position of the radiation intensity max-
imum approaches the motion axis, while its width diminishes as the charge velocity
approaches the Cherenkov threshold (4 = 1/n & 0.665). The radiation intensities pre-
sented in Fig. 10 (b) show their behaviour just above (8 = 0.67) and below (8 = 0.66)
the Cherenkov threshold. It is seen that the maxima of the underthreshold and the over-
threshold intensities differ by 10° times. Far from the maximum position, they approach
cach other. The radiation intensity at the Cherenkov threshold shown in Fig. 10 (c)
is three orders smaller than the one corresponding to § = 0.67. The calculations in
Figs. 10 (a-c) were performed using the Fresnel approximate intensity (3.10) which is
in good agreement with the exact one (3.3) for the treated position (§z = 10em) of the
observation plane (as Fig. 7 demonstrates).

To see manifestly how the bremsstrahlung changes when one passes through the
Cherenkov threshold, we present in Fig. 10 (d) the quasiclassical radiation BS intensities
evaluated for # = 0.67 (in this case the VC radiation was removed by hand from (3.20)
similarly as it was done for Fig. 9 (b)) and g = 0.66. The position of the observation
plane is (82 = 0.3cm). Again, we observe the sharp decrease in the BS intensities in the
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Figure 10: (a) Radiation intensities for a number of charge velocities above the Cherenkov
threshold in the §z = 10cm plane. As the charge velocity approaches the light velocity in
medium, the position of the Cherenkov ring approaches the motion axis while its width
diminishes; (b) Radiation intensities for the charge velocity slightly above and below the
Cherenkov threshold in the §z = 10cm plane; (c) Radiation intensities at the Cherenkov
threshold in the 6z = 10cm plane. In accordance with theoretical predictions (see sect.
(3.3)) it is much smaller than above the threshold; (d) Quasiclassical BS intensities for
the charge velocity slightly above and below the Cherenkov threshold in the §z = 0.3em
plane.
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neighborhood of their maxima when one passes the Cherenkov barrier. This confirms
that the BS shock waves used in [6,7] are the mixture of three shock waves mentioned
above for the charge velocity above the Cherenkov threshold. For the charge velocity
below the Cherenkov threshold, only the BS shock waves originating from the jumps of
velocity, acceleration and other higher velocity time derivatives survive. They are much
smaller than the singular shock wave originating when the charge velocity coincides with
the medium light velocity.

5.4 Comparison with experiment

Turning to the comparison with experiment, we observe that it corresponds to the charge
moving subsequently in air, in medium and, finally, again in air. The transition radiation
which arises at the boundary of medium with air is approximately 100 times smaller than
the VC radiation ([21,22]). Since the uniformly moving charge does not radiate in air
where Bn < 1 and radiates in medium where fn > 1, the observer inside the medium
associates the radiation with instantaneous appearance and disappearance of a charge at
the medium boundaries and with its uniform motion inside medium [4]. This justifies
the applicability of the Tamm problem for the description of the discussed experiments.

Comparing theoretical intensities with the experimental ones we see that:

i) theoretical intensities have a plato (Figs. 7-10), while the experimental ones have
a triangle form (Figs. 4,6); ii) the observed radiation peaks at the boundaries of the
Cherenkov rings are not so pronounced as the predicted ones.

Probably, the triangle form of the observed radiation intensities is due to the smooth
change of the charge velocity inside the dielectric. For such a motion, the radiation
intensities obtained in [10,15,23] had indeed a triangle form. We estimate now the energy
losses for the experiment treated. For the protons with energy 657 MeV, the energy
ionization losses in plexiglass with density p = 1.2g/cm?® are AE[/Az = 2.91MeV/cm
[24]. This gives AE = 8.58MeV for the radiator length 2.95 cm. The corresponding
proton velocity change is AB = 23-1073 Alternatively, it can be associated with a
smooth change of the refractive index at the border of vacuum and dielectric.

The item ii) can be understood if one takes into account that experiments mentioned
in section 2 were performed with a relatively broad proton beam (0.5 cm in diameter).
This leads to the smoothing of the boundary peaks after averaging over the proton beam
diameter.

