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1 Introduction

This paper has a twofold aim.

First, usually, a charge moves in one medium (1)’ - while the measurements  are made
“in another one (2).  For example, in the original Cherenkov experiments !, the electron
moved in the vessel filled with water, while measurements were made outside this vessel,
in air. The radiation of a charge moving inside the infinite cylindrical sample C' was con-
sidered by Frank and Ginsburg 2 who shown that there is no radiation outside C if the
Tamm-Frank radiation condition is not fulfilled there. It should be recalled that Frank
and Ginsburg evaluated the energy flux in the direction perpendicular to the motion axis.
The energy flux in the direction parallel to the motion axis was evaluated in 3. It was
shown there that this component of radiation is infinitely small for all frequencies except
for the infinite discrete sequence of frequencies where it is infinite.

In the same reference 3, the geometrical optics consideration has been applied to the
radiation of charge moving in the finite space interval lying completely inside the sphere
S filled with a substance 1 with refractive index n;. Observations are made outside 5,
in medium 2 with refractive index n,. It was shown there that the angular spectrum
broadens if ng < n;. One of the goals of the present treatment is to make the quanti-
tative analysis of this problem. For this, we evaluated angular and frequency radiation
intensities for a number of charge velocities and media properties. In general, the pres-
ence of medium 2 outside S different from medium 1 inside S leads to the broadening
of the angular spectrum and to the appearance of additional maxima at large angles.
Calculations predict the oscillations of the frequency spectrum. This could be observed
experimentally.

The second problem which will be studied here is the transition and Vavilov-Cherenkov
(VC) radiations on the dielectric and metallic spheres. The notion of the transition ra-
diation was introduced by Frank and Ginsburg 4 who studied radiation arising from the
uniformly moving charge passing from one medium to another. They considered the plane
boundary between media 1 and 2. A thorough exposition of the transition radiation may
be found in ®. In this consideration, we consider a charge motion which begins and ter-
minates in medium 2 and which passes through the dielectric sphere filled with medium
1. The energy flux is evaluated in medium 2. As far as we know, the transition radiation
only for plane interfaces was considered in physical literature. For the treated problem
the angular and frequency radiation intensities are evaluated for a number of charge ve-
locities and media properties. These expressions contain transition and VC radiations as
well as the radiation from the charge instantaneous beginning and termination of motion.
It is proved that the identification (frequently used by experimentalists) of the charge
velocity by the Cherenkov radiation on the part of the charge trajectory where gn > 1
is not always valid in the presence of boundaries.

There are analysed also attempts to explain transition radiation in terms of the charge
instantaneous termination of motion in one medium and the instantaneous charge be-
ginning of motion in another medium. It is proved that their contribution to the radi-
ation intensity disappears if the cnarge motion with instantaneous velocity jumps can
be considered as a limiting case of the charge smooth motion. It is considered also the
interpretation of the transition radiation in terms of semi-infinite charge motions with in-
stantaneous termination of the charge motion in one medium and with its instantaneous




beginning of motion in the other one. It is shown that if the charge velocity is greater
than the light velocity in medium, the terms corresponding to the VC radiation should
be taken into account.

The plan of our exposition is as follows. The mathematical preliminaries are collected
in Sec. 2. The expansion of the electromagnetic field in terms of Legendre polynomials
for the Tamm problem is given in Sec. 3. In Sec. 4, a charge moving inside the dielectric
sphere S filled with the substance 1 is considered. The radiation intensity is evaluated
outside S, in medium 2. In Sec. 5, a charge whose motion begins and terminates in
the medium 2 and which passes through the dielectric sphere filled with medium 1 or
through the metallic ene. The energy flux is evaluated in medium 2. In Sec. 6, the review
of attempts to interpret the transition radiation in terms of sudden termination of the
charge motion in one medium and its sudden beginning in the other one is given. A short
resume of the results obtained is presented in Sec. 7.

2 Mathematical preliminaries

We consider the charge motion in medium as to be given and intend to evaluate the
electromagnetic field arising from such a motion. The solving of Maxwell equations
grounds on the use of the Green functions.

For the charge motion in medium with refractive index n, the Green function is equal to

Gn = exp(ik,R)/R, R=[F-7|.

Here k, = kn,k = w/c and n is the medium refractive index. Its expansion in spherical
coordinates is given by (see, e.g. ©)

=2 en(2l+ 1)( m)' cos m(¢ — ¢)Gi(r, ') P/ (cos §) P (cos 0'), (2.2)

m>0 ( )

where

Gi(r, ) = iknji(knT<)hi(Knrs), ,/ ~Jisa(e), b ,@1 /2(®),

em =1/(1+8mo);rs =ryre = ifr>viry =rire =rifr <o

These equations are no longer valid if medium consists of two pieces with different
refractive indices. We consider a particular case when space regions inside and outside
the sphere S of the radius a are filled with the substances 1 and 2 with parameters ¢y, gy
and €3, g, respectively. The Green function satisfying equations

(A + kDG, = —4n8(7 — 7)

for r < a and

(A + kDG, = —4n83(F - 7)
for r > a has the same form as (2.2) but with Gi(r,r’) given by
G = 1k10(a — r)O(a — ') ji(kir ) hu(kirs ) + 1k20(r — a)O(r — a)filkar <) hu(kars )+
+ik1 D;O(a — T)@(Tf — a)ji(kirYh(kar') + tk2CiO(r — a)O(a — r')ji(kir'hi(ker). (2.3)
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Here ky = kny and ky = kny (n; = /&1 and ny = /Ep; are the refractive indices of
media 1 and 2, resp.). The constants C; and D; are defined by the boundary conditions
at r = a.

The vector potential (VP) in the spectral representation for a charge moving along the
z axis is found from the equation

= = [ GGV, (24)

where pp = py for r < a and g = p; for r > a. The integration is performed over space
points where the spectral current density j,(7) differs from zero.

3 Pedagogical example: the Tamm problem in a

spherical basis

3.1 The original Tamm problem

Tamm considered the following problem 7. A point charge is at rest at the point z = —zp
of the z axis up to a moment ¢t = —tp and at the point z = z; after the moment ¢ = ¢,.
In the time interval —fy < t < tp, it moves uniformly along the z axis with the velocity
v greater than the light velocity in medium ¢, = ¢/n. The nonvanishing z component of
the VP in the spectral representation is given by

Zd
Az(zyy’ Z) = %QT’ (31)

where
2 gy

-z R

Imposing the conditions: i) R >> z (this means that the observation distance is much
larger than the motion interval); ii) k.R >> 1, k, = w/c, (this means that the
observations are made in the wave zone); iii) n22/2RX << 1, A =2nc/w (this means
that the second-order terms in the expansion of R should be small compared with =«
since they enter as a phase in (3.1); X is the observed wavelength), Tamm obtained the
following expression for the magnetic VP:

ar= [" Gewlik(GnR), R=[p+ (=S pPoats

1 ke 1
1/,8,.—cos0 2 (,3

Here L = 2z; is the motion interval and 8, = fn. In the limit kL — oo, one gets

_eu . _ _
A, = - exp(iknr)q, ¢ cos §)]. (3.2)

q— w&(i —cosf), A,— % exp(tknr)é(cos — 1/8,). (3.3)
Using the vector potential (3.2), Tamm evaluated the electromagnetic field strengths and
the energy flux through the sphere of the radius r for the whole time of observation

