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1 Introduction

The problem of time-series analysis aiming at the identification of changes in series
dynamics and the prediction of its further development is of great interest in eco-
nomics, meteorology and many other areas of science and society. Complexity of
the problems related to this area gives rise to a variety of mathematical approaches
directed to their analysis and solution. However, up to now there have been de-
veloped only a few theoretically completed results and effective practical tools for
solution of such tasks. The development of realistic mathematical models, which
capture the characteristic features of the analyzed complex dynamical systems and
processes, plays a very important role in these studies. Such models may serve as
a basis for elaboration of mathematical tools which provide effective analysis and
control of the object under study.

This paper is devoted to the study of the current state of the time-series data
analysis and prediction problem. We discuss a few approaches which can be used
for the solution of a pattern recognition problem for events corresponding to various
hypotheses.

The paper is organized as follows. In Section 2 we analyse selection algorithms
based on statistical good-of-fit criteria. In Section 3 we present identification meth-
ods based on feed-forward artificial neural networks including the Chebyshev neural
network which has been shown to be very efficient in the time series approximation
and prediction. In Section 4 we discuss the basis of the artificial immune systems
(AIS) and then briefly present discrimination schemes based on the AIS. As the
methods based on the AIS are not very well-known, in Section 5 we consider main
elements of the self-nonself selection scheme in some detail. Section 5 consists of
concluding remarks and discussion.

2 Selection algorithms based on statistical good-
of-fit criteria

The testing of the experimental data correspondence to some theoretical hypotheses
is one of the most important part of the data analysis. In order to present the main
concept of the hypothesis testing, let us recall some definitions. The hypothesis
which can be formulated without any additional assumptions is called a simple
hypothesis. The hypothesis which consists of a few simple hypotheses is called a
complex hypothesis. In order to present the hypothesis testing, it is enough to

consider only the simple hypothesis [1].



Suppose we want to test the hypothesis Hy (called the null-hypothesis) against
the alternative hypothesis H; using a set of experimental data. Let X be some
function of observables, calling the test statistics, and W be the space of all possible
values of X. We divide W into critical w and admissible (W — w) regions so that if
the values of function X hit in the region w, then the null-hypothesis is not correct.
Thus, the choice of the testing criterion Hy is reduced to the choice of the testing
statistics X and the critical region w.

The size of the admissible region is usually chosen in order to get the prescribed
significance level &, determined as probability of X to hit into w, when the hypothesis
Hy is valid:

P(X € w|Hp) = a. (1)

Therefore, « is the probability that Hy is rejected while it is correct.

The efficiency of a testing criterion depends on its ability to separate the given
hypothesis Hy from the alternative hypothesis Hy. The measure of usefulness of a
criterion is given by a criterion power. The criterion power is determined as the
probability 1 — 8 of X to hit into the critical region when H; is correct:

P(X € w|H))=1-8. (2)

In other words, 8 is the probability of X to hit into the admissible region if the
alternative hypothesis is correct:

P(X € W —w|H,) = 4. (3)

There exist two different kinds of errors in the hypothesis testing:

a) of first order error (or loss): rejection of the null-hypothesis when it is correct.
The probability of such error is equal to «;

b) of second order error (or admizture): acceptance of the null-hypothesis when
it is not correct. The probability of such an error is equal to .

The test criteria that check the correspondence of pre-assigned hypothesis
(the mull-hypothesis Ho) against all possible alternative hypotheses are called the
goodness-of-fit criteria [1]. Such criteria test experimental data against the density
function which corresponds to the hypothesis Hp, in accordance with which the
testing data must be distributed.

Motivated by a practical point of view, here we will consider only the criteria
which are independent of the form of the testing distribution. The most efficient
criteria are based on comparison of the distribution function F(z) corresponding to
the null-hypothesis Hy with the empirical distribution function S,(z) [1]:

0, if z<ux;
Sa(zy =9 i/n, f z;<z<zqq, i=1,...,n—L (4)
1, if z, <z,



Here z; < 29 < ... < z, is the ordered sample (variational series) of the size n
constructed on the basis of observations of the variable z.

