E11-2003-148

I. Antoniou®?, V. V. Ivanov'?, Valery V. Ivanov®*,
P. V. Zrelov®

PRINCIPAL COMPONENT ANALYSIS
OF NETWORK TRAFFIC MEASUREMENTS

Reported at the International Seminar
«Advanced Computing and Analysis Technics in Physics Research»,
June 24-28, 2002, Moscow, Russia

International Solvay Institutes for Physics and Chemistry, CP-231,
ULB, Bd. du Triomphe, 1050, Brussels, Belgium
’Department of Mathematics, Aristoteles University of Thessaloniki,
54006 Thessaloniki, Greece
3Laboratory of Information Technologies, Joint Institute for Nuclear
Research, 141980, Dubna, Russia
*University Scientific Center, Joint Institute for Nuclear Research,
141980, Dubna, Russia



Introduction

In [3] we applied a nonlinear analysis technigue [4] to the traffic measurements
obtained at the input of the intermediate size Local Area Network (LAN). We demon-
strated that this approach can be successfully used for deeper understanding of main
features of the traffic data. At the same time, we found that due to a very complicated
character of traffic series the traditional algorithms of nonlinear analysis do not give re-
liable estimations of the analyzed time series. For instance, the Grassberger-Procaccia
algorithm gives a very high dimension for original traffic measurements. However, after
filtering out a high frequency component, which can be considered as noise, we obtained
a more realistic result for the embedding dimension of the underlying process. This
result has been confirmed independently by the Principal Component Analysis (PCA)
[3] in frames of the “Caterpillar”-Singular Spectrum Analysis (SSA) scheme [1, 2].

The PCA is a well-known technique in multivariate data analysis [5]-[9], which
consists in applying a linear transformation to the original data space into a feature
space, where the data set may be represented by a reduced number of “effective”
features and yet retain most of the intrinsic information content of the data. The
“Caterpillar”-SSA approach is a novel scheme very efficient for analysis of time series
corresponding to any arbitrary signal {1, 2].

In our study we use the traffic measurements obtained at the input of Dubna Uni-
versity [10] LAN, which includes approximately 200-250 interconnected computers. In
Section 1 we describe the data acquisition system of this LAN, realized on the basis of a
standard PC. In Section 2 we present a basic concept of the “Caterpillar”-SSA scheme.
In Section 3 we apply the “Caterpillar”-SSA technique to the traffic measurements and
analyze the leading components responsible for the main part of the network traffic.
In Section 4 we study residual components and propose a statistical method for their
selection and elimination from a whole set of principal components.

1. Data acquisition system

The measurements of network traffic are realized at the external side of the input
lock of LAN. The performance of the data acquisition system is based on realization
of an open mode driver [11]: see Fig. 1.

In standard conditions the network adapter of a computer is in a mode of detecting
a carrying signal (main harmonic 4 — 6 MHz). After appearing in the cable bits of
the package preamble, the network adapter comes to a mode of 1 bit and 1 byte
synchronization with the transmitter and starts receiving first bytes of the package
heading. As soon as one succeeds in extracting the MAC-address of the shot receiver
from the first bytes taken by the adapter, the network adapter compares it to its own.
In the case of a negative result of the comparison, the network adapter ceases to record
the shot’s bytes into its internal buffer and cleans its contents and then waits until the
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Figure 1: Scheme of a data acquisition system

next package appears.

In order to provide conditions for receiving and analysis of all the packages trans-
mitted over the network, it is necessary to move the adapter devices to a free mode
when all possible shots are recorded in the buffer. This operation is executed through
the instructions of the NDIS driver.

The free mode driver records the accepted packages in the preliminary capture buffer
and displays the flag of receiving the package. Then the receiving package module is
activated and analysis of the margin of the package’s type is carried out to extract
TCP/IP packages from the whole stream.

After identification it is possible to separate and delete the data block as well
as to record the headers to the SQL-server database. The recording is performed
together with the time data with a frequency up to 10 kHz. Although the recording is
performed with buffering, the mode of saving the packages’ headers requires enormous
server’s resources, as in this case there is a permanent procedure of recording with
small portions to the hard disk. That is why this mode is switched on if required at
the management system’s instruction.

