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1 Introduction

This paper is devoted to the statistical problem of expanding an experimental dis-
tribution of transverse momenta P, into a series of Rayleigh distributions and can
be considered as a continuation of [Efimova et al 89]. The physical background of
this problem arises in the emulsion experiment studying the dynamics of inelastic
collision of fast heavy particles as nuclei 22 Ne with the photoemulsion nuclei by mo-
menta 4.1 A geV/c. The spectrum of transverse momenta for inclusive experiment
can bear the quite important information about the generation process of secondary
particles, whether this process is direct or is going through some intermediate stages.
As it is known (see, for example, [Efimova et al 89]), transverse momenta are dis-
tributed according to the Rayleigh law. However depending on the collision model
(one of more than one channels of the particle generation) the P, distribution can
be described by just one Rayleigh distribution or by a series

k - 2
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fly; P) = ;a; p(—poa)y > 0> ai=1

with some unknown k, g; and a;. The formulation of mathematical problem is com-
plicated due to experimental restrictions caused by different conditions of registering
secondary particles depending on the emanating angle 6 of those particles in respect
to the collision axis. That was taken into account in [Efimova et al 89} by inventing
corresponding statistical weights of measured P, depending on ¢ and allowed to
elaborate a method of expanding the experimental P,-distribution into one or the
mixture of two Rayleigh distributions.

However the generalization of the Rao-Smirnov w? test proposed in the previous
paper to choose the hypothesis about the expansion type (one or the mixture of
two Rayleigh distributions) was not proven to be optimal. Therefore at the present
paper we focus ourselves on two problems:

o Constructing of the high efficient testing procedure of the homogeneity hypo-
thesis with general and mixture alternatives. In the case of general alternative
is constructed test AOBS (asymptotically optimal in the Bahadur sense (see
[Bahadur 65])).



o if homogeneity holds, constructing the exact likelihood ratio (LR) test of the
scale parameter of the Rayleigh distribution optimal in the Bahadur sense.

The paper is organized as follows. In section Subpopulation Model we approxi-
mate the mixture model by the subpopulation one when sample size is between 40
and 50. In section Homogeneity testing we express the distribution function of the
exact LR test of the homogeneity in the terms of spherical coordinates and provide
the procedure for critical values computation by simulations. We also provide the
table of obtained critical values. In section Asymptotical optimality in the Bahadur
sense we discuss the asymptotical optimality of the derived test. In section The
mazimum likelihood estimation and efficient exact testing of the common scale pa-
rameter we provide the ML estimator of the common scale parameter o? in the
homogeneous Rayleigh sample. We also derive the exact distribution function and
the density of the LR test of the hypothesis

Hy : 0® = o2 versus Hj : o? # o}

of the common parameter. We also derive the exact power function of the test and
compare the exact distribution of the LR test with the asymptotic one. In section
Efficient testing of the number of components in the Rayleigh mizture we construct
the procedure for the LR testing of the hypotheses of the number of components m
in the Rayleigh mixture for n = 2 and 3. In Appendix we provide some properties
of the Lambert W function.

2 Subpopulation model

We have physical reasons for considering that 40 < N < 50. In smaller samples
we recommend the exact LR testing of the considered hypothesis about the number
of components m in the mixture. Such a procedure, however, leads to a rather
laborious computation. Practical difficulties arise specially due to the likelihood
frequently having multiple local extremes. In our approach we approximate the
exact mixture model given by the mixture density

flylo?) => mfylod), m+ .. +mn=1 (1)
=1

with the subpopulation model that is frequently used as motivation for the mixture
density (see [Susko 03]). The subpopulation model supposes that there are m sub-
populations, that 7; is the probability of selecting an individual from subpopulation
j and f (y|a]?), the component density, is the conditional density for ¥ given that
the observation is from the jth subpopulation. Since the true classification of ob-
servations into subpopulations is unobserved, the marginal density (1) is typically
used for the observations.