=R / S.ddt = [ 25 d0dw, dQ =sin6dbdg, S, = f;Eng,

./ dQdw



where
&2 &y,
dQdw ~ mnc
is the energy emitted into the solid angle df2, in the frequency interval dw. This famous
formula obtained by Tamm is frequently used by experimentalists for the identification
of the charge velocity. Equation (3.4), being integrated over the solid angle, defines the
frequency distribution of the radiation

——g?sin® 4§ (3.4)

d€ &€
&= | ™
It is given by 3°
d€ 28 1 1 ){smz[kL(l —B,)/28) _ sin’ wlkL(1 + B.)/26)
dw ~ me B2 1-3. 14 8n

kL . kL . kL
—oplt G (1 = Ba)) = si( (14 Ba))l} =

RN U T
—mzﬂun ol ci®2in - ) + S+ )
<t [sm(k( — ) — sin( ﬂ(1+ﬁ,.))1} (3.5)

Here si(x) and cz(x) are the mtegral sine and cosine defined by equations

o0
sint cost
si(z)=— | —dt, ci(z)= —dt.
Jeitta, -2

For kL >> 1, Eq.(3.5) reduces to the form given by Tamm:

d€
E_WBS (3.6)
for v < ¢, and
E—W + W (3.7)
o =~ Vs Ch .
for v > ¢,. Here
Was = 2‘”‘(1 g ﬁl ~98,) and WC,._”"“La—%.

Tamm identified Wgs with the spectral distribution of the bremsstrahlungs, arising from
the charge instantaneous acceleration and deceleration at the moments o, resp. On the
other hand, Wy, was identified with the spectral distribution of the VC radiation. This
is supported by the fact that Wgy related to the charge motion interval coincides with
the famous Frank-Tamm formula describing the energy radiated per unit length and per
unit frequency for the charge unbounded motion 1°

&€ e?
dwdl = &0 EE)‘



The typical experimental situations described by the Tamm formula are: i) the 8 decay
of a nucleus at one space point accompanied by a subsequent absorption of the emitted
electron at another point; 1ii) A high energy electron consequently moves in vacuum,
enters into the dielectric slab, leaves the slab and propagates again in vacuum. Since
the electron moving uniformly in vacuum does not radiate (apart from the transition
radiation arising at the boundaries of the dielectric slab), the experimentalists describe
this situation via the Tamm formula, assuming that the electron is created at one side of
the slab and is absorbed at the other (see, e.g., 31115).

3.2 Expansion of the Tamm problem in terms of Legendre poly-
nomials
Let a charge moves in medium in a finite interval (—zo, 20) (this corresponds to the so-

called Tamm problem). Then, the current density corresponding to the Tamm problem,
in, the spherical coordinates, is given by

. e ikr ikr

J(w) = m[éw)exp(F) +6(0—m) exp(—F)](')(zo —r). (3.8)
Then, using (2.2), one gets on the observation sphere of the radius r > zq,

Ar(w) = IS o1 4 1) Bu(knr) (0, 20),
rek2n? . k2 -
Hy(w) = =52 3 Plhu(knr) Ji(0, 20),  Ea(w) = === 3 P Hi(knr)Ji(0, z0).
(3.9)

Here

E
0, 20) = [ Gulknr’)fu(r")ar', Ji(0, 20) = Jic1(0, ) + Jera (0, 20),
0

Hi(z) = hi(z) + hulz)

z
ot For!
A7) = exp(%) + (—l)lexp(—%), ki = kny, ky = kn,.

In obvious cases, we omit the arguments of the Legendre polynomials if they equal cos 8.
At large distances (kr >> 1) one can replace Hankel functions by their asymptotic values:

e ] .
Ax 27r/:r exp(iknr) 3 (21 + 1)i~' PJi(0, z0),

k ) . . ) . .
Hy~ _2e " exp(iknr) Y i P Ji(0,20), Ep~ — ckps exp(iknr) Y i P} Ji(0, z0).

Ter 2mwer

The angular radiation intensity on the sphere of the radius r

EE 1,
m = 567‘ (E9H¢ +C.C.) =

e2kinpy
4nc

1326 B0, 20)* =



_ e*k’npusin’

= Tl S (20 + 1)iT R0, 20) % (3.10)
Or, in a manifest form, 2 \
dw—dga = ‘;’2‘: sin? 0(S; + )2 (3.11)
where
Sy =Y (-1)'(4l + 1) Py(cos 0)I5, Sy =3 (~1)"(4l + 3) Pyt (cos 0) I3,
=0 1=0
kzo z kzo T
I = /jz[(n$) cos(E)dx, = /jZH.l(nm) sin(E)da:. (3.12)
0 )

Integrating (3.11) over the solid angle, one obtains the frequency distribution of the
radiation:

dé'__ekn;t (t+1) 2
a = |Z 2051 |J’(0720)| =
8en, +1)@+1), . . I20+1), ., ,
= Sy U ’(12,+ B + S0, 1 5 @19)

These equations are valid if the radius r of the observation sphere is larger than 2.
Numerical calculations show that Eqgs. (3.11) and (3.13) coincide with the correspond-
ing Tamm equations (3.4) and (3.5).
We concentrate now on the vector potential. For this, we rewrite it as

A, = teun

2(41 + 1)hgi(knr) Py (cos 8) I3 — :cn 2(41 + 3hary1(knr) Pory1 (cos 0) 13,

¢ = =0
(3.14)
Usually, observations are made on large distances. For example, for A = 4 - 10~5¢m and
r = 1m, kr = 277/ ~ 107. Replacing the Hankel functions by their asymptotic values,
one gets

— & ;

A, = P exp(iknr)(S1 + Sz). (3.15)
Obviously, (3.2) and (3.15) should coincide (since the same assumptions are involved in
their derivation). Equating them, one gets

1 sin[kzon(cos § — 1/0,)

S1+ 5= o cos 6 —1/B, . (3.16)

Now we consider the coefficients I§ and 3. In the limit k2g — oo, the integrals
7 z 7 z
I = [ ju(ne)cos(3)da, Iy = [ jusa(nz)sin(F)de
) A 0 4

can be evaluated in a closed form (see, e.g., ¢). They are given 0 for fn < 1 and

I = g (=1 Pu(1/Bn), iy = 5o(=1) Pua(1/Bn)
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for An > 1. Substituting this into (3.15), one gets

w = Z:Zrc exp(iknr)x
x[f:(4l + 1)} Py(cos 0) Py(1/8n) + f:(til + 3)Pyy1(cos 0) Pyy1(1/80)] =
=0 =0

o0

A exp(iknr) Y_(214+1)P(cos §)P,(1/Bn) = el:c exp(tknr)d(cos8—1/p8n). (3.17)

2nkrc = nk

In deriving this, we used the completeness relation

S +1/2)P(2)R() = 6z — o).