The system also provides control over the external traffic of the local area network
on the basis of controlling the records in the router table. Initial information on the
legal IP addresses is saved in the database of the LAN computers from which data
on legal addresses are loaded into the main memory array. The users which do not
participate in forming the external traffic, are not taken into account when calculating
the number of transferred and received bytes. In order to decrease the number of
sessions of recording the information on the external traffic in the database, a timer



of load out of the buffer and a timer of changing a current date have been introduced
into the system.

The recorded traffic data correspond approximately to 20 hour (1600000 records
with a frequency up to 10 kHz, which corresponds to 1ms bin size) measurements.
The part of this series corresponding approximately to 1 hour measurements and ag-
gregated with different bin sizes is presented in Fig. 2. Two protocols are used in the
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Figure 2: Traffic measurements aggregated with different bin sizes: 0.1s, 15 and 10s

»Dubna”’ LAN. The NetBEUI protocol is applied only for internal exchanges, and the
TCP/IP - for external communications. The contribution of the NetBEUI traffic is
estimated around 1-6 packages per second during daily working hours, which is negli-
gibly small compared to the TCP/IP traffic. In this connection, we may neglect the
influence of non-IP traffic on the TCP/IP traffic.

2. Basic concept of the “Caterpillar”’-SSA technique

The “Caterpillar”-SSA approach [1, 2] is applied to the analysis of time series
corresponding to any arbitrary signal f(t), ¢ > 0 determined in equidistant points.
The basic “Caterpillar”’-SSA scheme includes four main steps:

1. transformation of one-dimensional series into a multidimensional form,

2. singular value decomposition of the multidimensional series,



3. principal components analysis and selection of feature components,
4. reconstruction of one-dimensional series using the selected components.
The transformation of one-dimensional series
z; = f(t:) = fli - DAL, i=12,..., K (1)

into a multidimensional series is realized by representing (1) in matrix form:

x1 Zy T3 . Iy
T T3 Za P 1 |
= kL
X=(zy)a=] T T+ Ts .- Ti+2 |, (2)
Ty Tk+1 Tkt2 .- TK

where I < K is called the caterpillar or window length and k = K — L+ 1.

Then the eigenvalues );, i = 1,2,..., L and eigenvectors 17;-, i=1,2,...,L of the
covariance matrix C = %X X7 are determined. The matrix of eigenvectors V is used
for transition to principal components

Y =VTX = (V1,Ys,,..., Y1), (3)
where Y; (i =1,2,...,L) are rows of k elements.
The equality
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permits to estimate the contribution c; (in decreasing order) of the 7-th principal com-
ponent into the analyzed series. This contribution can be interpreted as a fraction of
information related to a single component, and it helps, together with analytical and
visual analysis of eigenvectors and principal components, to select feature components
for reconstruction of one-dimensional series. The selection of specific components usu-
ally depends on the goal which we pursue and the informative content of particular
components (see, for example, (12, 13, 14, 1, 2]).

3. PCA of traffic measurements: analysis of leading components

The caterpillar length (or window) Cy, is chosen based on the analysis of the auto-
correlation function for traffic measurements [3]. In this study we used different values
of Cy, starting from the minimal value Cr = 12 up to Cr = 20.

Figure 3 shows part of the daily traffic measurements aggregated with the bin size
15 used in this study.

One of main results of the application of the “Caterpillar”-SSA technique to the
analyzed series is presented in Fig. 4. It shows the contribution of the eigenvalues in
percentages for Cy, = 12 and 20. This information permits to estimate the number of
principal components, which effectively contribute to the analyzed series.