3 Homogeneity testing

In this section we derive the exact distribution of the LR test of the homogeneity
for the Rayleigh distribution. We consider a statistical model with N independent
observations y1, ..., yn which are distributed according to Rayleigh densities

2
¥ exp{—24;}, fory >0,
flulo?) = { FoPITah Tory @)
0, for y; < 0.
Here 02 := (0%, ...,0%) is vector of unknown scale parameters. Let us introduce the

notatlon X~ R(az) when X is distributed according to density (2) with the scale
parameter o2 and X ~ Ezp()\) when X is distributed according to the exponential
density

dexp{—Xz}, for z >0,
f(zlA) = { pi-Azh forz <0

with the scale parameter A. Now let us construct the efficient test of the homogeneity
in the model (2). The null hypothesis has the form

Hy: ol=..=o0%. (3)
The LR of the homogeneity test has the form
maX,z— -3, f(y,0°)

An(y) = max,2 f(y, o?)

b

where f(y,02) = [IX, f(u:]o?). After the optimization we obtain that

NN(yl---yN)2

(4)

If X ~ R(o?) holds, then we have
2

g7 ~ Bap(l). (5)

Under the homogeneity hypothesis, the distribution of the likelihood ratio (4) does
not depend on the unknown parameter o2. Furthermore, due to (5) we have that
An(y) has under Hy the same distribution as the homogeneity LR statistics

NNz .zn
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of the homogeneous exponential sample zi,...,zx (see [Stehlik 03]). Due to the
monotonous transformation g(z) = {/z of the likelihood ratio (4) we obtain the
interesting statistics of the homogeneity,
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that is the ratio of the geometric and aritmetic mean of the squares of observations.
What is more, the LR test of the homogeneity hypothesis (3) is asymptotically
optimal in the Bahadur sense, as it is shown in the following section. The distribution
of the LR test statistics —In Ay of the homogeneity under the null hypothesis is
derived in the following theorem.

Theorem 1 Let yy,...,yn are 4id (independent, identically distributed) according to
the Rayleigh distribution with the unknown scale parameter c2. Then the LR test
statistics — In Ay has the form

N N
~lnd(y) = NIn(} 4f) = NInN = 3 In(yf) (6)

i=1 i=1

and it has the same distribution as the function

N-1 N-1
On(p)=—-NInN —2In(J] sin™7 ¢; [ ] cosex)
- GE k=1

— S T N-1
where the vector ¢ = (g1, ..., on-1) s distributed on set [0, %

density

according to the

N-1 N-1 N-2
f _ 2N—1 N =1} s N—-j s N-l-1
~{p) = ( 1) H sin” 7 p; H COS Px H sin w1
j=1 k=1 I=1

Remark

The main advantage of the provided distribution of the random variable @y
is the possibility of simulation of the density of the LR statistics (6) based on the
random vector ¢ distributed on the compact set [0, ’2—’]N —1 although the sample space
of vector y is the unbounded positive cone R*N := {y e RN : 41 > 0,...,yn > 0}
of the N-dimensional Euclidean space.
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Proof.
Into the characteristic function 9 of the random variable Ay (y) we introduce the
spherical coordinates (7, @1, ..., on—1) of the R*N. We have

Y1 = T COS Py

Yo = T Sin ; COS Y3

YN—1 = T Sin ) sin ps... sin N _o COS PN -1
YN = rsin; sins...sinpy_gsin@y_1

where r > 0 and ¢; € [0,F] for i = 1,..., N — 1. After expressing the terms we
obtain

vy = [ e}l

which is the characteristic function of the random variable defined in Theorem 1.
This completes the proof. O

Our computation of the critical values of the test uses the fact that Ay(y) has
under Hyp the same distribution as the homogeneity LR statistics

N N:L‘ 1...IN
(.’L‘1 +..+ :L‘N)N
where z; are iid Ezp(1). For small dimensions we can compute the critical values

from the exact ¢.d.f.s Fiy of the test statistics —InAy. In [Stehlik 03] we can find,
that in dimension 2 and 3 the c.d.f. has form

Fy(z) = { V1 —exp(—z), forz > 0,

forz <0

and

bz
Fy(z) = fu((z)) %\/32(1 —5)? — £sexp(—z)ds, forz >0,
0, forx <0

where 0 < a(z) < b(z) < 1 are solutions of the algebraic equation
4
H1— 1) = — exp(~2).