1=0

Vector potential (3.17) coincides with the one entering into (3.3).

4 The Tamm problem for a charge moving inside the
spherical sample

4.1 Main formulae

Let a charge move in a finite space interval (—zq, z0) lying entirely inside the sphere S of
the radius a (FIG. 1). The sphere is filled by a substance 1 with parameters ¢, and g;.

Figure 1: A charge moves inside the dielectric sphere S filled with the medium 1. The
radiation of intensity is measured outside S, in medium 2.

The observations are made in the medium 2 with parameters €; and p, surrounding S.
The EMF strengths contributing to the radial energy flux are equal to (see Appendix 1)
iek?ni <« ~ .,

Hy=—- Ire > CiPhu(ksr),




i d _ eugngk
%g(r s)=—

Ep=— 3" Hy(ksr) PLC, (4.1)

for r > a and K2
Hy =~ 5 BDi(ker) + T, 2ol

k2 . .
By = —f"—;:—;— 3 PHDi(kar) + J(0, 20) Hi(kar)] (4.2)

for 2o < r < a. Here
J0a,) = I @+ I @), TOy) = / akar)frydr',

dj(z) | =) _

J’((E) = dz + = 2l + 1 [(l + 1).71 1= l]l+1]
dh h
Hi(e) = L2 L MO =2t )by — ],

_ Imposing the continuity of Hy and Ey at r = a, one finds the following equations for
C] and Dl: ' . -
n3Cihi(2) — n Diji(1) = (1) (0, 20),
,uzngé';H,(2) - #lnlDIJI(l) = ylan,(l)jl(l)(O,ZO), (43)

where 1 = kja and 2 = k;a. From this one easily finds Cr:

A Hn osm)

Cl = MJI (O,Zo), (44)
where

Az = p;n,j,(l)H,(z) —_ planz(l)hl(Q).

At large distances (kr >> 1) one can replace Hankel function by its asymptotic value.
Then,

H, = __ekng exp(ikar) S, E,= __ ek exp(ikar) s, (4.5)
2me r 2me r
where .
§=3i"'PC. (4.6)
The radiation intensity per unit frequency unit and per unit solid angle is
&£E 1, . e’kngpy S
M = 56’!‘ (E3H¢ + C.C.) = e | | (47)
The integration over the solid angle gives the frequency distribution of radiation
d€  €%k’n {l+1), ~
b _ ehinapy U4 1) (4.8)

dw Te 20+1

When the media inside and outside S are the same (¢; = €; =€, p; = pp = ), one
gets

i 5 s
A= g and G = JM(0, z0),

that is, one arrives at the one-medium Tamm problem for the space interval (—zp, 20).



4.2 Numerical results

In FIG. 2, there are shown angular radiation intensities (solid lines) evaluated according
(4.7) for k2o = 10, ka = 20,n; = 2 and ny = 1 (that is, there is a vacuum outside S )
for a number of charge velocities. Side by side with them, the Tamm angular intensities
(3.4) (dotted lines) corresponding to n = n;, L = 22 are shown. The distinction of (4.7)
from (3.4) is due to the presence of the medium 2 outside S not coinciding with medium
1. This results in the broadening of the angular intensity distribution and in its rise at
large observation angles.
The corresponding frequency distributions (4.8) (solid lines) together with the Tamm
frequency distributions (3.5) (dotted lines) are shown in FIG. 3. It is seen that the
frequency distribution (4.8) oscillates around the the Tamm one (3.5). When evaluating
d€/dw, we implicitly assumed that the refractive index n, does not depend on w in the
treated frequency interval. In fact, this is a common thing in refractive media. For
example, for the usual water the refractive index is almost constant in the frequency
interval 6 - 101 < w < 6 - 10'%s5~! encompassing the visible light region.  In FIG. 4,
there are shown angular radiation intensities (solid lines) evaluated according (4.7) for
kz =10, ka =20,n, =1 and ny = 2 (that is, there is a vacuum inside S) for a number
of charge velocities. Side by side with them, the Tamm angular intensities (3.4) (dotted
lines) corresponding to n = ny, L = 2z are shown. It is seen that the presence of medium
outside S affects not so strongly as in FIG. 2.

The corresponding frequency distributions are shown in FIG. 5. Again, oscillations
around the Tamm frequency distribution (3.5) are observed.

Probably, the rise of angular intensities at large angles shown in FIGS. 2 and 4 is due
to the reflection of the VC radiation from the internal side of S

5 The Tamm problem for a charge passing through
the sphere

5.1 Dielectric sphere
5.1.1 Main formulae

Let a charge move with a constant velocity v in the interval (—zo, 20). There is a sphere
S of the radius e < zo with its center at the origin (FIG. 6). The space inside S is filled
by the substance with parameters ¢;, ;. Outside S there is substance with parameters
€3, pb2. The EMF strengths contributing to the radial energy flux are (see Appendix 2)

ek ,ugng

k
Hy = _ieks 3 CiPhy(ker), Ep= — 225" Hy(kyr)PLCy (5.1)

Hy = =223 P{Cibu(kar) = hu(kar) ) (r, z0) + u(kar) B (r, 20)],

k2 L . .
Es= —% 3 BHCiHi(kar) — Hi(kor) TP (r, 20) + Jilkar) HP(r, 20)]  (5.2)
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Figure 2: Angular radiation intensities in €?/c units (solid curves) for the charge motion
shown in FIG. 1 and various charge velocities. The media parameters are n; = 2,n, = 1
(that is, there is vacuum outside the sphere S). Further, kzy = 10, ka = 20. The dotted
curves are the Tamm angular intensities (3.4) evaluated for kL = 2kzy and n = n;.
The difference between these two curves is due to the fact that the medium outside S
is not the same as inside S. The exact angular intensities are much broader than the
corresponding Tamm ones. Probably, the rise of angular intensities at large angles is due
to the reflection of the VC radiation from the internal side of S.
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Figure 3: Frequency radiation intensities in e?/c units (solid curves) for the charge motion
shown in FIG. 1 and various charge velocities. The media parameters are the same as
in FIG. 2. Further, kzg = m,ka = 2m. The dotted curves are the Tamm frequency
intensities (3.5) evaluated for kL = 2kz; and n = n,. It is seen that frequency intensities
(4.8) oscillate around the Tamm ones.
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The dotted curves are the Tamm angular intensities (3.4) evaluated for kL = 2kzo and
n=n;.
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The same as in Fig. 3 but for n; = 1,n5 = 2 ( vacuum inside S). The Tamm

Figure 5:
frequency intensities (3.5) are evaluated for kL = 2kzo and n = n;.
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z 0

Figure 6: A charge motion begins and terminates in medium 2. It passes through sphere
S filled with the medium 1. The radiation of intensity is measured outside S, in medium
2.

for a < r < zp and
iek?