Taking into account [19], it is reasonable to assume that the packet size distribu-
tions, corresponding to the leading components, may be described by the log-normal
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Figure 4: Contributions of eigenvalues in percentages for the original traffic data:
Cy, = 12 (left plot) and 20 (right plot)

distribution. In order to check whether these distributions follow the log-normal form,
we fitted them by the log-normal function [20]:

1 1
F@) = o 2 exp [ 5z — ), @
where o and p are parameters and A is a normalizing factor. The fitting procedure
was realized with the help of the MINUIT package [21] in frames of well-known PAW
(Physical Analysis Workstation, see details in [22]).
We present in Table 1 the results of fitting the packet size distributions, correspond-
ing to different number N of leading components (the results presented here are for
Cy, = 20), by function (2), and v is the number of degrees of freedom for the x*-test.



Table 1: Results of fitting the packet size distributions, corresponding to the sum of

N leading components, by the log-normal function (2)

N, leading comp. o L v X
1 0.273 £0.009 | 10.44 +0.01 | 47 | 87.49
2 0.304 £0.005 | 10.40 £0.01 | 44 | 66.82
3 0.349 £+ 0.007 | 10.38 = 0.01 | 47 | 53.10
4 0.377 £ 0.008 | 10.37 £ 0.01 | 47 | 63.52
5 0.420 £ 0.011 | 10.35 £ 0.01 | 47 | 68.50
6 0.432+£0.012 | 10.34 £ 0.01 | 46 | 59.12
7 0.426 + 0.008 | 10.35 £0.01 | 47 | 49.03
8 0.444 £ 0.007 | 10.34 £ 0.01 | 47 | 34.39
9 0.463 £ 0.008 | 10.33 £ 0.01 | 43 | 38.94
10 0.482 +0.009 | 10.32 £ 0.01 | 47 | 37.76
11 0.489 £ 0.008 | 10.31 £0.01 | 47 | 55.64
12 0.500 £0.009 | 10.32 £0.01 | 47 | 59.00
13 0.506 = 0.008 | 10.32 £0.01 | 43 | 51.97
15 0.518 £ 0.009 | 10.31 +£0.01 | 46 | 55.16
17 0.516 £0.008 | 10.30 £0.01 | 47 | 78.59
19 0.513 £0.008 | 10.30 £0.01 | 44 | 101.6

Figure 5 shows the dependence of x?/v versus N (for C, = 20). Two lines parallel to
the abscissa axes show the significance levels (or the probability that the observed chi-
square will exceed the value x? by chance even for a correct model: see, for instance,
[18, 20]) @ = 10% (the top line, x*/v = 1.247) and a = 89.5% (the bottom line,
x%/v = 0.732) corresponding to the x? test for v = 47.

This dependence demonstrates that the testing distribution does not pass the null-
hypothesis (2), when only the first leading component is taken into account. Then,
with the increase of N, the value of x? is rapidly decreasing and for N = 3 one can see a
quite good level of correspondence (a = 22%) of the distribution to the null-hypothesis
(Fig. 6).

This result is of great interest because only 3 first components (of 20) already form
the fundamental part of the information traffic. Figure 7 shows the seria reconstructed
on the basis of the first, second and third leading component, correspondingly, after
the subtraction the caterpillar average value. Figure 8 presents the dependence of the
autocorrelation function

5 (@i1r — )@ — 2) LK
C(’T') = =1 e R I = ? Zi. (3)
S (z; — 7)? i=1

i=1
One can see from these figures that the autocorrelation function corresponding to
the sum of 3 leading components is close to the autocorrelation function for the original
data. Their summary contribution into the general dispersion is around 40 % (see Fig. 4
for Cp, = 20).
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Figure 5: The dependence of x2/v versus the number of leading components
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This result has been confirmed for the shorter caterpillar length, Cr, = 12. In this
case only 2 leading components, their lump contribution approximately coincides with
the contribution of the 3 leading components for Cy, = 20 (see Fig. 4), reproduce the
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log-normal form of the traffic.
Further increase of N leads to unexpected increase of x% (for N = 4 and 5) to-
gether with the decrease of the significance level below 10%. Then the value of X2/



rapidly decreases and reaches its record minimal value 0.732 for N = 8. The corre-
sponding statistical distribution is presented in Fig. 9. It demonstrates both a very
good level of correspondence of the reconstructed distribution to the null-hypothesis
(o = 89.5%) and a reliable accuracy of approximation on all regions of the analyzed
distribution. The summary contribution of 8 leading components into the general
dispersion is around 66 %.
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Figure 9: Fitting the distribution corresponding to 8 leading components by function
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Figure 10 shows the reconstructed series using the “Caterpillar”’-SSA method (for
C1, = 20) on the basis of 8 leading components. One can clearly see that it reproduces
characteristic features of the original series presented in Fig. 3.