The testing statistics is a measure of “distance” between the theoretical F(z)
and empirical S,(z) distribution functions. The well-known goodness-of-fit test, the
Smirnov-Cramer-Mises criterion (also known as {2*-criterion [2, 3]), is based on the
statistics

%= [[5.) - F@)P (@), (5)
where f(z) is the density function corresponding to the null-hypothesis Hy. Such
sort of statistics are also known as non-parametric statistics.

In paper [4], there have been suggested and investigated a new class of non-
parametric statistics
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which generalize the statistics (5). The values of statistics (6) can be calculated
with the simple algebraic formula
k+1
b

k
x n: < i—1
= k+1§{[ n Fla)
These statistics have a higher power for the bigger parameter &, and they are more
convenient for analysis when the alternative hypothesis has a two-sided form.

As it has been mentioned above, the goodness-of-fit criteria constructed on the
basis of statistics (7) are usually applied for the testing of the correspondence of
each sample (event) to the distribution known apriori.

On the basis of the QF criteria, a very efficient procedure has been developed
and applied for selection of rare multidimensional events [5, 6, 7]. After minor
modifications, this scheme can be used for time-series data processing in order to
detect rare (abnormal) events. The modified algorithm has the following steps:

k+1 _ [% - P

1. The time-series to be analysed is transformed (“normalized”) so that the con-
tribution of a dominant distribution (in most cases this distribution concerns
with the background process) is described by the distribution function Fy(x).

2. Each sample, composed of values pertaining to the transformed series, is tested
with the O goodness-of-fit criterion for correspondence to the Fy(x) hypoth-
esis. In this process the abnormal events, which do not comply with the null-
hypothesis, correspond to large absolute values of the QF-statistic, resulting
in their clustering in the critical region.

3. Events that happen to be in the critical region are further subjected to a
second test in accordance with items a) and b). The only difference in the
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second test is that now it is the abnormal (signal) events that are collected in
the admissible region (using the corresponding distribution function Fi(z)).
This results in the additional suppression of background events in the series
under investigation.

The statistical goodness-of-fit criterion discussed above is very efficient in the
identification of rare events, because it is powerful and statistically justified. How-
ever, to apply this criterion, one has to construct a distribution function correspond-
ing to the analysed process and to determine the size and the preparation procedure
for the analysed sample.

3 Identification methods based on feed-forward
artificial neural networks

There exist two different approaches for identifying the abnormal events which can
be realized on the artificial neural network (ANN) basis.

e The first approach is the classification of individual events represented by
empirical samples of finite volumes pertaining to one of the different partial
distributions composing the distribution to be analyzed.

e The second approach uses the ability of the ANN to approximate and then to
predict the analysed time-series.

A layered feed-forward neural network is one of the most convenient tools for
constructing the classifier of empirical samples of finite volumes [8, 9, 10] and for
approximating the values of unknown real-valued functions [11, 12, 13].

The most-known feed-forward neural network for constructing the classifier of
empirical samples of finite volumes is a multi-layer perceptron (MLP). The MLP
consists of an input layer corresponding to the data to be processed, an output layer
giving the results, and hidden layers. The network scheme is presented in Fig. 1.

In Fig. 1, 24, h; and y; denote the input, hidden and output neurons, respec-
tively. w;x are the weights of the connections between the input neurons and the
hidden neurons, and w;; are the weights of the connections between the hidden and
the output neurons. The signals a; = Y, wzx and a; = 3, wy;h; are fed to the
inputs of the hidden and output neurons, respectively. The output signals of these
neurons are determined as h; = g[(a; +6;)/T] and y; = g[(a; +6;)/T}], where g(a/T)
is a transfer function, T is the "temperature” determining its slope, and 6 is the
threshold of the corresponding node. Typically, g(a/T) is a sigmoid, for example,
of the form g(e/T) = tanh(a/T).