6 Conclusion

According to quantum theory [25), a charge uniformly moving in medium with the velocity
greater than the light velocity in medium radiates y quanta at the angle 6, towards the
motion axis (cosf, = 1/8n). It should be noted that for the uniform charge motion
in unbounded medium, a photoplate placed perpendicularly to the motion axis will be
darkened with the intensity proportional to 1 /p (p is the distance from the motion axis)
without any maximum at the Cherenkov angle. Despite its increase for small p, the
energy emitted in a particular ring with the width dp is independent of p. The surface
of the cylinder coaxial with the motion axis will be uniformly darkened.
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The Cherenkov ring can be observed only for the finite motion interval. In the z =
covst plane, the ring width is proportional to the charge motion interval L: AR = L/vn
(Ya = 1/4/1 = B2, Bn = Bn). It does not depend on the position z of the observation
plane. The frequency dependence enters only through the refractive index n. The radia-
tion emitted into a particular ring does not depend on 2. For the fixed observation plane,
the radiation intensity oscillates within the Cherenkov ring. These oscillations are due to
the interference of bremsstrahlung and the Vavilov-Cherenkov radiation in (3.23). The
large characteristic peaks at the ends of the Cherenkov ring are due to the bremsstrahlung
shock waves which include shock waves originating from the jumps of velocity, accelera-
tion, other higher velocity time derivatives and from the transition of the medium light
velocity barrier. The finite width of the Cherenkov ring in the z = const plane is due to
the Cherenkov shock wave. Inside the Cherenkov ring (Ry < p < Ry), the Tamm formula
does not describes the radiation intensity at any position of the observation plane (see
Fig. 7). Outside the Cherenkov ring (p < R and p > Ry), the exact radiation intensity
and the one given by the Tamm formula are rather small. In this angular region they
approach each other at large distances satisfying kz2/r << 1. For the experiments treat-
ed in the text, the Lh.s. of this equation equals unity at the distance r ~ lkm. On the
other hand, the exact formula (3.3) describes the radiation intensity in all space regions.

We conclude: the experiments performed with a relatively broad 657 MeV proton
beam passing through various radiators point to the existence of diffused radiation peaks
at the boundary of the broad Cherenkov rings. This supports theoretical predictions [6,
7, 26, 27) on the existence of the shock waves arising when the charge motion begins and
when the charge velocity coincides with the medium light velocity.

It is desirable to repeat experiments similar to those described in Section 2 with the
charged particle beam of a smaller diameter (7 0.1cm), with a rather thick dielectric
sample, without using the focusing devices and for various observation distances. This
should result in appearance of more pronounced, just mentioned, radiation peaks.
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Adpanacees I'. H., Kapraserko B. T, 3penos B. IL. E2-2003-83
O TOHKO# CTpPYKTYype H3nyuyeHus Bapwinosa—-Yepenkosa