Hy = 523 B [Dii(kar) + (ki) JO(0,7) + ilr) B (r, @),

__ekPming o~ g s #1) (1)
E; = —-W—E PHDiJ(kir) + Hi(kar) (0, 7) + Ji(kar)Hy ' (7, a) (5.3)
for r < a. Here

BV (z,y) = HY(2,y) + B (2,9),  TP(e,y) = I (z,y) + I (2,y),

Yy
AP(e,y) = B (2,0 + HR (@), H(@,9) = [ hulkr)f(r)ar,

Y

H@y) = [tk fi)dr' B (@,9) = [ bl ()

T

Equating Ey and Hy at r = a, one obtains the following equations for ¢ and DI:
n3hi(2)Ci — ndji(1) Dy =
=n2hy(1)J(0 2[h(2)JP — (2) P
nihi(1)J;7(0, a) + n3[hi(2)J; ™ (a, 20) — 5i(2) H; ™ (a, 20)],
p2n2H[(2)CI bt ,ulnlJl(l)Dl =
= s H(1)J(0, 6) + napia[ Hi(2) JP (, 20) — J(2) HP (a, 2)). (5.4)
Here we put 1 = kya and 2 = ka. For example, ji(1) = ji(k1a), etc. From this one easily
obtains C;:
_ L if
= A *nqgk?a?

J0(0,a) + JP(a, 20) lpamji(1) Hi(2) — mama Ji(1)hu(2)] -

14



~ AP (a, 20)[para (1) (2) — paneJi(1)51(2)]} =

1 = . .
= o {T0(0,0) 4 TP o, 20 pama (DN (2) = s (D (2)] -

~ N a, 20)[uan1ii(1)Ji(2) — panaJi(D)u(2)]}- (5.5)

Here A = nypafi(1) Hi(2) — pane Ji(1)hi(2). At large distances (kr >> 1), one has

ekny . N ek .
Hy = “5rer exp(tknar)S, Eg= Sror exp(tknar)S, (5.6)
where 5

§=3% 'GP (5.7

Correspondingly, the energy flux through the sphere of the radius » is

e
dwdQ

Integration over the solid angle gives the frequency distribution of radiation

e?k?nyu,
4nic

%CTz(EgH; +cec)= |S|2. (5.8)

d€ 62k2n2,u2 l(l + ].)
= b

— ST G2 (5.9)

dw e

The one-medium Tamm problem is obtained either in the limit ka — 0 or when media 1
and 2 are the same.

5.1.2 Numerical results

In FIG. 7, there are shown angular radiation intensities (solid lines) evaluated according
(5.8) for kzg = 20, ka = 10,n, = 2 and n, = 1 (that is, there is a vacuum outside the
sphere S and a substance with n, = 2 inside it) for a number of charge velocities. Side
by side with them, the Tamm angular intensities (3.4) (dotted lines) corresponding to
n = ny, L = 2a are shown. It is the usual thing in the VC radiation theory to associate
the observed radiation with the part of the charge trajectory where n > 1 (see, e.g., 1°
and (ii) item at the end of subsection (IIL.A)). It the treated case, it lies within the sphere
S. We observe a rather poor agreement of the exact intensity (5.8) with the Tamm one
(3.4). Experimentalist studying, e.g., electron passing through the dielectric sphere S,
will not see the pronounced Cherenkov maximum at 8 = 8, (cosf, = 1/6n) and, on
these grounds, will not identify the charge velocity. For # = 0.4 we did not present
the Tamm intensity since for this velocity the Tamm intensities arising from the charge
motion in 0 < r < a (medium 1) and @ < r < zp (medium 2) intervals are of the same
order. It is not clear to us how to combine the corresponding Tamm amplitudes. In any
case, Eqgs. (5.8) and (5.9) give the exact solution of the treated problem, while the Tamm
intensities are needed only for the interpretation purposes. The corresponding frequency
distribution (5.9) also differs appreciably from the Tamm one (3.5) (FIG. 8).

In FIG. 9, there are shown angular radiation intensities (solid lines) evaluated ac-
cording (5.2) for k2o = 20, ka = 10,n; = 1 and n, = 2 (that is, the vacuum bubble
inside S surrounded by a substance with n; = 2) for a number of charge velocities. Side
by side with them, the Tamm angular intensities (3.4) (dotted lines) corresponding to
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Figure 7: Angular radiation intensities in €?/c units (solid curves) for the charge motion
shown in FIG. 6 and various charge velocities. The medium inside S is dielectric with
ny = 2. Outside S there is vacuum (n, = 1). Further, ka = 10,kzo = 20. The dotted
curves are the Tamm angular intensities (3.4) evaluated for kL = 2ka and n = n;. The
noncoincidence of exact angular intensities with the corresponding Tamm ones and, in
particular, the absence of the pronounced maximum at cos§ = 1/fn (especially for § = 1
and (8 = 0.8) demonstrates that the applicability of the Tamm formula for describing the
radiation arising from the charge passage through the dielectric sample is rather limited.

16



30 et 14 S —
12 g
B=0.8
104 -
8 4
3 3
$ g
3 o 6 .
4 ]
24 |
0 —
0 2 4 6 8 10
m m
6 —————r T
107 p-04 i
54
p=0.6
0,84 .
4 ]
0,64 |
< 3 . 3
g 3
° ©
0,4 ]
2 1
N 1] UUWW
0 ———— 0,0 ——
0 2 4 6 8 10 0 2 4 6 8 10
m m

Figure 8: Frequency radiation intensities in e?/c units (solid curves) for the charge motion
shown in FIG. 6 and various charge velocities. The media parameters are the same as
in FIG. 7. Further, ka = m,kzy = 2m. The dotted curves are the Tamm frequency
intensities (3.5) evaluated for kL = 2ka and n = n;.

17



deldedQ

10° v T T T T
1011 1
p=0.6
10°9 1
a 10" E
3 :
‘E 1074
10°+ ;

borcevsecrreoerss.

errrozss,

T T

60 90

0,deg

120

150 180

ds/ded

deldadQ

10° T T T . T
10'+ B=0.8 1
10'f
1w —t—— i =
0 30 60 90 120 150 180
0,deg
10° T Y . v T
10'4 +
p=0.4
10°y 3
1041 1
107+ 1
10° 4 4
10"+
10°® —— T T T
0 30 60 90 120 150 180
0,deg

Figure 9: The same as in Fig. 7 but for ny = 1,n; = 2 (that is, there is vacuum inside S).
The dotted curves are the Tamm angular intensities (3.4) evaluated for kL = 2k(zp — a)

and n = n,.

g



= 104
p=1.0 y p=08

dg /de
d&/dw

6 T T T T g 0,35 T T T T
0,304
0,25

0,20

de/de
de/de

0,10 4

0,05 4

0,00

m m

Figure 10: The same as in Fig. 8 but for n; = 1,n, = 2 ( there is vacuum inside S). The
dotted curves are the Tamm frequency intensities (3.5) evaluated for kL = 2k(z — a)

and n = ns.