The adaptation of the MLP to the problem to be solved is called the neural
network training or learning. The learning in the case of the back-propagation algo-
rithm [14] is performed by the minimization of the error functional E with respect
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Figure 1: Scheme of the multi-layer perceptron with one hidden layer

to the weights w;;, wy:

£ =L Siite) - )P ®

Here p = 1,2, ..., Nyrain i the number of training patterns, f(z,) is the target value
of the output signal.

The values of the output signals from the hidden and output neurons are func-
tions of the corresponding weights. In order to minimize the error functional, an
iterative procedure is used. The changes of the weights w;; and w;; at each iteration
are given by:

A’UJU = —-néig’(ai)hj + OéA’LU?}d. (9)
and
ijk = -1 Z wijéig’(ai)g’(aj)zk + QA'LU?,lcd, (10)

where the value 8; is determined from the equation &; = y; — f(z;). In Eqgs. (9) and
(10), 7 is the parameter controlling the learning speed [14], aAwg and aAwg are
the moments, which suppress oscillations at the network output. The procedure of
the neural network training goes on until an acceptable correspondence between the
output signals and the target values is reached. The MLP network is the very effi-
cient tool for classifying events, although its learning speed and power of recognition
critically depend on the choice of a method of input data encoding.

A comparative study of classifiers based on the goodness-of-fit criteria QF and
the MLP were carried out in [15, 16]. It has been shown when only the parameters of
the dominant distribution are known, the goodness-of-fit criteria (2% serve as a suit-
able tool for the recognition of events corresponding to various distributions. The
repeated application of the QF-criteria permits extracting of the contributions for
any number of partial distributions from the resultant spectrum observed in exper-
iment. Then, if necessary, the neural network can be employed with the estimated



parameters of the constituent distributions. It is worth noting that the Q*-criterion
usage is substantially quantitative, while the results yielded by the ANN are only
qualitative.

In Ref. [11] Lapedes and Farber studied the ability of the MLP networks to
reconstruct and predict time series, which is an important problem in economics,
meteorology and many other areas. Using the time series produced by the logistic
map (Fig. 2) as a model, they have demonstrated that the neural networks with
sigmoidal neurons in the hidden layer can be used for prediction of highly chaotic
time series with an accuracy which is of orders of magnitude better as compared
to conventional methods. They have also shown that the neural network performs
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Figure 2: Time series corresponding to the logistic map equation

well because it globally approximates a learning map by performing a kind of a
generalized mode decomposition of the map.

In Ref. [17] a new approach was proposed for the approximation of one-
dimensional functions based on a Chebyshev Neural Network (CNN). The CNN
realizes the expansion of a function in the orthogonal Chebyshev polynomials of
the first kind. The expansion coeflicients are computed during the network training
where arbitrary points (for instance, measured in experiment) from the function
domain are used.

The basic concept of the CNN network is presented below. Let us consider
the function f(z) defined on a finite set of = values: f(zo), f(z1), ..., f(zs). If the
values of f(z) at intermediate x values are required for the solution of a problem, it
is convenient to construct an interpolating function ¢(z). This function should be
easy to calculate, and it should approximate f(x) with some degree of accuracy in
its domain.

We will look for interpolating functions which can be expanded in terms of the
orthogonal Chebyshev polynomials T, of the first kind:

on(z) = co To(z) + 1 T1(2) + ca Ta(z) + ... + 0 Tn(2). (11)
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where
T.(z) = cos(n arccos ), z] < 1.

For n = 0, To(z) = 1, and for n = 1, T1(x) = cos(arccosz) = x. The Chebyshev
polynomials T,, satisfy the recurrence relation:

Toii(z) =22 T, (z) — Tooi ().

