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1 Introduction. Notation. Results

Vlasov equations appear in the mean-field approximations of the dynam-
ics of a large number of interacting classical particles (molecules). Cur-
rently, there is a numerous literature devoted to its mathematical treat-
ments. In particular, in {1-4] a well-posedness for this equation supplied
with initial data and its derivation from a molecular dynamics is consid-
ered in the case when the potential of interactions between particles is
smooth and bounded. In [5-11], this equation is studied for the singu-
lar Coulomb potential U(r) = £r~! (in [8], the Vlasov-Maxwell system
is considered). In [12], the local existence of smooth solutions in the
case U(r) = +r~? is studied. We also mention paper [13] where a well-
posedness of this equation supplied with a joint distribution of particles
at two moments of time is proved.
In the present article, we consider the problem

a—dtfirv'fo+va-E(r,t) =0, f=f(t,x,v).t€R, (z,v) € R*xR3,

(1)

e t) = / VU (e —y)fit,y.0)dyde, U(zx) =xle|™, &= £1, (2)
Eixp?

f(O?I* l') :f()(.l7,l?), (3)

where all quantities are real, x,v € R, & is a constant, V, and V, are the
gradients in z and v, respectively, v- V. f and V, f- E{x,t) are the scalar
products in R?. and f is an unknown function. For any fixed ¢. f(t.z,v)
regarded as a function of (z,v) has the sense of a distribution function of
particles in (z,v) € R® x R Therefore, the following requirements are
natural:

i) >0, / flt,x,v)dzdv =1, VteR. {(4)
R3xR3

Generally speaking, it is known that proving the existence of a solution
for problem (1)-(4) is more difficult for a singular potential U/ than for
a more regular one. Also, though the Vlasov equation appeared for the
first time with the Coulomb potential U(r) = +r~! for a description
of plasma, it is well known that in statistical physics potentials with
higher singularities occur: for example, the following one, the so-called



Lennard-Jones potential, is known: U(r) = Ar~1?2— Br=%. So, the author
of the present article believes that considerations of Vlasov equations
for potentials with singularities of the degree higher than r=! make a
sense. Here we consider the case U(r) = 4772 proving the existence and
uniqueness of a local smooth solution of the problem (1)-(4). This case
is critical in a sense. A treatment of the problem in the case U(r) = r?7¢
with @ > 0 is still left open. As for the case U(r) = r=® with a € (1,2),
here the problem becomes simpler, and we do not study this case.
Now, we introduce some notation. Let

S = {g(;v,z:) € C=(R> x RS) 2 Vhi,m; =0,1,2, ...
O™t g v)

dxm v < oo}

The linear space S is equipped with a topology of open subsets becoming
a complete topological space. This topology is generated by the system
of seminorms

sup ||t jw]®2

(r.v)ERIXR?

s - , 1/2
Pem(g) = / (L+ [P (L4 o) z ( T > dx dv
1’{“‘)([‘{3 =1
and
. . , 1/2
G ( / (14 |z/HF (1 + o))k Z ( > dx dv
032 =1

where & = (ky. ko) with k;,m =0,1,2,.... By ('([;5), where { C Ris an
interval, we denote the linear space of all continuous functions g : [ — S
such that each seminorm pg . (g(#)) and g {(g(t)}) is bounded uniformly
intel.

Our main result here is the following.

Theorem Let fo € S and satisfy (4{). Then, there exists T > 0
such that problem (1)-(4{) has a unique local solution f(t,x,v) satisfying

f(t7 K] '), ftl(t» E ) € C([—Tv TL S)



Remark As it is shown in [14], if & > 0, then problem (1)-(4)
possesses solutions blowing up in finite intervals of time. So, in this case,
generally speaking, solutions we consider can be not continuable onto the
entire real line t € R.

2 Proof of the theorem

Let w(-) be a nonnegative even C*-function in R with a compact support
satisfying [ w(z) dz = 1 and let w,(x) = nPw(nz), n = 1,2,3,.... Set
ﬂ}'{

U.lx) = (l_ *wy )(x) where the star means the convolution. Consider the
following sequence of regularizations of problem (1)-(4):

AoV 4 Vo Blat) =0, f7= fMiae). (5)

Eaiwt) = [ VUale =)o) dy de, (6)
E2xE?
i =fes. (7)
t=0
it -) >0, / e, eydede=1, n=1.23,.. (8)
E3xE?

The following statement is a corollary of results in [1-4].
Proposition For each n problem (5)-(8) has a unique global solu-
tion f*(t,x,v) that for any ty > 0 belongs to C'(—tg,10): S} together with

Fr, e, v).