19



n = ng, L = 2(z — a) are shown. In the treated case, the part of the charge trajec-
tory where Bn > 1 lies outside the sphere S. We observe a satisfactory agreement of
the exact intensity (5.8) with the Tamm intensity (3.4). Experimentalist studying, e.g.,
the electron passing through the dielectric sphere S, will see the pronounced Cherenkov
maximum at § = .- (cosd. = 1/Bn). The corresponding frequency distribution (5.3)
does not differ appreciably from the Tamm one (3.5) (FIG. 10).

5.2 Metallic sphere

On the surface of ideal metal, tangential components of the electric field strength vanish
16 For the metallic sphere of the radius a, this leads to the disappearance of Ey. This
defines C}:

G = JP(a,20) = 3k B a, 20) = o (Ni(2) T (0, 20) = R(2)NP (0, 20)]. (5.10)

Then, angular and frequency distributions are given by (5.8),(5.9) but with C; defined
by (5.10).

5.2.1 Numerical results

Let outside S be vacuum. The corresponding angular distributions (5.8) (solid lines) are
compared in FIG. 11 with the Tamm angular intensities (3.4) (dotted lines) evaluated
for L = 2(zp— a) and n = n,. Since fn < 1 outside the sphere S, the angular intensities
are rather small.
The corresponding frequency distributions (5.9) (solid lines) and the Tamm ones (3.5)
(dotted lines) are shown in FIG. 12. Their agreement is rather poor.

Let outside § be the medium with the refractive index ny = 2. The corresponding
angular and frequency distributions are shown in FIGs. 13 and 14, resp. We observe the
satisfactory agreement with the Tamm intensities evaluated for L = 2(zp—a) and n = n,.

6 Discussion

Formulae obtained in previous two sections describe the VC radiation, the radiation
arising from the charge instantaneous acceleration and deceleration and the transition
radiation arising from a charge passing from one medium to another.

To separate contribution of the transition radiation, one should subtract (according,
e.g., to % or ") the field strengths corresponding to the inhomogenuous solution of the
Maxwell equations from the total field strengths. In the treated case, the field strengths
corresponding to the Tamm problem should be subtracted (they are written out in section
I1I B). This leads to the following redefinition of the C; coefficients:

é] — é] - ”Z:—Z;j}(l)(o, Zo)
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for the motion shown in Fig.1,

G G = [2EL70(0,0) - I (a, 20)
Napt2

for the charge motion through the dielectric sphere (Fig. 7) and
C'[ — C'I - J,(z)(a,zo)

for the charge motion through the metallic sphere (Fig. 7). These newly defined C; being
substituted into (4.7), (4.8), (5.8) and (5.9) give transition radition intensities. Due to the
lack of space and since the observable radiation intensities are the total ones presented
in Figs. 2-5 and 7-14, we do not evaluate transition radiation intensities in this paper.

In the physical literature there are semi-intuitive interpretations of the transition
radiation and the one arising in the Tamm problem in terms of instantaneous acceleration
and deceleration, and in terms of semi-infinite charge motion terminating at one side
of the media interface and beginning at the other one. Their insufficiencies ( discussed
below) prevent us from their applying to the consideration of VC and transition radiation
on the spherical sample. In any case, exact solutions and numerical calculations presented
in sections IV and V contain all necessary information for the analysis of experimental
data.

6.1 Comment on the transition radiation

6.1.1 Interpretation of the transition radiation in terms of instantaneous
velocity jumps

Sometimes the transition radiation is interpreted as a charge uniform motion with the
velocity v in medium 1, its sudden stop in medium 1 at the border with medium 2,
the sudden start of motion in medium 2 and the charge uniform motion in medium 2
with the velocity v (see, e.g., 1¥-29). It is suggested that the main contribution to the
radiation intensity give the mentioned above instantaneous jumps of the charge velocity.
The radiation intensity arising from the charge sudden stop in medium 1 is taken in the
form .
B O Lob B (6.1)
dwdQ ~ 4r2c'1 —ny(B7,) '
where 3 = ¥/e, 7i, is the unit radius vector of the observation point and n; is the refractive
index of the medium 1.
On the other hand, the exact calculations were made in ?! for the following decelerated
motion along the z axis:

1
2ty =z +uft—1)— §a(t 1), v =wvi—a(t—t), ti<t<ty (6.2)

which begins at the moment ¢, at the space point z; with the velocity v; and ends at the
moment ¢; at the space point z, with the velocity v,. The time motion interval t; — ¢;
and deceleration ¢ are easily expressed through 2, z2,v; and v,

Z2 —~ 21 a_lvf—vg

/
’U1+‘02’ _222—21' (62)



It was shown in 2! that for the fixed wavelength A, the intensity of radiation tends to
zero for k(z; —21) = 0 (k = 2r/)). This certainly disagrees with (6.1) which differs from
zero for any motion interval. To clarify the situation, we turn to the derivation of (6.1).

6.1.2 The derivation of (6.1)

For simplicity, we consider at first a charge motion in vacuum closely following Landau
and Lifshitz treatise 22. Its authors begin with the equations

i =@, x B), E:-%X

which are valid in the wave zone (the dot above the vector potential A means the differ-
entiation over the laboratory time). For the Fourier transform of H one gets

. 1 7T, .
H, = _%_4 (7, x A)exp(iwt)dt. (6.3)

Now, if A # 0 for t; < t < t, then for w(t; — t;) << 1 one can put exp(iwt) ~ 1, thus
obtaining .

- 1 r, 04 1 - o

Hw = —%/n, X E‘dt = —%n, X (A2 - Al). (64)
Here A; = A(t = t,) and A, = A(t = t;). Further, authors of ?* change A; and A; by
the Lienard-Wiechert potentials. This gives

5 __¢ B2 x n, _ ﬂlxn,] (6.5)
Y 2mer 1 (Bii,) 1= (Buity) ‘
The radiation intensity per unit frequency and per unit solid angle is
& 7 2 r r
E i = - Pe T By X0 )2 (6.6)
dwd§) 4me 1- (:32"'7') 1- (ﬂlnr)
Now if the final velocity is zero, (6.6) coincides with (6.1).
6.1.3 Resolution of paradox
We rewrite the integral entering into (6.4) in the form
dA dA(t(t") -
—dt:/——dt':A—A .
ot ot 2o (66)

where t' is the charge retarded (proper) time. The laboratory times ¢, and ¢, being
expressed through the retarded times for the one dimensional motion along the z axis
are given by

1 1
h=t+ o+ = AV b=ht - B (6)



where 2z} = 2'(t}) and z}, = 2/(t}) are the charge positions at the times #] and t;. Now,
let the charge proper time ¢’ be umquely related to its position 2'. Then, for 2z} = zj, one
gets ¢, = t, ¢, = t, and, therefore, Ay = A;, H, = 0 and d?€/dwdQ = 0.

We illustrate this using the motion law (6.2) as an example (note that £ and z entering
into (6.2) are the charge proper time t' and its position z'). For this motion law, ¢’ is
uniquely related to 2’:

=t + 202" (1 —21”1—)1/2] (6.8)
vy -2

22— 2 Ul

According to (6.2’), t2 = t; for 22 = z;. Therefore, f_fz = A, for t; = ¢; and i, given by
(6.4) vanishes in the k(22 — z;) — 0 limit, in accordance with 21.