From the orthogonality of the Chebyshev polynomials [20] one obtains

n—1 n—1
ci =Y flze) Ti(ze)/ Y T2(wx), 0<i<n, (12)
k=0 k=0

where
xkzcos{M}, 0<k<n-1
(2n)
are the roots of T,(x).

Formula (12) allows one to calculate the expansion coeflicients cx of (11) if the
values of the function f(z) at the nodal points x are known. However, in practice
this is hardly possible.

In order to avoid this difficulty and to calculate the coefficients ¢; of expansion
(11) with arbitrary set of experimental points, it is possible to implement the feed-
forward Neural Network with the architecture represented in Fig. 3.

g(rr)

¢

Figure 3: Architecture of the feed-forward Chebyshev neural network

The network has one input neuron, to which the argument z is applied, a single
layer of hidden neurons and one output neuron, from which the computed value of
function y(z) is obtained.

The argument z is transferred from the input neuron to the neurons of the
hidden layer. 4-th neuron of the hidden layer transforms the received signal in
accordance with the transfer function g;(z) which is a Chebyshev polynomial:

gi(z) = Ti(z), where i=0,...,n.



Then, the sum of weighted signals from the neurons of the hidden layer

azzn:wioTi(z) (13)

i=0

is transferred to the output neuron, which transforms it according to the function
g9(a) = a.

The CNN network permits realization of expansion (11). When the weights
of the connections between the input neuron and the neurons in the hidden layer
are all set to 1, the weights w; will play the role of the expansion coefficients c;.
The number of neurons in the hidden layer coincides with the number of terms in
Eq. (11) and determines the accuracy of the function approximation.

The weights w; are calculated during the neural network training using the
back-propagation algorithm. The correction to the weights w; at k-th step is given
by the following expression

Aw;p = —nAE;  + 0Aw; i1,

where

AE; ;= Z[y(zp) - f(mp)]Ti—l(xp)-

This approach permits calculating of the expansion coefficients during the net-
work training process, for which arbitrary points (for instance, measured in exper-
iments) from the function domain are used. The neural network provides the ac-
curacy of the function approximation practically coinciding with the accuracy that
can be achieved within the traditional approach, when the values of the function at
the nodal points are known.

The more detailed study (based on the logistic map analysis) has shown (see
[18]) that, compared with the conventional MLP, the CNN network provides a 50-
fold improvement in the approximation. As the new approach provides a better
approximation of the time series, one has new possibilities for a long-term prediction.

Figure 4 shows the behaviour of the deviation of the predicted value from the
actual value when the MLP network (a) and the CNN network (b) are used for
the long-term prediction. One can clearly see that the MLP is reliable only for 3
iterations, while the CNN can go up to 9 iterations.

4 Discrimination schemes based on artificial im-
mune systems

In this section we describe the main features of the natural immune system (NIS)
which can be used for information processing. We briefly present the negative se-
lection algorithm while its analysis is given in the next section.
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Figure 4: The behavior of the deviation of the predicted value from the actual value
when the MLP network (a) and the CNN network (b) are used for the long-term
prediction

The main mission of the NIS is to defend a body against pathogenic organisms,
cells or molecules [21, 22]. In order to do this, the immune system must perform a
pattern recognition in a highly effective way: to distinguish organisms of the body
(“self”: =~ 10°) from foreign ones { “nonself”: > 10®) [23].

The NIS is realized as a multi-layered system. At the first level the skin pro-
tects a body against infection. The second level is physiological, where physical-
chemical conditions (pH and temperature) provide inappropriate living conditions
for pathogens. Once pathogens have entered the body, they are handled by the
innate immune system and by the adaptive immune response.

The innate immune system consists primarily of circulating scavenger cells
such as macrophages that ingest extracellular molecules and materials, clearing the
system of both debris and pathogens. The adaptive immune response is responsible
for immunity that is adaptively acquired during the lifetime of the body. It can be
viewed as a distributed detection system which consists of white blood cells, called
lymphocytes. Lymphocytes function as small independent detectors that circulate
through the body in the blood and lymph systems. Lymphocytes can be viewed
as negative detectors, because they detect only non-self patterns: molecular bonds
formed between a pathogen and receptors that cover the surface of the lymphocyte.