In high dimensions the c.d.f.s and densities are much more complicated and esti-
mates of the critical values can be obtained by the simulation. We simulate the
critical values using the S-plus 4 software, number of simulations is n = 500 000.
The following Table 1 contains the critical values co n of the homogeneity LR test

)



‘ statistics (6) in samples 40 < N < 44 for various values of the level of significance a
obtained from the simulations. Our simulation essentially use the fact, that the LR
statistics (6) under the Hy does not depend on the unknown value of the parameter

2
o°.

Table 1. Critical values c, n-

olN | 40 41 42 43 44
0.001 | 18.6019 | 18.9155 | 19.1999 | 19.4025 | 19.5655
0.005 | 15.6891 | 15.8459 | 15.9999 | 16.1951 | 16.4221
0.01 | 14.3399 | 14.3659 | 14.6599 | 14.9012 | 14.9599
0.05 | 10.3899 | 10.4045 | 10.5099 | 10.6412 | 10.7378

The following Figure 1 displays the dependence of critical values on the level a
(z-axis) in dimensions N = 40, 42 and 43.

4 Asymptotical optimality in the Bahadur sense

In this section we briefly discuss the asymptotical optimality in the Bahadur sense.
The test of the homogeneity derived in the previous section will be shown to be an
AOBS.

Consider a testing problem Hp : 9 € ©p vs Hy : ¥ € ©; \ g, where ©y C ©, C
©. Further consider sequence T = {Tn} of test statistics based on measurements
Y1, .., yn which are iid acording to an unknown member of an family {Py : ¥ € 6}.
We assume that large values of test statistics give evidence against Hp, which is the
case of our test statistics —In Ay of homogeneity. For ¥ and ¢t denote Fy(t, ) :=
Py{s : Tn(s) < t}; Gp(t) := inf{Fn(¢,9) : ¢ € ©}. The quantity L,.(s) =
1 — G.(T.(8)) is called the attained level or the p-value. Suppose that for every
9 € ©; the equality

lim

—2InL,
= er(d)

holds a.e. Py. Then the nonrandom function ¢y defined on ©; is called the Bahadur
exact slope of the sequence T = {7,}. According to the theorem of Raghavachari
and Bahadur (see [Raghavachari 70]) the inequality

er(¥) < 2K(9, o) (7)
holds for each ¥ € ©;. Here K(9,0q) := inf{K(J,0) : Jo € O} and K(J,7)

denotes the Kullback-Leibler information number defined by the formula
Jmdfrip, i Py << P
190 b (13

400, otherwise.

K(8,00) == {



If (7) holds with the equality sign for all 9 € ©4, then the sequence T is said to
be asymptotically optimal in the Bahadur sense. The maximization of ¢r(d) is a
nice statistical property, because the greater the exact slope is, the more one can be
convinced that the rejected null hypothesis is indeed false. The class of such statistics
is apparently narrow, though it contains under certain conditions the LR statistics
(see [Bahadur 65], [Bahadur 67], [Rublik 89, 1] and [Rublik 89, 2]). Rublik proved
AQ of the LR statistic under regularity condition which is shown to be fullfiled by
regular normal, exponential and Laplace distribution under additional assumption
that O is a closed set and ©; is either closed or open in metric space ©. In
[Stehlik 03] is proved, that the homogeneity test is AOBS in the case of observations
distributed exponentially. Due to the connection (5) between the Rayleigh and
exponential distribution is the homogeneity test of the Rayleigh distribution also
AOBS. For more extensive discussion on asymptotical optimality see also monograph
[Nikitin 95)].

5 The maximum likelihood estimation and effi-
cient exact testing of the common scale para-
meter

In this section we derive the exact LR test of the common scale parameter o2 in the
homogeneous iid Reley sample. Typically, after the acceptation of the homogeneity
hypothesis, one wants to know the probable value of the unknown common scale
parameter o2. We will consider the maximum likelihood (ML) estimation of the com-
mon scale parameter. The ML estimator of the parameter o2 in the homogeneous
iid Rayleigh sample y, ..., yv has the form

&2=yf+...+y}"v
2N

Let us introduce the notation y ~ I'(N, 1) to express that y is distributed ac-
cording to the density

N-1

fly)= he‘y, y>0, N=1,2,3,..