4. PCA of traffic measurements: analysis of residual compo-
nents

In the region of large N there is a growth of x? especially noticeable at N > 15:
see Fig. 5. Such tendency may be caused by the influence of the residual components
related to small irregular variations, which do not fit in the basic model of network
traffic (2) and can be interpreted as stochastic noise.

Figure 11 shows the series reconstructed on the basis of the smallest residual com-
ponent, namely, the component 20. One can clearly see that this series has significantly
different character compared to the original traffic measurements. It looks like a non-
stationary process symmetric against zero mean value. -

Figure 12 shows the statistical distribution corresponding to the series presented in
Fig 11. It quite well follows the Gaussian distribution that is confirmed by the x>-test
(see Fig. 12). The autocorrelation function of the corresponding series shows that it
behaves like noise.
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Figure 11: Traffic series reconstructed by the caterpillar method (C, = 20) on the

basis of the smallest component

However, when increasing the number of residual components, their summary dis-
tribution quickly starts lose the symmetric form together with growth of correlations

between the series terms.
In order to estimate the amount of residual components that can be eliminated

from the original time series without the influence on its fundamental part, we divide

all principal components into two parts:

1. first part corresponding to the leading components and responsible for the log-
normal form of the packet size distribution,

2. second part related to residual components, which is described by a symmetric
statistical distribution and behaves like a stochastic noise.

10
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Figure 13: The values of the sign test u versus the number of residual components for
the caterpillar length Cr, = 12 (left figure) and Cf, = 20 (right figure)

As the criterion for selection of the second part we used the “moment” of the symme-
try violation for the series corresponding to the residual components. The well-known
sign test has been used for testing the symmetry against zero of residual distributions.
The sign test has the following form:

p=3 60X, 4)
i=1
where X3, ..., X, are observables, n is the sample size, and © is the Heaviside function:

1, >0
0, z<0.

m@={

11



When the null-hypothesis is valid the, u distribution is approximated (in case of large
n) by:
P{u<m|np}=~ @(W)
np(1 —p)
where ® is the distribution function of the normal distribution, p = 0.5 and n = 2048
(in our case).

Figure 13 shows the dependence of the u value versus the number of residual com-
ponents (for caterpillar lengths 12 and 20). It is clearly seen that the y value exceeds
the reliable confidential level, when the number of residual components is greater than
6 for Cp, = 12 and 11 for Cp, = 20.

In order to confirm the results obtained by the sign test, we applied a more powerful
criterion based on the w? statistics [25]. This criterion tests the symmetry against £ = 0
of the distribution function F'(z) of observables Xj, ..., X, i.e. the null-hypothesis Ho:
F(z) =1~ F(z). The corresponding w? statistics has the following form:

2
Wy =N

[Fu(z) + Fu(~2) — 12 dFu(z), (5)

2'3\3

where F,(z) is the empirical distribution function. It is more convenient to calculate
the values of the statistics (5), using the following formula

i n—j+1]?
wh=3 [Fn("X(j)) -—,
=1 n
where Xy < ... < X(n) is the variational series constructed on the basis of observ-

ables.

Figure 14 shows the dependences of w2 values versus the number of residual com-
ponents for two cases of the caterpillar length: Cp = 12 and 20. These dependences
have distinct characteristic features at k = 4 for Cp = 12, and k = 7 for Cf, = 20 (one
can see that the number of such components approximately equals to one third of the
caterpillar length), after which, when k is increasing, there is a quick rise of w2. This
rise means that the residual series loses its symmetric character, because in the second
part the components responsible for the log-normality are involved.