The ability to detect most pathogens requires a huge diversity of lymphocyte
receptors, which can be partly achieved by generating lymphocyte receptors through
genetic process that provides a huge amount of randomness. However, even if re-
ceptors are randomly generated, there are not enough lymphocytes in the body to



provide a complete coverage of all pathogen patterns. It is estimated that there are
108 different lymphocyte receptors in the body at any given time, which must detect
potentially 10'¢ different foreign patterns [24, 25].

Protection is made dynamic by continual circulation of lymphocytes through
the body, and by a continual turnover of the lymphocyte population. Lymphocytes
are typically short-lived (a few days) and are continually replaced by new lympho-
cytes with new randomly generated receptors.

Protection is made more specific by learning and memory. If the NIS detects
a pathogen that has not been encountered before, it undergoes a primary response,
during which it “learns” the structure of the specific pathogen, i.e. it evolves a set of
lymphocytes with high affinity for that pathogen, through a process called affinity
maturation. This produces a large number of lymphocytes that have high affinity
for a particular pathogen, which accelerates its detection and elimination.

To summarize, the NIS has many features that are desirable from a computer
science standpoint. The system is massively parallel and its functioning is truly
distributed. Individual components are disposable and unreliable, yet the system
as a whole is robust (reliable). Previously encountered infections are detected and
eliminated quickly, while novel intrusions are detected on a slower time scale, using
a variety of adaptive mechanisms. The system is autonomous, controlling its own
behaviour both at the detector and effector levels. Each immune system detects
infections in slightly different ways, so pathogens that are able to evade the defenses
of one immune system cannot necessarily evade those of every other immune system.

The natural immune system is a subject of great research interest because of
its powerful information processing capabilities [26]. The key features of the im-
mune system which are important for the field of information processing may be
summarized as follows: Recognition, Feature extraction, Diversity, Learning, Mem-
ory, Distributed detection, Self-regulation, Threshold mechanism, Co-stimulation,
Dynamic protection, Probabilistic detection. Other related features like adaptabil-
ity, specificity, self-tolerance, differentiation etc. also perform important functions
in immune response. All these remarkable information-processing properties of the
immune system reflect important aspects in the field of computation.

The rapidly emerging field called Artificial Immune Systems (AIS) (also called
Immunological Computation) explores different immunological mechanisms and their
relation to information processing and problem solving [26]. So far, Artificial Im-
mune Systems have received very little attention as compared to other techniques
based on biological metaphors, such as neural networks and evolutionary algorithms
[27).

S.Forrest et. al. [28] developed a simple and very effective computer negative-
selection algorithm for change detection based on the principles of self-non-self dis-
crimination in the immune system.

This algorithm can be briefly described in following steps:

o Define self as a collection S of strings of the length [ over a finite alphabet,
a collection that needs to be protected or monitored. For example, S may
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be normal pattern (program, data file) of activity, which is segmented into
equal-sized substrings!.

o Generate a set R of detectors, each of which fails to match any string in S.
Instead of exact or perfect matching?, the method uses a partial matching
rule, in which two strings match if and only if they are identical for at least
r contiguous positions, where r is a suitable chosen parameter (as described
in [28]).

e Monitor S for changes by continually matching the detectors in R against S. If
any detector ever matches, then a change is known to have occurred, because
the detectors are designed to not match any of the original strings in S.

This algorithm relies on three important points: (1) each copy of the detection
algorithm is unique, (2) detection is probabilistic, and (3) a robust system should
detect (probabilistically) any foreign activity rather than looking for specific known
patterns of changes. Further studies [29, 30] show many insights of the algorithm.
The algorithm seems to have many potential applications in change-detection, some
of them are discussed below.