In the following theorem we derive the exact distribution of the LR test of the
hypothesis
Hy: 0% = o2 versus Hy : 0° # o5 (8)

in the homogeneous iid Rayleigh sample.



Theorem 2 The statistics —In ) of the LR test of the hypothesis (8) has the form

N
1
—InAn(y) = GN(T‘?) > ) - Gn(N),
i=1

where for N = 1,2, ... we introduce the function

_ [ z—Nln(z), forz>0,
GN(Z)—{ 0, forz <0.

Under the null hypothesis the c.d.f. of —InAyx has the form

FN(p) — { -;"-N(—N W_l(— BXP(—']. - .I%))) - fN(—N Wo(— exp(—l — -]%))), Z ; g,

and the density of —In Ay has the form

fnlp) = { )= (0,0, Jor >0,

Here fork € {—1,0} andw € R is Wy (w) the value of the k-th branch of the Lambert
W function at the point w (see Appendiz), Fu is the c.d.f. of the I'(N, 1)-distribution

and for r > 0 we define

—N)N-1 {W_i(—exp(~=1 - )}V
I(N) 1+ W_g(—exp(-1- %))

The Wilks statistics —21n A has under the Hy c.d.f. of the form

hN(k, T) = (

exp(NW_g(exp(~1 — +)))-

Fy(r) = { .g-:N(—NW_l(-—e‘l‘fN)) - fN(—NWO(—g‘l‘fTN)), T>0,

7<L0, ©)
and the density of the form

1 o _ .
fN(r)={ 8’{hN(1,2 hn(0,3)}, chz::zg

Proof. Under the Hy is the sample 5?23’ - 25% iid from the Ezp(1) distribution
(see(5)). Theorem 6 in [Stehlik 03] completes the proof. O

The test given by the Theorem 2 has the UUMP property (see [Lehmann 64]). The
useful property of this test is its asymptotical optimality in the sense of the Bahadur
exact slopes (see previous section), which is proved due to the connection (5) between
the Rayleigh and exponential distributions in [Stehlik 03]. In the following theorem
we derive the exact power of the test of the hypothesis (8) .



Theorem 3 The ezact power p(0?, a) of the LR test based on the Wilks statistics
of the hypothesis (8) in the Rayleigh homogeneous iid sample on the level o at the
point 0% of the alternative has the form

0.2 a 0.2 Ca
plo%a)=1— fN(—NU—gW_l(—e‘l‘TNIl ) + ]’N(~NU—gWO(—e‘1“ﬂVI!)),

where c, v denotes the critical value of the exact test of the hypothesis (8) on the
level .

Proof

The critical region based on the Wilks statistics of the LR test of the hypothesis
(8) on the level of significance o has the form W, = {y € Y : —2InAn(y) > c}
such that P{W.|o? = 03} = a, where Y denotes the sample space. The power
p(0}, @) of the test of the hypothesis (8) at the point o of the alternative is equal
to P{W_|o? = ¢2}. Applying Theorem 2 in [Stehlik 03] we obtain the equality

N

1= P(W.lo” = o7} = Fn(-N23 w_l(— )~ Fa(- N"°wo( ).

This completes the proof. O

The ML estimator 6% of the parameter o2 is consistent and —2In Ay has asymp-
totically x?-distribution (see {Wilks 67]). Let us briefly investigate how the exact
distribution of the LR test differs from the asymptotic one. The test based on the
asymptotics is oversized. The following Table 2 gives the oversizing of the asymp-
totical test for small samples. Here « is the size of the test given from the Wilks
asymptotics while a, y is the exact size of the same test. We calculate from the
formula aey =1— FN(XQ 1)- Here x2 ; denotes (1 — a)-quantile of the asymptotical
x3-distribution and Fl is the exact cdf of the Wilks statistics —2In A of the LR test
of the hypothesis (8) under the Hy given by the formula (9) .