One can see from Fig. 14 that the number of residual components k = 6 for Cp = 12
and k = 11 for C, = 20 correspond to the 5% - significance level for the w?-criterion.
This coincides with the result obtained for the sign test (Fig. 13). These estimates of
the number of components, which do not noticeably influence the fundamental part of
traffic, qualitatively coincides with the result obtained in Section 3 applying the x2-test
(Fig. 5).

Conclusion

We applied the“Caterpillar”-SSA approach [1, 2}, which is an extension of the Prin-
cipal Component Analysis, to network traffic measurements, in order to understand the
main features of the principal components of network traffic. Our analysis of the leading
components has shown that only a few first components already form the fundamental

12
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part of the information traffic and that the correspondence to the log-normal distri-
bution remains valid up to intermediate values of N. In the region of large N there
was found a noticeable growth of x?, that can be explained by the influence of residual
components related to small irregular variations. Based on feature characteristics of
residual components, we developed a statistical method that permits to estimate the
number of components which do not play a noticeable role in the fundamental part of
traffic and can be eliminated from the whole set of components.

Thus, the statistical analysis of traffic measurements based on the joint applica-
tion of x% and w? tests gives the possibility to split the whole set of components into
two classes. The first class includes the leading components responsible for the main
contribution to the traffic, and the second class involves residual contributions that
can be interpreted as noise. A more detailed analysis of the boundary region between
these two groups may provide additional information on traffic components and, thus,
simplify the understanding of traffic dynamics.
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AHaIM3 IJIABHBIX KOMIIOHCHTOB H3MEPEHUH
uH(pOpMaLHOHHOTO Tpacuka

K usMepenusM HH(pOPMaLIHOHHOTO TpachHKa NPHMEHEH METOI [JIABHBIX KOM-
HOHEHTOB Ha ocHoBe momxomga «Caterpillar»-SSA [1,2]. Bror momxox oxasaicd
oueHb 3()(EeKTHBHBIM I IIOHMMAHMS OCHOBHBIX OCOOEHHOCTEH KOMIIOHEHTOB,
dopmupyloumx uHGOPMaHOHHBIH TpaduK. CTAaTHCTHYECKHMH aHaIM3 MOKasan,
4TO YK€ HECKOJBKO NEPBbIX KOMIIOHEHTOB (POPMHPYIOT OCHOBHYIO 4acTh HH(GOP-
MAalMOHHOTO Tpauka. OCTaTOYHBIE KOMIIOHEHTHI HIPAIOT POJIb HEGONbIIMX Hepe-
IYJASPHBIX BO3MYLIEHHH W MOTYT HHTEPHPETHPOBAThCH KakK CTOXACTHMYECKHMH LUYM.
Hcnonb3ys XapakTepHble OCOOEHHOCTH OCTATOYHBIX KOMIIOHEHTOB, Mbl pa3pa6oTa-
JIM CTATHCTHYECKMI METOZ I X 0T6Opa U MOCIEAYIOIEro HCKITIOUeHHs 13 ob1e-
IO YHUCIA [TIaBHBIX KOMIIOHEHTOB.

Pa6ora BeinonHeHa B JlabopaTopuu MH(GpOpMaMOHHbIX TexHosmoruii OUSH.

INpenpunt O6beanHEHHOTO HHCTUTYTA SAEPHBIX HccenoBanuii. Jy6na, 2003

Antoniou 1. et al. E11-2003-148
Principal Component Analysis
of Network Traffic Measurements

We applied the Principal Component Analysis, especially the «Caterpil-
lar»-SSA approach [1,2], to the network traffic measurements. This approach
proved to be very efficient for understanding the main features of term forming
the network traffic. The statistical analysis of leading components has demonstrat-
ed that a few first components already form the main part of information traffic.
The residual components play a role of small irregular variations which do not fit
in the basic part of network traffic and can be interpreted as a stochastic noise.
Based on the feature characteristics of residual components, we developed a statis-
tical method for the selection and elimination of residuals from the whole set prin-
cipal components.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2003
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