Based on this algorithm, S.Forrest and her group at the University of New
Mexico started to work on a research project with a long-term goal to build an
artificial immune system for a computer [28, 31, 32]. Their computer immune system
has to protect a computer against unauthorized use of computer facilities, maintain
the integrity of data files, and prevent the spread of computer viruses. Their first
results had shown feasibility and perspectives of this new immunological approach
to anomaly detection for the networked and distributed computing environment.

Dasgupta and Forrest [33] experimented with several time series data sets (both
real and simulated) to investigate the performance of the negative selection algo-
rithm [28] for detecting anomaly in the data sets. The objective of this work is to
develop an efficient detection algorithm that can be used for revealing any changes
in steady-state characteristics of a system or a process. In these experiments, the
notion of self is considered as the normal behaviour patterns of the monitored sys-
tem®. So, any deviation that exceeds an allowable variation in the observed data,
is considered as an anomaly in the behaviour pattern. This approach relies on suf-
ficient enough sample of normal data (that can capture the semantics of the data

IThis is analogous to the way, proteins are broken up by the immune system into smaller
subunits, called peptides, to recognize by T-cell receptors [21].

2For strings of any significant length a perfect matching is highly improbable, so a partial match-
ing rule is used which rewards more specific matches (i.e., matches on more bits) over less specific
ones. This partial matching rule reflects the fact that the immune system’s recognition capabilities
need to be fairly specific in order to avoid confusing self molecules with foreign molecules.

31t is assumed that the normal behaviour of a system or a process can often be characterized
by a series of observations over time. Also the normal system behaviour generally exhibit stable
patterns when observed over a time period.
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patterns) to generate a diverse set of detectors, that probabilistically detect changes
without requiring prior knowledge of anomaly (or faulty) patterns.

They applied the algorithm for “The Tool Breaking Detection” in a milling
operation [33]. The tool breakage detection problem is formulated as a problem
of detecting temporal changes in the cutting force pattern that results from a bro-
ken cutter. That is, the new data patterns are monitored to check whether or not
the current pattern is different from the established normal pattern, where a differ-
ence (i.e. a match in the complement space) implies a change in the cutting force
dynamics.

This detection algorithm was successful in detecting the existence of broken
teeth from simulated cutting force signals in a milling process. The results suggest
that the approach can be used as a tool for the automated monitoring of safety-
critical operations.

5 Analysis of main elements of the self~-nonself se-
lection scheme

In this section we consider the approach to the anomaly detection problem based on
the negative-selection algorithm. It is reduced to the problem of detecting whether
or not an analysed pattern, represented as a string, implies a change in the normal
behaviour patterns. Hence, we will analyse the main elements of self-nonself selection
scheme:

¢ encoding algorithm,
e detector set generation,

¢ matching rules and estimation schemes,

together with their limitations and connections with the approaches discussed in
sections 2 and 3.

5.1 Encoding time series data

The pre-processing of raw time series data can be considered as constructing an al-
ternative representation of the data while preserving the information content. Fur-
thermore, any change that exceeds allowable variation in the data pattern should
ideally be reflected in the representative space. This can be a problem when very
small changes in real-valued data need to be monitored. To handle this, an encoding
method is used that maps real-valued data into a discrete form. An analogue value
is first normalized with respect to a defined fixed range to determine the interval in
which it belongs, and then the interval is encoded into binary form. However, if the
value falls outside range (MIN, MAX), it will encode to all 0’s or all to 1’s depend-
ing on which side of the range it crossed. Accordingly, if each data item is encoded by
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m binary digits (which may be chosen according to the desired precision), then there
would be 2™ — 2 different intervals between the maximum (MAX) and minimum
(MIN) ranges of data. Thus, an analogue value z, MIN <z < MAX, corresponds
to the binary string representing n, where MIN +n,-d <z < MIN + (n, +1)-d.
Here the interval size d = (MAX — MIN)/(2™ — 2), and n, can vary from 1 to
2m — 2.