Table 2: The exact sizes aen

o\N i 2 3 4 5
0.00001 | 0.229211e-4 | 0.178154e-4 | 0.155230e-4 | 0.142351e-4 | 0.13420de-d
0.00002 | 0.445707¢-4 | 0.347445e-4 | 0.303720e-4 | 0.279358e-4 | 0.264021e-4
0.00005 | 0.1070863-3 | 0.838629e-4 | 0.736765e-4 | 0.680620e-4 | 0.645496e-4
0.0001 | 0.2073771e-3 | 0.1630849¢-3 | 0.1439040e-3 | 0.1334225¢-3 | 0.1268967e-3
0.0002 | 0.4007327¢-3 | 0.3167122e-3 | 0.2808525e-3 | 0.2614285e-3 | 0.2493896e-3
0.0005 | 0.9536900c-3 | 0.7598856-3 | 0.6789730e-3 | 0.6356518¢-3 | 0.6089504e-3
0.001 | 0.183158660-2 | 0.14706397e-2 | 0.13227325¢-2 | 0.12442198e-2 | 0.11960162e-2
0.002 | 0.35061415¢-2 | 0.28417427e-2 | 0.25749120e-2 | 0.24344361e-2 | 0.23484946e-2
0.005 | 0.82247349¢-2 | 0.67718253¢-2 | 0.62044830e-2 | 0.59087828¢-2 | 0.57286067¢-2
0.01 | 0.015599286 | 0.013037800 | 0.012058871 | 0.011552053 | 0.011244013
0.02 | 0.029448482 | 0.025065314 | 0.023424550 | 0.022579936 | 0.022067611
0.05 | 0.067701023 | 0.059361294 | 0.056314364 | 0.054754992 | 0.053810812
a\N 6 7 8 9 10

0.00001 | 0.128631c4 | 0.124580e-4 | 0.121533¢-4 | 0.119145¢-4 | 0.117233e4
0.00002 | 0.253549e-4 | 0.245975e-4 | 0.240255e-4 | 0.235786e-4 | 0.232200e-4
0.00005 | 0.621610e4 | 0.604363e-4 | 0.501357e-4 | 0.581205e-4 | 0.573069¢-4
0.0001 | 0.1224689-3 | 0.1224689e-3 | 0.1168726e-3 | 0.1149965e-3 | 0.1134937¢-3
0.0002 | 0.2412404¢.3 | 0.2353750e-3 | 0.2309574e-3 | 0.2275143e-3 | 0.2247565¢-3
0.0005 | 0.5909296-3 | 0.5779784e-3 | 0.5682339¢-3 | 0.5606426e-3 | 0.5545638¢-3
0.001 | 0.11635466e-2 | 0.1140235e-2 | 0.11227052e-2 | 0.11090527¢-2 | 0.10981231e-2
0.002 | 0.22907016e-2 | 0.22402459e-2 | 0.22180864e-2 | 0.21938248e-2 | 0.21744048¢-2
0.005 | 0.56076661e-2 | 0.55200911e-2 | 0.54558724e-2 | 0.54051793¢-2 | 0.53646073¢-2
0.01 | 0.0110374652 | 0.0108895082 | 0.0107783725 | 0.0106918635 | 0.010622626
0.02 | 0.0217243535 | 0.0214785418 | 0.0212939228 | 0.021150213 | 0.0210351898
0.05 | 0.0531785833 | 0.0527258996 | 0.0523858952 | 0.0521212038 | 0.0519093212
o\ N 11 20 30 40 50