Denote (Tng)(x) = [ VU.(z—y)gly,v)dy dv where g € 5. Note

RB2xE?
that
om(Tog)(z) 0"g(x,") B
G gnanr = (Il gmgymg s (@), m=mid+ms +ma.

Lemma 1 There exists C > 0 such that ||(T,9)||1,®3) < Cpo2),0(9)
forallge S and n.



Proof. As well known, there exists '; > 0 such that

[ VUte-wh) dy| < Culblg vh e SE).
xRS Ly(R?)
Also,
/ VU (2 = y)gly,v) dy dv = ] VU (z — y)(wn * g)(y.v) dy dv
R3xR2 R3xER3

and [jwn * 2|1, &2 < |B]|2,@e) YR € S(R?). Hence, we have for g € S:

/ VU (2 = ylgly.v) dy dv

2EIR? Lo {B3)
2 . .
. /(th)g(g)dz .
T e
La (R
1/2
<c / (L+ [0, 0) de de b = Cpiomyolg).0

Let [a] be the maximal integer not larger than a real « and let an
integer mg > 0 be such that each Sobolev space H*™0(R® x R®) with a
positive integer [ is embedded into C*(R® x R?) (in fact, mg > 3). Let
my = 2mg+ 2. Everywhere k denotes ki + ky. In what follows, we exploit
the following embeddings (g € S):

N 1/2
12vky 12vko 819 >2
{W/ de dv (14 2]7)" (1 + [v]) (81?07)5 <

xR3

< Clprolg) + prs(9) + grs(9)],
Pem(9) < ClpEo)m(9) +Pom ()]s @ml9) < Clagoym(9)+a05.m,(9)]
m=0,1,2,...,



d'g(z,v)

sup(1+]e|*)P /2 (1+ o[ ?)/? < Clpio(9)+Prmtt () +qmri(9)],

(.5) Ozt v}
ooz’ | (9)
2k 127k aQz,v
sup R[(Hm 1+ Jof?) (&T?av;) by <
< Clpoxl9) + Prasm(g) + Grisem(9)],
where 0 <l=n+r<s,1,7=1,2,3 and m =mg,mg+ 1,mo+ 2, ....

Lemma 2 There exist T > 0 and C' > 0 such that

])'(20.2),0(fn(t~ Bl )) + p?OAQ)‘mI(fn(tv T )) + Q?O,Z),ml(.fn(tv ) )) < ¢

forallt € [-T,T] and alln =1,2,3, ...
Proof. We derive our estimates only for ¢ > 0 because the case t < 0
can be treated by analogy. We have from (5):

l(—[/)'(20.))0(_}“”([....)): — / (Lo eoe) fl(E o) By, t)dede
2t

RAxP*

< Cploayol (e Npo2ol (L)) + Poym, (L)) (10)

By analogy. using lemma 1 and integration by parts, we obtain:

3
1 d 5 n \ 5 232 n{m .
(,{1(02),m<f<tv-.->)=— f dr dv (14 ) Y~ frimid(t 2 v)x

EAxF3 7,7=1
L smyy Ot x,0) Ot
X Z Z ).) { my—I x
— dv;dx, (913

0
XEW”-J'(‘E* t) < C'p?O,'Z),ml(fn(iv T '))[p(O,Q).O(fn(ta ) )) +p(0,2),ml(fn(tﬂ s ))}Jr

mo+1 my—1
+‘ / d:vdv(Z—}— Z )x

R3xR3 =0 l=mp+2

3
M pnim ATt z,v) 0™ B, j(x,t
S P (7)) 2t ) Tl I Tl

7,j=1



< Cpa2ym (F(E 1) - P20 f7(E o)) + Pro2ym, (f7 (8, -, ))] X
X [peo.2y0( f(t. - ))+P02 Yo (S0 ) + 90,2y m, (F7 (5 D] (1)

Finally, we deduce

d
idz‘ 202)m1(fn( s a)) < C[P(Qo,z),o(fn(t»'v'))‘*'

+p(20,2),m1(fn(t7 K )) + q?o,?),7n1(fn(t7 T ))]+

3
+ / (1 + Jv|*)? Z ijffl(ml)(t,r,'L')fz("l‘)(t,x,v)En,j(x,t) dx dv| <

8 R =1
< C{P‘(zo,z),o(fn(t-, )+ p(20,2),m1 (St )+ Q(Qo.z),ml(fn(ﬁ )]
X[po.2).0{ " (t, ) + Py, (f"(t, )+ 1]. (12)
Now, in view of (10)-(12), denoting A = 1’02 ol f™) —{—p02 m (f) and
B = 1).(2042),0(f") + qko.z o, (7). where po (fn)‘_ )0 f™), we obtain

A() < C1{1 + A(t) + B(£))*?