Evidently, this procedure cannot be used as a universal algorithm for raw data
pre-processing. It corresponds to one particular choice of the function S, (4), namely
Z;41 — &; = const. At the same time, the way how the original data are transformed
is crucial for the efficiency of any approach as we have already mentioned in section
3.

5.2 Detector set generation

In the general description of the algorithm [28], the candidate detectors are generated
randomly and then tested to see if they match any self string. If a match is found, the
candidate is rejected. This process is repeated until a desired number of detectors
are generated. A probabilistic analysis is used to estimate the number of detectors
that are required to provide a certain level of reliability. The major limitation of the
random generation approach appears to be computational difficulty of generating
valid detectors, which grows exponentially with the size of self. Also for many choices
of the length [ and the matching parameter r, and compositions of self, the random
generation of strings for detectors may be prohibitive.

A more efficient detector generation algorithm has been proposed by Helman
and Forrest [34]. This algorithm runs in linear time with the size of self. Other
methods for generating nonself detectors, with varying degrees of computational
complexity, have also been suggested [30].

These studies have demonstrated some principal problems related to the genera-
tion of the effective detectors set. These problems concern the size of a representative
set of detectors and the so-called holes in the detector set [32, 35].

It must be mentioned that the procedure of the detector set generation is
equivalent in some sense both to the construction of the distribution function Fy(z)
corresponding to the null-hypothesis testing (section 2) and to the ANN training
on a historical data set (section 3). So, the data encoding method, which has been
applied to raw data, plays a very important role for determining what approach is
the most adequate one for the solution of a problem.

5.3 Matching rules and estimation schemes

In order to explain the main idea behind matching rules, we will discuss a partial
matching rule based on a pre-specified degree of similarity [33]. In order to measure
this similarity, we use an 7 contiguous matching rule between two strings of equal
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length. Thus, for any two strings z and y, match(z,y) is true if r and y agree
(match) on at least r contiguous locations (r < I), as illustrated in Fig. 5.

X: beabcbad
Y: dcabdcba

Figure 5: Illustration of the matching rule: z and y are two strings defined over
the four-letter alphabet a,b,¢,d. X and Y match at three contiguous locations
(underlined). Thus, match(z,y) is true for r < 3 and false for 7 > 3.

The partial matching rule provides a detector with a capability of detecting
sample strings in its neighbourhood according to the threshold value r. This is
demonstrated in Fig. 6 for the binary string. Fig. 6 shows that the coverage of

100000
String length (L) varies from 2 to 16 with incremeat of 2.
100004

8

1004

Coverags in string space

104

T

45678910 LLEBUIIEITIEN
Matching Threshold (¢)

—
o
W -

Figure 6: The dependence (in log scale) of the number of points that can be covered
by each binary string (of the defined length in its string space) against the different
matching threshold r

strings of a fixed length increases exponentially with the decrease of r. Though
the maximum coverage can be achieved with r = 1, the generated detectors will
probably be matched with many self strings resulting in false detection. On the
other hand, a perfect matching (for r = [) implies that symbols are identical at
each location in two strings. Thus, a very large number of detectors is needed to
detect patterns in the non-self space. An optimal r value estimates a reasonable size
detector set for the success of this method.

When a non-overlapping set of detectors is generated with a suitable matching
threshold, each detector can serve as a distinct novelty pattern class in the non-
self space. However, in case of overlapping detectors, multiple detectors may be
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activated for a sample (abnormal) pattern, and one needs more detectors to provide
sufficient coverage in the non-self space.

Thus, one can see that the procedure of non-self object recognition, as well as
the decision making function are not yet well-elaborated. This procedure has rather
qualitative than quantitative character and, in this sense, it is close to the pattern
recognition procedure based on the ANN approach. Therefore, the most developed
and statistically justified approach is the approach based on the goodness-of-fit
criteria basis (section 2) where the matching is realized on the Q%-statistics and the
threshold is defined by a critical limit corresponding to a chosen confidence level .