0.00001 | 0.115663e-4 | 0.108587e-4 | 0.105711e-4 | 0.104276e-4 | 0.103418e-4
0.00002 | 0.229270e-4 | 0.216047e-4 | 0.210675e-4 | 0.007998e-4 | 0.206392e-4
0.00005 | 0.566400e4 | 0.536422e-4 | 0.524220e-4 | 0.518152¢-4 | 0.514510e-4
0.0001 | 0.1122631e-3 | 0.1067253e-3 | 0.1044757¢-3 | 0.1033529¢-3 | 0.1026806¢-3
0.0002 | 0.2224988e-3 | 0.2123424e-3 | 0.2082143e-3 | 0.2061548e-3 | 0.2049209e-3
0.0005 | 0.5495886e-3 | 0.5272108e-3 | 0.5181143e-3 | 0.5135745¢-3 | 0.5108540e-3
0.00I | 0.10891785e-2 | 0.10489474e-2 | 0.10325913¢-2 | 0.10244260e-2 | 0.10195322¢-2
0.002 | 0.21585122e-2 | 0.208702956-2 | 0.20570594e-2 | 0.20434441e-2 | 0.20347421e-2
0.005 | 0.53314054e-2 | 0.51820403e-2 | 0.51212668¢-2 | 0.50909105¢-2 | 0.50727079¢-2
0.01 | 0.0105659642 | 0.010311006 | 0.010207222 | 0.010155366 | 0.010124268
0.02 | 0.0209410536 | 0.00517344 | 0.020344780 | 0.020258532 | 0.020206799
0.05 | 0.0517358893 | 0.050954881 | 0.050636560 | 0.050477308 | 0.050381007




6 Efficient testing of the number of components
in the Rayleigh mixture

In this section we construct the efficient testing procedure of the number of compo-
nents m in the Rayleigh mixture for m = 2 and 3.

6.1 Case of the alternative H; : m = 2

In this section we consider the alternative of the form H; : m = 2. The hypothesis
Hy:m=1versus Hy :m =2 (10)

in the mixture model (1) can be approximate due to the subpopulation model by
the hypothesis

Hy: 02 = ... = 02 versus approzH; : AMy, My, My U M, = {1,...,n}, (11)

M10M2=Q,M1,M27é®,v‘j€M1ZO’?=U?,V‘]‘EM220'?=U%,U%7£U§

e.g. by the null hypothesis of the homogeneity with the modified alternative, which
is actually a subset of the alternative of the hypothesis of the homogeneity. We
construct the LR test of the hypothesis (11) which approximates the hypothesis
(10) . Let y1,..., yn are distributed according to Rayleigh densities. The LR of the
test of the hypothesis (11) has the form

max,z2- _,2 f(y,0%)

- oi=..=c%
)\N(y) - MaXgpprox Hy f(y7 0'2) ’

To compute the denominator maXapproen, f(¥,52) we proceed as follows. Suppose
that {gi,..., %}, 0 < K < N are the observations from the Rayleigh distribution
with the scale parameter o7 and the other observations are distributed according to
the Rayleigh distribution with the scale parameter o2. Without lost of generality we
can suppose that i; = 7,5 = 1, ..., K. Then the ML estimators of parameters 0% and
02 have the form

2 _ Uit tuk

2 2K
and
&g _ yg<+1 + .ty
2(N-K)
In such case we have
NY G ) Whaa Ay

An(y) = KRN ~K)V-K (wi+..+yH)N

BT



In practice is the classification of measured data into subpopulations unobserved
and we must consider the all possibilities by the finding the maximum. For 0 <
K < N let P(K) denotes the all K-subsets {41, ...,ix} of the set {1,2,..., N}. For
p={i1,...,ix} € P(K) we denote approzL(p) :=

= 2VKX(N = K)N K exp(—N)yr.. yn (07, + - + 45) K Wl + - +95,) 7V
The LR of the test of the hypothesis (11) has form

Ina'xail=.._=¢:r2 f(yv ) . max"xz=~“=‘7?v f(y’ 02)

A m
() = MaXo<K <N, peP(K) apTozL(p) 0<K<N,12eP(K) aprozL(p)

Finally we obtain the formula

NN W2+ 2 )@, YR IVE

An(y) = i
~() 0<K<%,1pn€P(K) KK(N — K)N-K Wi+ +v)N

(12)

The main advantages of the test statistic (12) is that under the Hpy it does not
depend on the unknown value of the parameter o2. The distribution of the LR test
statistics — In Ay where Ay is given by the formula (12) under the null hypothesis
is derived in the following theorem.