B(t) < Co(1 + A(t) + B(t))*'?,

and our claim is proved.[]

Lemma 3 There exist Cy > 0 such that py, (f*(t,-.-)) +
m N Fpeol 7t ) S Cp forallt € [-T.T) and all ky, ky.n =

z\ (
.3,

[\)‘1

Ploof. Again, we consider only the case t > 0. We have from (5)
and the embeddings (9):

1d

§Ep?k,0),ml(.fn(tv'v')) < CkP{koymy (F (o)) F Plogym, (7 ))]+

+f / (1+]z}?) Z frlm(
RixR? =l

TR ey #00 )
X(Z+ E )(11) 8vj8xi» X

=0 l=mg+2
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d"” 'E, i(z,t)
a ml 1

FCPr0yom, (F™ (s NP0y, 0(f " (£, 5 ) + Peoym, (F (-, )+
+Q(}c.0),m1 (fn(t? T ))] ’ [p(0,2),0(fn(tv T )) + p(O,?),mx(fn(tv ) ))] (13)
By analogy,

dx dv| < Ck[ 0)my (ST s'))+p(20,k),m1(fn(t7.7.))}+

1d i
)dtpfok ml(f ( ) v)) S

< Clpiokym (1, NPy ol [t ) + Pogym, ({2 )+
+(I(o k).m;(fn(tv Yy ))] . [p(O,Z),O(fn(tt ‘. )) + p(0,2).m1(fn(t1 s ))]7 (14)

{ ,
@ [ )) < Byl (87 ) + Dol (17 D)+
+q(k,0).m1(fn(t' ) )) + Q((Zo.k).ml(fn(tv B ))}1 (15)
1d ,

5 o m (1)) <

< (':?[f)20k ()m(i-.'»‘))+P(0.A~).ml(.f"( "~‘))+(Izo,k),am(f"(t'~'))]+
o sy, (S NPo210( S (E D) + Prozyam (FH ()] (16)
and

1 d

PRl £ )) € Ol oL (42 0) B o7 (0 ]

X po2)ol Mt ) + Pro2ym, (f1(E - -)) + 1] (17)

Now, in view of (13)-(17), lemma 2 and the embeddings (9), our result
follows.[d

Lemma 4 There exist Cy,, > 0 such that pr,(f7(t,-,-)) +
Qe ( (L)) < Cram for all nykym and t € [-T.T1.

Proof. Again, we establish all our estimates only for ¢ > 0. Let
m > 2mg + 3. It follows from equation (5) that:

d —
5 5Pk (77 (8) < OBl 702 )+ By ol £ )

P 0y (762 )) + Py (£ (870 )]



Sl ICEaERA RN
RIxR3

[m/2

3 | am+1fn ] m-—1
n{m y .
X Z I (t’x’b)liavjax?En’](x’t)+ ; + Z X

ij=1 I=[m/2}+1

<

s
< CilP o) o™ () + Pl o (f™ (8 D)+
0 0y (F7 () + Pl (7))

AP (S (s D P0,2)m0 (f7 (-0 )) + Pro2yo( S (8-, )]+
FCoPian ([ (D Prolf7 (5 ) + Pt L (E ) )+ Gream—a ([T (2 )]
x[Pro.2y ol f () + P2y m ([ (E - )) ]+
2P (S (8 DProl fH () + Pron (FH ) F @ran (f7 ()] %

x[po2yol [t )+ poaym- (S ()] (18)

dz d'v}

By analogy.

1d 2 n 2 n 2 °7
S () S Clpf g o (8 )) + Pl o A (8 )+

+pr0)’m(fn(ta ) )) + q.(ZQVZ)‘m(fn(t* T ))}_i_
+C‘[Q?E‘o)’m(fn(t’ ) )) =+ qfof)m(fn(ta K] ))] X
X [Po.2), oS (t, 2 ) + Po2)mo( f7 (21 ))]- (19)

Now, the statement of our lemma follows from (18),(19) and lemmas 2
and 3 by induction.O

In view of lemmas 1-4 and equation (5), the sequences {f"} and
{df™/dt} are relatively compact in C([-T,T];S). Without the loss of
generality we can accept that these sequences converge and let f(¢,z,v)
and fi(t,z,v) be their limit points in this sense. Clearly, f/(t,z,v) =
fi(t,z,v) and f satisfies problem (1)-(4). Let us prove the uniqueness

of this solution. Suppose the existence of two solutions f, and f; of the



above class and set f = fi — f;. As earlier, we establish our estimates
only for £ > 0. One can obtain as when proving lemmas 2 and 3:

d
EZ ((20*2),0(f(ta " )) < CP(20,2),0(f(ta ) ))»

therefore f(t.z,v) =0 for all ¢ € [0,T], which completes our proof of the
theorem.