The main assumptions for the vanishing of H, are: i) the discontinuous charge motion
with the velocity jumps can be viewed as a limiting case of the continuous motion without
the velocity jumps when the length along which the velocity changes from v; to v, tends
to zero; i) the retarded (proper) charge time is uniquely related to its position.

We conclude: the interpretation of the transition radiation in terms of the charge
instantaneous acceleration and deceleration at the border of two media is not sufficient
if the discontinuous charge motion can be treated as a limiting case of the continuous
charge motion. In any case, the discontinuous charge motion cannot be realized in nature:
it is the suitable idealization of some continuous charge motion.

In general, A(tg) does not coincide with A(tl) if the charge proper time is not uniquely
related to its position. Consider, for example, the immovable elementary (infinitesimal)
time dependent source. Then, A A(t;) # A(ty) and H, # 0. Another possibility to obtain

Aty) # A(tl) is to take into account the internal degrees of freedom of a moving charged
particle (for example, its spin flip at the fixed space point can give A(tz) # A(tl))

6.1.4 On the interpretation of the transition radiation in terms of the charge
semi-infinite motions

In Refs. %5, the transition radiation was associated with the charge radiation on the
semi-infinite intervals (—oo0,0) and (0,00) lying in media 1 and 2, resp. We analyse
this situation using the vector potential as an example. VP corresponding to the charge
motion in medium 1 is given by

? dr

A, = %- Eexp(u/)) (6.9)

where ¢ = k2'/f+ kiR, ki =kni, R=./p*+ (z—2')2 In the quasiclassical approx-
imation one gets
1

A(l) - -
27rcr 1—Bycosb

(6.10)
for 8 < B1 =1/n;. For 8> B,
AN =(6.10) for <6 and

AW = (6.10) + AD) for 6> 6,
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Here

M _ i / 21 ikt sin @ _ 1 1
Ay’ = 2ﬂ_cexp( 2 ) krsinoexP[ (0080+ ” —I), m —|1 —ﬂf[’ cos ) = e

(6.11)
Since Ar(1) decreases like 1/v/kr, the radiation intensity is large in the 8 > 6, angular
region.
Similarly, the vector potential corresponding to the charge motion in medium 2 is
given by

e 1
o ST
For 8 > [,
A® =(6.12) for 6>6; and
AD® = (6.12) + A(z) for 8 <6,
Here
27 B2 tkr sin @ 1 L
40 _ BT cos 04+ 20N = cosfy= =
T ( ) krsiné exp| B (cos T2 b 1- 63 =5,
(6.13)

Usually, the terms A(T} ) and Ag? ) are dropped in standard considerations of the transition
radiation. Their interference with A{) and A(® given by (6.11) and (6.12), resp., leads
to the oscillations of the radiation intensity in the # > 6; angular region for the charge
semi-infinite motion (—oo, 0) in medium 1, and in the § < 6, angular region for the charge
semi-infinite motion (0, c0) in medium 2.

A further procedure in obtaining the transition radiation intensities is the evalua-
tion of EMF strengths corresponding to vector potentials in media 1 and 2 and their
superposition with corresponding Fresnel coefficients . Sometimes the secondary photon
rescatterings at the boundaries of media 1 and 2 (for the dielectric plate) are taken into
account.

Since we have at hand the exact solution for the charge moving inside and outside the
dielectric or metallic sphere, these tricks are not needed: they are automatically taken
into account in closed expressions for radiation intensities.

6.1.5 On the physical meaning of A(Tl) and A(T?) terms

To clarify the physical meaning of A(T1 ) and A§? ) terms, we consider the case when media
1 and 2 are the same. Then, the vector potential corresponding to the infinite motion
(—00, 00) reduces to the sum of vector potentials corresponding to semi-infinite motions
in media 1 and 2:

A, =AD+ AP =0
for § < 1/n and

27 By, ikr sin 8 1
A, = AP + AP =2 ——(cosf + — = e
+ 2 ( ) k’l‘ sin0 exp[ ,B ( + )]’ 7" |1 — ﬂ’zll
(6.14)




for 8 > 1/n. But this is the asymptotic form (p — o0) of the VC vector potential
corresponding to the charge infinite motion in unbounded medium

_ ke 1 et o ke gy ke 1
Az_vrcKo(ﬂ'y,.) for ﬂ<n and A, = % exp(ﬁ)Ho (,3%) for ﬁ>n.

This means that A,(Fl ) and A(T2 ) terms describe the VC radiation for the semi-infinite charge
motions in media 1 and 2. This is also confirmed by the exact solution corresponding
to the semi-infinite charge motion in dispersion free medium found in 2324 in the time
representation. Indeed, the space regions where the VC radiation differs from zero are
just the same where Agnl ) and Ar(I? ) terms differ from zero.

It is easy to check that the values of A() and A(® are defined by the boundary point
Z' = 0, while the values of A(T‘) and A(T2 ) terms are defined by stationary points z’ lying
in the intervals (—oo,0) and (0, 0o), resp.

We see that the interpretation of the transition radiation in terms of semi-infinite
motions in the intervals (—oo,0) and (0, 00) is sufficient only for 8 < 1/n. On the other

hand, for 8 > 1/n, the Cherenkov terms A(Tl ) and A(T2 ) should be taken into account.

6.2 Comment on the Tamm problem

For the Tamm problem (uniform charge motion in a restricted space interval), the vector
potential is given by (3.1). It is easily evaluated in the quasiclassical approximation. For
z < pYn — 2zp and z > py, + 2o one gets

. .
Az = _;jrﬂcf: re — ﬂ,,l(z — 2p) exP[%(ﬁm‘? + 20)]—
1 ik
T B 1 2y Pl (A — %)} (6.15)

Here ry = y/p? + (2 + 2z0)? and 72 = /p? + (2 — 20)?. Inside the interval py, — 20 < 2 <

P¥n + 20, the vector potential equals
A = A% 4 ACH (6.16)

where

tkz, (270, (1r) (ikrsinﬂ)
exp(i—)ex .
P o,

Ch — S oxp(Z
= e (g

krsind

It is seen that AZ* is infinite at 2 = py, & 2o (this is due to the quasiclassical approx-
imation used). Therefore, the radiation intensity should have maxima at z = py, % zo,
with a kind of plato for py, — 2o < 2 < pv, + 20 and a sharp decreasing for z < py, — 2o
and z > p7v, + 2. At the observation distances much larger than the motion length

7y — Bul(z+ 20) ® r(1 — fucosb), 14— PBu(z— 20) = r(l — Bncost),

Brry — 20 = Bar — 20(1 — PBrcos8), Burs+ 20 = Bur + 20(1 — Br cos b).