Theorem 4 Let yy,...,yn are #d according to the Rayleigh distribution with the
unknown scale parameter o®. Then the LR test statistics —In Ay where Ay is given
by the formula (12) has the form

~lAn@) == min  {NWN-KnK-(N-K)h(N-K)+

K N-K N
+Km(} 1)+ (N—K)In( > 42) - NIn(D>_42)}
n=1 n=1 n=1
and it has the same distribution as the random variable

Uy = _0<K<N peP(K){NlnN KinK— (N -K)In(N — K)+

K N-K N
+KIn(> w,) + (N — K)In( Y w,) — NIn(D_ ua)}

where uy, ..., uy are #id according to Exp(1).

12



Remark

The main advantage of the provided distribution of the random variable Uy is
the possibility of simulation of the density of the LR statistics — In Ay based on the
Ezp(1) simulations.

Proof. Under the Hy is the sample 2—16%, o # iid from the Ezp(1) distribution

(see(5)). The independence of the LR statistics (12) on the real value of the scale
parameter o2 under the null hypothesis completes the proof. O

6.2 Case of the alternative H, : m =3

In this section we consider the alternative of the form H; : m = 3. The hypothesis
Ho:m=1versus Hy:m=3 (13)

in the mixture model (1) can be approximate due to the subpopulation model by
the hypothesis

Hy: 0} = .. =02 versus approzH; : 3 nonempty disjoint subsets M, Ms, M;(14)

oftheset 1,. nsuchtha.tVJEMl o} =02VjeM,: 0} =03,Vj € Ms: 07 = 03,

where 02, 02 and o3 are different scale parameters.

We construct the LR test of the hypothesis (14) which approximates the hypothesis
(13) . Let y1, ..., yn are distributed according to Rayleigh densities. The LR of the
test of the hypothesis (14) has the form

ma}‘g%:.,_:oz f(y7 02)
MaXgpproz Hy f(ya 02) ’

An(y) =

To compute the denominator maxXapprocs, f(Y, 02) we proceed like in previous sub-
section. Suppose that {y;,,..., i}, 0 < K < N — 1, are the observations from the
Rayleigh distribution with the scale parameter o, {y;,,...,4;.}, 0 < L < N — K,
are the observations from the Rayleigh distribution with the scale parameter 62 and
the other observations are distributed according to the Rayleigh distribution with
the scale parameter 0. Fr 0 < K < N—1, 0 < L < N — K let P(K, L) denotes
the all disjoint pairs of K-subsets {iy, ... ZK} and L-subsets {jy,..., 7.} of the set
{1,2, ..., N}. Then the LR of the test of the hypotheses (14) has the form

NN
min {
0<K<N-1, 0<L<N-K, peP(K) KXLL(N — K — L)yN-K-L

An(y) = X (15)

(y“ AT 7 (A SR A o (7 SO 1D Che
B2+ .. YN

1.
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The main advantages of the test statistic (15) is that under the Hy it does not
depend on the unknown value of the parameter 2. The distribution of the LR test
statistics —In Ay where Ay is given by the formula (15) under the null hypothesis
is derived in the following theorem.

Theorem 5 Let yy,...,yn are tid according to the Rayleigh distribution with the
unknown scale parameter o%. Then the LR test statistics — In Ay where Ay is given
by the formula (15) has the form

—InAn(y) =- {NInN-KIhK-LlnL+

min
0<K<N-1, 0<L<N-K, peP(K)

K L
~(N-K-L)In(N-K-L)+KIn(}_42)+LIn(>_ v} )+
n=1 n=1
N-K-L N
+HN-K-L)n( Y )= Nin(d vd)}
n=1 n=1
and it has the same distribution as the random variable

Vi =— {(NInN-KWnK —LlnL+

min
0<K<N-1, 0<L<N-K, peP(K)

K L
~(N-K-L)In(N— K = L)+ KIn(}_w,) + LIn(>_u;,)+
n=1 n=1
N-K-L
+HN-K-L)In( >
n=1

N
w,) — Nln(Z up)}
n=1

where uy, ...,uy are ud according to Exzp(1).