C uesb10 U3y4eHH TOHKOH CTPYKTYPHI YePEHKOBCKHX KOJIEI IPOAHATH3HPOBAHbI 9KCIIEPUMEHTBI
(3penos B. I1.), B KOTOPBIX YePEHKOBCKOE HATYYEHHE PETHCTPHPOBATIOCH 6€3 HCHO/Ib30BaHHs (OKYCH-
PYIOLIMX YCTPOHCTB. IIpH 3TOM B IUTOCKOCTH, TIepIIeHTHKYIIIPHOH OCH TBHXEHHS NIPOTOHOB, Habmiona-
JIOCh LIHPOKOE YePEHKOBCKOe KObIo. MCronb3ys TOYHYI0 ¥ IPHOIMXeHHbIe OPMYIIBI, MBI PaCCMO-
TpeJH, KaK M3/7y4aeT 3apsl, PaBHOMEPHO [ABHXYIHMIACA B Cpele Ha KOHEYHOM MHTepBaie. To4Hbie
¢hopMyIIbI CIIpaBeUIABEI BO BCEM NPOCTPAHCTBE, BHYTPH M BHE Konbua. B mockocTy, nepneHaukyssp-
HOW OCH ABHXEHHS, HIIyYeHHe COCPEJOTOYEHO IIaBHBIM 06pa3oM B KOJIbLIE KOHEYHBIX Pa3MEpOB.
[I1pyHa 9TOro KOMbLIA K 3HEPIVS, B HEM BhbieNseMas, He 3aBHCAT OT MOJI0XeHHs IIIOCKOCTH Habmoze-
Hus. BHe KOJIblia HHTEHCHBHOCTB HTyYeHHA pe3Ko najgaer. HeGonmbline oCUM/UIALMK BHYTPY KOJIbla
BO3HMKAIOT H3-3a HHTep(hepeHIHH YePEHKOBCKOTO ¥ TOPMO3HOTO M3TyYeHHi. YCHIeHHEe HHTEHCHB-
HOCTHM HATyYeHHs Ha 'PaHHIAX KOJbIa 0053aHO YRapHBIM BOJTHAM, BO3HHKAIOIIMM B Hayajle U B KOH-
Ue ABHXEHHUS U B TE€ MOMEHTEHI, KOIIa CKOPOCTB 3apsiia COBNaJaeT CO CKOPOCTBIO CBETA B BEIIECTBE.
BHyTpH KoJiblia u3BecTHast opMyna TaMMa He ONUCHIBAET HHTEHCHBHOCTD H3TTyYeHHS HY TIPH KaKOM
NOMOXEHHH IUTOCKOCTH HaOmoneHus. Bre xonsua dopmyna Tamma cripaBelyInBa TONLKO HA OYEHb
6GonbIIMX PacCTOAHHAX IUIOCKOCTH HabmoneHus. TeoperHueckue pacyeThl HaXOOATCA B YAOBJIETBO-
PHUTENBHOM COIMIACHH C dKCIIEPUMEHTATBHBIMM JaHHBIMH. MBI 3aKl049aeM: COBMECTHOE (9KCIIepH-
MEHTAIBHOE U TEOPETHYECKOE) H3ydeHHe HeChOKYCHPOBAHHBIX YEPEHKOBCKHMX KOJIEll MTO3BOJIAET I10-
JIYYHTE HHGOPMAIHIO O TIPOLIECCaX, CONPOBOXAAIOUINX YEPEHKOBCKOE HMyyeHHe (TOPMO3HOE H3ITy-
yeHye, U3TyYeHHe, BOSHUKalolee TIpH NPOXOXIEHHH CBETOBOTO Gaphepa, W T. II.).

Pa6ora BeinonseHa B JlaGoparopuu Teopertudeckoil ¢pusuku uM. H. H. Boromo6osa u B Jla6o-
paTopuu sgepHbIX mpo6iaem uM. B. IT. Ixxenenosa OUSIH.

Tpenpunt O6beAHEHHOTO HHCTHTYTa SAEPHBIX HccnenoBanuil. ybna, 2003

Afanasiev G. N., Kartavenko V. G., Zrelov V. P. E3-2003-83
On the Fine Structure of the Vavilov—Cherenkov Radiation

The aim of this paper is to study the fine structure of the Cherenkov rings. We analyze Zrelov’s
experiments in which the Cherenkov radiation was detected without using the special focusing de-
vices. The broad Cherenkov ring was observed in the plane perpendicular to the motion axis. Using
the exact and approximate formulae, we investigate how a charge uniformly moving in medium ra-
diates in a finite space interval. The formulae obtained describe the radiation intensity in the whole
space interval, inside and outside the Cherenkov ring. In the plane perpendicular to the motion axis,
the radiation fills mainly the finite ring. Its width, proportional to the motion interval, and the energy
released in this ring do not depend on the position of the observation plane. Outside the Cherenkov
ring, the radiation intensity suddenly drops. Inside it, the radiation intensity exhibits small oscilla-
tions which are due to the interference of the Vavilov-Cherenkov radiation and bremsstrahlung.
The increase in the radiation intensity at the ends of the Cherenkov ring is associated with the shock
waves arising at the beginning and the end of the charge motion and at the moments when the charge
velocity coincides with the light velocity in medium. For the chosen motion interval, the well-known
Tamm formula does not describe the radiation intensity inside the Cherenkov ring for any position
of the observation plane. Outside the Cherenkov ring, the Tamm formula is valid only at very large
observation distances. Theoretical calculations are in satisfactory agreement with experimental data.
Thus, the combined experimental and theoretical study of the unfocused Cherenkov rings allows one
to obtain information on the physical processes accompanying the Cherenkov radiation
(bremsstrahlung, transition of the light velocity barrier, etc.).

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics
and at the Dzhelepov Laboratory of Nuclear Problems, JINR.
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