Then,

. in[wto(1 — Bn cos 6))
A% — iﬂ_ Sln[w 0 .
* mwckr exp(iknr) 1—Bncosd ’ (6.17)
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that coincides with the Tamm vector potential AT entering into (3.2). Thus, inside the
interval py, — 20 < z < pYn + 2o,

An = AT 4 ACH, (6.18)
z z z

We observe that infinities of A" disappeared due to the approximations involved. It
is seen that for kr >> 1, A% and AT behave like 1/v/&r and 1/kr, resp. It follows
from this that the radiation intensity in space regions z > pv, + 20 and z < py, — 20
is described by the Tamm formula (3.4). On the other hand, inside the space region
P¥n — 70 < z < pn + 20, the radiation intensity differs appreciably from the Tamm one.
In fact, the second term in A is much larger than the first one (AT) for kr >> 1 (since
they decrease like 1/vkr and 1/kr for kr — oo, resp.) It is easy to check that on the
surface of the sphere of the radius r, the intervals z < py, — z0, P — 20 < 2 < pYn + 20
and z > py, + 2o correspond to angular intervals 8 > 6, 8, < 6 < 8, and 8 < 8,, where
0, and 6, are defined by

€ 1 € 2 1/2
costh =———+—[1—(5—
! 272 ,Bn[ (ﬂn'yn)]
and 1 .
€ 0 \211/2
cosly=——+ —[1 - (=— . 6.19
2 3‘73 ﬂn[ (13"7”)] ( )

Here ¢y = zp/r. For r >> 2z,

€ €0

01 = oc + ﬂ"7"a 02 oc ﬂn'}’n ’
where 8, is defined by cos 8. = 1/8n. Therefore, inside the angular interval §; < 8 < 6,
the radiation intensity should have plato with its height proportional to the observation
distance r. In the limit r — oo, the above 8 interval diminishes and for the radiation
intensity one gets the &- type singularity at cos§ = 1/8n (in addition to AT). However,
the 9 integral from it is finite. Although A8 = 6, — 0; = 2¢/fnvs is very small for
r >> z — 0, the length of arc on the observation sphere on which the radiation intensity
differs from the Tamm one is finite: it is given by 229/8,7.. It would be interesting to
observe this deviation experimentally (there are recent experimental indications for the
existence of this plato %°).

From the previous consideration it follows that AS” is a part of the Cherenkov shock
wave enclosed between straight lines 2 = —2p + pv, and z = 2y + p7¥» inclined under
the angle 8, towards the motion axis. In the quasiclassical approximation, the stationary
point 2z’ = z — py, of the integral ar entering in (3.1) lies inside the motion interval
(~20,20) and defines the value of AS*. On the other hand, for the A%* the stationary
point of ar lies outside the charge motion interval and the value of ar is defined by
initial and final points of the motion interval. Therefore, A% is somehow related to the
beginning and the end of motion. In 26" the radiation intensity in the Tamm problem
was associated with the interference of bremsstrahlung shock waves arising from the
instantaneous velocity jumps at the beginning and the end of motion. However, if one
replaces the instantaneous velocity jumps by the smoothed ones and then tends the
width of the transition region (where the velocity smoothly changes) to zero then the
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contribution of this region to the radiation intensity also tends to zero 2!. There are no
velocity jumps for this smoothed motion and, therefore, the radiation intensity in the
Tamm problem cannot be attributed to them. However, there are acceleration jumps at
the beginning and the end of motion and at the moments when the accelerated motion
meets the uniform one. Thus, the above intensity can be still associated with acceleration
jumps. To clarify the situation, the Tamm problem with absolutely continuous charge
motion (for which the velocity itself and all its time derivatives are absolutely continuous
functions of time) was considered in 2. It was shown that the relatively slow decreasing
of the radiation intensity outside the plato is replaced by its exponential damping. This
means that the discontinuities of higher derivatives of the charge velocity contribute to
the asymptotic behaviour of the radiation intensities as well. Formerly, for the charge
motion in vacuum, the exponential damping for all angles was recognized in 2932, We
conclude: the instantaneous velocity jumps at the beginning and the end of motion do
not contribute to the radiation intensity provided they can be viewed as the limiting cases
of the smooth charge motion in the limit when the lengths of accelerated (decelerated)
pieces of the charge trajectory tend to zero. This means that attempts to interpret the
radiation intensity given by the Tamm formula (3.4) in terms of the charge instantaneous
acceleration and deceleration are insufficient.

We summarize discussion:
1) the interpretation of the transition radiation and the Tamm problem in terms of
instantaneous acceleration and deceleration is not sufficient;
2) the usual interpretation of the radiation arising when the charge crosses the boundary
between two media in terms of semi-infinite charge motions is valid only if 3 < 1/n; and
B < 1/n,. Otherwise, this interpretation should be supplemented by the Cherenkov-like
terms;
3) there is no need in artificial means mentioned in previous two items in the treated
exactly solvable case corresponding to the transition and VC radiations on a spherical
sample.

7 Conclusion

We briefly review the main results obtained:

1) The electromagnetic field strengths and angular radiation intensity corresponding to
the Tamm problem are developed in terms of Legendre polynomials. The corresponding
representation for the frequency distributions is also found.

2) We found closed expressions for the electromagnetic field arising from the charge mo-
tion confined to the dielectric sphere S which is surrounded by another dielectric medium
with dielectric properties different from those inside S. It is studied how differences of
media properties inside and outside S affect the angular and frequency radiation inten-
sities for various charge velocities. In general, these differences lead to the broadening of
the angular spectrum-to the rise of angular intensities at large angles, and to the appear-
ance of oscillations in the frequency spectrum.

3) It is considered how radiates a charge whose motion begins and terminates in medium
2 and which passes through the dielectric sphere S filled with medium 1 or through the
metallic sphere. The evaluated energy flux includes the VC and transition radiations as
well as ones originating from the beginning and termination of motion. It is shown that
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when the medium 2 outside S is vacuum and medium 1 inside S has refractive index n,
satisfying Bn; > 1, the angular and frequency radiation intensities cannot be always in-
terpreted in terms of the Tamm formula (3.4) corresponding to the charge motion inside
S (as it is usually believed).

4) It is proved that the interpretation of the transition radiation in terms of the instanta-
neous termination of the charge motion in one medium and its instantaneous beginning
in the other one is not valid if the above motion with sudden velocity jumps can be
considered as a limiting case of the smooth charge motion. It is shown that the inter-
pretation of the transition radiation in terms of semi-infinite motions with instantaneous
termination of the charge motion in one medium and with its instantaneous beginning
in the other one, should be supplemented with the VC radiation terms. Certainly, these
remarks are related only to the interpretation of the transition radiation, not to the exact
solutions obtained for the plane interface , e.g., in %17,
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Appendix 1

Using (2.3),(2.4) and (3.8) we find that the magnetic vector potential corresponding to

Fig.1 equals

zekgpg

A, = ==Y (2l + 1)P,(cos 0)hy(ksr)C)

for r > a,

. .
A, = % 3(21 + 1) Pi(cos ) [js(kar) Dy + hu(kyr) JP(0, 20)],

for 20 < r < aand

zek'lpl

A, = $(21 + 1) Py(cos 8) i(kyr) D + hu(kar) SV (0, 7) + Gi(kar) HO (r, 26)]

for r < zo. Here we put

Jey) = [tk f)dr B (2,y) = [ milkar) i ydr

Differentiating A,, one finds EMF strengths (4.1),(4.2) in which
Ci=Ci1+Cua, and Dy=Diy+ Dip

Since EMF strengths contain only C; and Dj, the coefficients C; and D; entering into
electromagnetic potentials are not needed.