Remark

The main advantage of the provided distribution of the random variable Vy is
the possibility of simulation of the density of the LR statistics — In Ay based on the
Ezp(1) simulations.

Proof. Under the Hy is the sample —2%?07, o 232% iid from the Ezp(1) distribution

(see(5)). The independence of the LR statistics (15) on the real value of the scale
parameter o2 under the null hypothesis completes the proof. [
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7 Appendix

The Lambert W function is defined to be the multivalued inverse of the complex
function f(y) = ye¥. As the equation ye¥ = z has an infinite number of solutions for
each (non-zero) value of z € C, the Lambert W has an infinite number of branches.
Exactly one of these branches is analytic at 0. Usually this branch is referred to
as the principal branch of the Lambert W and is denoted by W or Wy. The other
branches all have a branch point at 0. These branches are denoted by W) where
k € Z\ {0}. The principal branch and the pair of branches W_; and W, share an
order 2 branch point at z = —e™!. A detailed discussion of the branches of the
Lambert W can be found in [Corless 96).

Since the Lambert W function has many applications in pure and applied mathe-
matics, the branches of the LW function are implemented to many mathematical
computational softwares, e.g. the Maple, Matlab, Mathematica and Mathcad. For
more information about the implementation and some computational aspects see
[Corless 93].

8 Conclusion

In the present paper we construct the efficient testing procedure of the hypotheses of
homogeneity, scale parameter under the homogeneity and the number of components
in the Rayleigh mixture. We also discuss the properties of such tests and give the
procedure for the computation of the critical values. The test of the homogeneity
and scale of the Rayleigh distribution is shown to be asymptotically optimal in the
Bahadur sense. The obtained results can be applied to expanding the experimental
distribution of transverse momenta into Rayleigh distribution. As we see, our results
for m = 1,2 and 3 can be generalized to the case of an auxiliary alternative m =
4, 7 < N. Our next goal is to evaluate estimations for the mixture parameters.
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Crernmuk M., Ocockos I'. A. E11-2003-116
DdexTHBHBIE KPUTEPHH IIPOBEPKH OOHOPOIHOCTH, apaMETPOB
MacmTaba ¥ YHCiIa KOMIOHEHTOB CMeCH pacnpeneseHui Panes

PaccMarpuBaeTcs CTaTHCTHYeCKas Npo6neMa NpeiCTaBiIeHHs 3KCIEPUMEH-
TAIBHOTO pacrpeleNeHHs MONEPEeYHBIX MOMEHTOB B BUIE CMECH PIJIEEBCKHX pac-
npenenenuii. PaspaGoTan Bhicok0oo(hheKTHBHBIH KPUTEPHI I IIPOBEPKH TMIIOTE-
3bl OXHOPOAHOCTH BBIGOPKH, ONTHMAIBbHBIA B cMbicie Baxanypa. s ciyyaeB Bbl-
NOJIHEHUsl THUITOTE3bl NPEVIOKEH TOYHBI KPUTEPHi OTHOIIEHHS MpaBAONoaoOHs
Wi napaMetpa Maciuraba. I MHBIX CllydaeB NpeatoxeH 3(deKTUBHbIA TeCT
IUIS 9UCJIa KOMIIOHEHTOB CMECH.

Pa6ota BeinonHeHa B Jlaboparopuu HHGOpMaLUHOHHBIX TexHonorui OHSH.

CoobieHne OGLEIHHEHHOro HHCTHTYTa SEPHBIX Hccenosanuii. Ny6ua, 2003

Stehlik M., Ososkov G. A. E11-2003-116
Efficient Testing of the Homogeneity, Scale Parameters
and Number of Components in the Rayleigh Mixture

The statistical problem to expand the experimental distribution of transverse
momenta into Rayleigh distribution is considered. A high-efficient testing proce-
dure for testing the hypothesis of the homogeneity of the observed measurements
which is optimal in the sense of Bahadur is constructed. The exact likelihood ratio
(LR) test of the scale parameter of the Rayleigh distribution is proposed for cases
when the hypothesis of homogeneity holds. Otherwise the efficient procedure
for testing the number of components in the mixture is also proposed.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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