6 Conclusions

In this section we shortly compare the methods discussed above and present some
directions for future investigations.

The neural network approach (in particular, ART networks) have also been
successfully applied to the problem of detecting a tool breakage in milling opera-
tions [36, 37, 38, 39]. Preliminary results of both ANN and AIS approaches qualita-
tively coincide, though there are some important similarities and differences between
them. However, a careful quantitative comparison of these two approaches is an im-
portant area of further research.

As the CNN network gives an approximation which is linear with respect to the
expansion coefficients, other methods like the least square approximation can be used
in the same situation. The comparison of those methods with the CNN can give a
deeper insight into the accuracy, stability and convergence of the approximation and
reveal their strengths and weaknesses. It may lead to elaboration of more effective
and accurate methods for the series prediction.

The comparative analysis of a powerful procedure developed in [4, 5, 6] on
the QF basis for rare events selection (section 2) and the negative-selection algo-
rithm based on immunological principles (section 4) shows that both approaches
are intended for the solution of the same problem, namely, the identification of rare
abnormal patterns (events). Moreover, taking into account the similarities discussed
above, one can find that main ideas of both schemes are very close. In addition,
the Q¥-criterion collects all patterns that do not confirm the null-hypothesis (these
are so-called “non-self” patterns in the immunological sense) into the critical region
corresponding to the chosen significance level a.

Among the presented approaches, the AIS-based methods are rather new and
therefore not so well developed. Hence, there are big research perspectives in this
field. For example, searching for efficient techniques for preparation of “self” sets,
generation algorithms and parametric models is very important. However, the accu-
rate comparison of these methods with other well-established methods is absolutely
necessary to be able to demonstrate the advantages of the AIS and to find appro-
priate applications.
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Anrtonuoy . u np. E11-2003-189
MeTOmbl ¥ ATTOPUTMBL 1 MACHTHRHKALMHK PEAKMX COOBITHI

PaCCMOTp€H0 HECKOJIbKO Pa3IMYHBIX [IO0AXOIOB A HJICHTPI(;)PIK&HMH peaKux
COOBITHI, HECTAHAAPTHOIO NMOBEICHHUS AHHAMHYCCKHX CHCTEM M W3MEHEeHHH B IU-
HAaMHUKEC BPEMEHHBIX DPAOOB. HpoaHaHHBI/lpOBaHbl AJITOPUTMBI 0T6opa Ha OCHOBC
CTaTUCTHYECKHX KPUTCPUEB COIMACHA, METOABI pacrio3HaBaHusd Ha OCHOBE IIpAMO-
TOYHBIX UCKYCCTBEHHBIX HGﬁpOHHLIX CETEH H CXEMBI JUCKpUMHHALIMKH Ha OCHOBE
HCKYCCTBCHHBIX UMMYHHBIX CHCTEM. OGCY)I(I[aIOTCﬂ CHJIbHBIE M cr1abble CTOPOHBI
Pa3IMYHBIX NMOAXONOB H NACTCA HX CpaBHHTCHbeIﬁ aHaJnu3.

PaGora BbimonHeHa B Jlaboparopuu uHdopMauHoHHBIX Texnonorui OMSU.

Coobenne O6beANHEHHOrO HHCTHTYTA SAepHbIX Hecnenoanuit. dybua, 2003

Antoniou L. et al. E11-2003-189
Methods and Algorithms for Identification of Rare Events

Several different approaches to the identification of rare events, abnormal be-
haviour of dynamical systems and changes in series dynamics are considered. Se-
lection algorithms based on the statistical good-of-fit criteria, identification meth-
ods based on the feed-forward artificial neural networks and discrimination
schemes based on the artificial immune systems are analyzed. We discuss
strengths and weaknesses of the methods and give their preliminary comparison.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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