.



Appendix 2

The magnetic vector potential satisfying equations (A + k2)A, = 0 for r > 2z, (A +
k3 A, = —4mpgj./cfor @ < r < zg and (D + k?)A, = —4npyj,/c for r < a is given by

ek
= S 014 1) PO 0,0) + 9, ),
for r > 2z,
o .
A=+ I)B[h,(kzr)C,%J,(l)(O, a) + h(kar) I (a,r) + ji(kar) H (r, 20)]

for a < r < zp and )
_tekyn

27 9re
uz(k1r>‘;—201H,“’(a, 20) + hy(kyr) IO, 7) + Gi(kar) HO (1, 0))
1

S7(20 + 1) Py(cos 6) x

for r < a. Here
v Yy
1,9 = [k i)t B (z,9) = [ hlkar)filr)dr!

It is convenient to redefine C; and D;:
Ol = CELIM0,a) + JP(a,20), Dl = DiE2HP(a, ).
H2 31
Then, ”
A= %2(21 + 1) Phy(ksr)C!

for r > 2,

- .
A= % 32 + 1) P(cos 0)[Crhu(kar) — hi(kar)IP(r, 20) + ji(kar) H (7, 20))

for a < r < zp and

k .
A= "“ 2L S (21 4 1) Pi(cos ) [ Dii(kar) + (k) IO, 7) + Gi(kar) HO (7, a)).

for r < a. Differentiating A,, one recovers EMF strengths (5.1)-(5.3) where
G = Ci+ Cl,+1, b = D, + Df+1-

Again, we do not need coeflicients C; and Dj entering into the vector Eotential since EMF
field strengths (and the radiation intensity) depend only on C; and D;.
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Adanacees I, H., Kaprasenko B.T., Crenanosckuit 10. IL E2-2003-99
H3nyuenue Basunosa—lepeHkoBa U nepexoaHoe UydeHHe
Ha JM3IEKTPUYECKON M METaLTHYeCKOi ciepax

TTonyyeHn! 3aMKHYTbIe BEIPAXEHHS W14 YIIOBOH H CIEKTPATbHON HHTEHCHBHOCTCH H3/ydeHHd,
KOTOpOE BO3HHKAET NPY ABHXECHHMH 3apsna BHYTPH JAUBJIEKTPHYECKOH cephl S, NPU BHIIOTHEHUH
H3MepeHuUit BHe S (3TO COOTBETCTBYET THITHYHOMN IKCIIEPUMEHTATBHON CHTYAlIUH, KOTa 3apsai ABH-
XeTcs B OHOM CpeJie, a HIMEPEHH OCYLIECTHISIOTCA B ApYroi). [loxasano, YTo payus B CBOH-
CTBaXx Cpelibl BHYTPH H BHe S CYIIECTBEHHO MEHAIOT YIJIOBBIC H CHICKTPATLHAIC PACIIPENC/ICHHA H3ITy-
yenus. Takxe U3ydaloTcs CBOUCTBA HATYYEHHA, BOHHKAIOLIETO NPH ABHXCHUH 3apsaaa, HauUHAI0-
LErocd M OKAHYMBAWILErocd B cpele 2 W TPOXOMALIEro 4vepe3 JHINCKTPHYECKYIO WM
MeTauueckyio cdepsl. [ToTox 2Hepruu B cpede 2 COCTOUT U3 YEPEHKOBCKOIO M TOPMO3HOIO U3ily-
YeHMil U HITydEHHS, CBA3AHHOIO C HAYAIOM H OKOHYAHUEM ABHXEHHS. BbIYUCICHHBIE NPH paliHy-
HBIX CKOPOCTSIX 3apsia K CBOMCTBax Cpeiibl BHYTPH U BHE S YINIOBbIe M CIIEKTPabHBIC pacripenene-
HHS MATy4eHUs IOKa3bIBAIOT, YTO CTAHHAPTHOE OIpeleleHHe CKOPOCTH 3apsia M0 H3NyuCHHIO
Ha TOil YacTH ero TPaeKTOpuH, rae fr>1, He Bcerna npasuibHO. IlokasaHo, 4TO HEZOCTaTOYHOMN
SBIAETCA MHTEPIpPETAlus NMEPEXOAHOIO MITYYEHHA B TEPMUHAX MIHOBCHHOH OCTAHOBKH 3apaia
B OJHOM Cpeie H MIHOBEHHOIO HAuaIa NBHXEHHs B APYToi. [TONbITKM HHTEPIIPETALMH EPEXONHOTO
H3My4CHHS B TEPMHMHAX MOMYBECKOHEUHOrO IBUXKCHUS!, OKAHUMBAIOIIEroCd B OMHOH Cpene H Hauu-
HAIOLIErocs B APYTOi, SBIA0TCA NPABHWIBHBIMM, €CJIH TIpH 7> | NIPUHATH BO BHUMAHHE H3NyYeHUE
BasunoBa—epeHkosa.

Pa6ora BhimonneHa B JlaGopatopun Teopetudeckoit ¢usnku uM. H. H. Boromo6osa OHAH.

Mpenpunt O6bEIHHEHHOTO MHCTHTYTa AOEPHBIX UccefoBanmi. yGHa, 2003

Afanasiev G. N., Kartavenko V. G., Stepanovsky Yu. P. E2-2003-99
Vavilov—Cherenkov and Transition Radiations
on the Dielectric and Metallic Spheres

Closed expressions are obtained for angular and frequency radiation intensities produced
by a charge moving inside the dielectric sphere S, with observations made outside S (in fact, this is
a typical experimental situation when a charge moves in one medium while measurements are
made in the other one). It is shown that the difference in media properties inside and outside S dras-
tically affects angular and frequency distributions. Also, a charge motion is considered which be-
gins and terminates in medium 2 and which passes either through the dielectric sphere filled
with medium 1 or through the metallic one. The energy flux in medium 2 involves
the Vavilov—Cherenkov, transition radiation and the one arising from the charge instantaneous be-
ginning and termination of motion. The evaluated angular and frequency distributions for various
charge velocities and medium properties inside and outside S show that the standard identification
of the charge velocity by its radiation on the part of the charge trajectory where fn > 1is not always
valid. We analyse also the frequently used interpretation of the transition radiation in terms of in-
stantaneous charge deceleration in one medium and its sudden acceleration in another one, and find
them as to be insufficient. On the other hand, attempts to interpret the transition radiation in terms
of semi-infinite motions terminating in one medium and beginning in the other one turn out to be
correct if one takes into account the terms corresponding to the Vavilov—Cherenkov radiation.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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