References

[1] Braun, W. and Hepp, K., The Viasov dynamics and its fluctuations
in the 1/N limit of interacting classical particles, Commun. Math.
Phys. 56 (1977). 101-113.

[2] Dobrushin, R.L., Vlasov equations, Funk. Anal. i Ego Prilozheniya
13 (1979}, 483-58 (Russian).

[3] Spohn. H.. Large Scale Dynamics of Interacting Particles, Springer-
Verlag. Berlin, 1991.

4] Arsen’ev. A.A.. Lectures on Ninetic Equations, Nauka. Moscow. 1992
q
(Russian).

(5] Arsen’ev. A.A. Global existence of a weak solution of Viasov's system
of equations, U.S.S.R. Comp. Math. and Math. Phys. 15 (1975). 136-
147.

(6] Batt, J., Global symmetric solutions of the initial value problem in
stellar dynamics, J. Diff. Eqns. 25 (1977), 342-364.

[7] Lions, P.L. and Perthame, B., Propagation of moments and reqular-
ity for the 3-dimensional Viasov-Poisson system, Invent. Math. 105
(1991), 415-430.

[8] DiPerna, R.J. and Lions, P.L., Global weak solutions of the Vlasov-
Mazwell systems, Commun. Pure Appl. Math. 42 (1989), 729-757.

[9] Schaeffer, J., Global ezxistence of smooth solutions to the Vlasov-
Poisson system in three dimensions, Commun. Part. Diff. Eqns. 16
(1991), 1313-1335.



[10]

[11]

(12]

[13]

[14]

Horst, E.. On the asymptotic growth of the solutions of the Viasov-
Poisson system, Math. Meth. in the Appl. Sci. 16 {1993), 75-85.

Zhidkov, P.E. On global Ly N L.,-solutions of the Viasov-Poisson
system, Prepr. of the Joint Institute for Nuclear Research No ES5-
2003-197, Dubna, 2003.

Illner, R., Victory, H.D., Dukes, P. and Bobylev, A.V., On Viasov-
Manev equations, 11: Local existence and uniqueness, J. Statist. Phys.
91 (1998). 625-654.

Zhidkov. P.E., On a problem with two-time data for the Viasov equa-
tion. Nonlinear Anal.: Theory, Meth. & Appl. 31 (1998), 537-547.

Bobylev, A.V., Dukes, P, lllner, R. and Victory, H.D., Jr., On Viasov-
Manev equations. I: Foundations, Properties, and nonglobal exis-
tence. J. Statist. Phys. 88, No 3/4 (1997), 885-911.

Received on December 4, 2003.



XKunxos I1. E. E5-2003-218
O NOKaIBbHBIX INIAAKHX PELICHHAX y?aBHeHHSI Biacosa ¢
MOTEHLUHAIOM B3aUMONEHCTBUH + 1~

Ins 3amayn Kowu ansg ypaBHeHHs BnacoBa ¢ MOTEHLMANIOM B3aMMOAEHCTBUI
+ 2 JOKa3aHbl CYLIECTBOBAHUE U €IHHCTBEHHOCTD JIOKATBHOTO PELIECHUS CO 3Haue-

HusMH B npocrtpadcTse LlIBapua § OeckoHeuno nutdepeHurpyeMsix (PyHKLHH,
KOTOpble OBICTPO YOBIBAIOT Ha GECKOHEYHOCTH.

PaGora BeinonHena B Jlaboparopuu Teopetnueckoil ¢pusukd um. H. H. Boro-
mobosa OHAH.

Ipenpunt OGBeNHHEHHOTO HHCTHTYTA SIEPHBIX HecnenoBaHui. dyGHa, 2003

Zhidkov P. E. E5-2003-218
On Local Smooth Solutions for the Vlasov Equation
with the Potential of Interactions +r72

For the initial value problem for the Vlasov equation with the potential of in-
teractions + r~2 we prove the existence and uniqueness of a local solution with val-

ues in the Schwartz space S of infinitely differentiable functions rapidly decaying
at infinity.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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