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The Casimir Effect and Critical Phenomena

In the present review we focus our attention on the theory and the experimental
conˇrmations of the Casimir effect in critical phenomena. Since the effect is related
to the boundary conditions imposed on a system undergoing a phase transition
and its consequences, the theory of critical phenomena in ˇnite-size systems is an
indispensable part of the theoretical description. Experiments with liquid ˇlms near
a critical point are of particular experimental relevance to the studied phenomenon.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

In 1948 the Dutch physicist H.G. B. Casimir showed that a physical force can
be generated by the change of zero point vacuum 	uctuations in quantum elec-
trodynamics due to the presence of two parallel conducting 	at plates separated
by a distance L. This force F (L) (per unit area A) has the magnitude

F (L)
A

= − π2
�c

240L4
. (1)

Only the fundamental Planck's constant � and the speed of light c enter Eq. (1).
One can consider the Casimir force as a striking macroscopic observation of the
effects of quantum vacuum energy. In the 1950s and 1960s the initial experiments
to detect the effect were of very limited accuracy due to the presence of va-
rious interfering phenomena. Only ˇve decades later new improved experimental
measurements, based on microelectromechanical systems (MEMS), atomic force
microscope, etc, allowed for a reliable conˇrmation of the effect. At the moment,
a spectacular agreement with theory at the level smaller than 1 per cent is attained.
For details one can see [1, 2] and references therein.

Further it becomes clear that an analogous effect [3] takes place in wetting
phenomena. The conˇnement of a liquid near the critical point gives rise to an
effective force between the substrate-liquid and liquid-vapour interfaces. This
effect is called ®statistical-mechanical¯ or ®thermodynamic¯ Casimir effect. In
terms of the behaviour of the two-point correlation function of a system one
can stay on a more general point of view. Conˇnement conditions, imposed
on a system whose correlation function decays as power law in space, induce
a long-range force between the surfaces limiting the system. One can generally
call this phenomenon the Casimir effect. In other words, the Casimir effect is
a phenomenon common to all systems characterized by 	uctuating quantities on
which external boundary conditions are imposed [3Ä6].

In the present review we will focus our attention on Casimir effect in critical
phenomena. The effect is related to the geometrical constraints on a system
undergoing a phase transition. That is why the theory of critical phenomena in
ˇnite-size systems is an indispensable part of the theory of ®statistical-mechanical¯
Casimir effect.
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1. FINITE-SIZE SCALING

Experimental samples have a certain shape and are characterized by the pre-
sence of surfaces. They are always of ˇnite size. The partition function of such a
ˇnite system is a polynomial of a ˇnite degree, and thus never shows singularities.
From the theoretical point of view, critical points of the system in a literal sense
are the result of the thermodynamic limit at which the volume has become inˇnite
at constant particle density in the bulk. Exactly in the thermodynamic limit,
critical points are characterized by singularities in the thermodynamic functions
and by an inˇnite correlation length ξ. To which extent an experimental sample
can be described by the bulk or ˇnite-size theory depends on the value of the
ratio y = ξ/L, where L is the effective value of the linear extensions of the
system. If y � 1 (physically this means that we are away from the critical
point) any ˇnite-size effects will be invisible. If, however, y = O (1), strong
deviation from the bulk critical behaviour will be observed. Such a behaviour
has been called ˇnite-size critical behaviour. In a ˇnite system its correlation
length ξL will not become inˇnite and the singularities in the free energy are
replaced by rounded extrema, located at somewhat shifted position as compared
to the position of the bulk singularities. The description of this rounding near
to critical temperature and crossover from ˇnite-size to bulk critical behaviour
ˇrst formulated by M. Fisher (1972) and subsequently elaborated by a number of
authors is called Finite-Size Scaling (FSS) (see, e.g., [5]).

Scaling hypotheses are made in the form of statement about properties of
thermodynamic quantities in terms of homogeneous functions. For our purposes
it is convenient to distinguish ®regular¯ and ®singular¯ parts for every thermo-
dynamic function of a ˇnite sample in the vicinity of the bulk critical point. If
a thermodynamic function depends on several variables the singular part of this
function only depends on a certain combination of these variables. In the case
of two variables, e.g., L and ξ, one is scaled by a certain power of the other.
If the singular part of a thermodynamic function depends on y = ξ/L, such a
dependence is known as standard FSS. In experiments, if the properly scaled
thermodynamic function is plotted vs a properly scaled variable, FSS manifests
itself as data collapse. Note that standard FSS re	ects the ordinary homogeneity
of the corresponding thermodynamic function of the ˇnite system as a function
of the two natural macroscopic lengths L and ξ. It is known that standard FSS
fails above the upper critical dimension. Renormalization group analysis reveals
that the violation of the standard FSS, as well as the breakdown of hyperscaling,
is a consequence of the appearance in the theory of the so-called ®dangerous
irrelevant variables¯. In this case, the ˇnite-size effects are controlled by another
ratio, namely, l∞/L, where l∞ is called thermodynamic length [7]. Such a de-
pendence is known as modiˇed FSS. It re	ects the generalized homogeneity of
the corresponding thermodynamic function of the ˇnite system.
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A critical d-dimensional system conˇned in a ˇnite geometry can be found
in four qualitatively different situations depending on the value of the extended
up to inˇnity dimensions d′.

1. If d′ < d<, the system is below its lower critical dimension and a
(d-dimensional) critical behaviour appears only in the thermodynamic limit.

2. In the borderline case of d′ = d<, the system is at its lower critical dimen-
sion and may have only a zero-temperature critical point.

3. If d′ of the system is above its lower critical dimension d<, it exhibits a
true critical behaviour. A crossover from d′-dimensional to d-dimensional
critical behaviour takes place when L → ∞.

4. If d′ � d>, the system is above its upper critical dimension and it exhibits
a mean-ˇeld type critical behaviour.

The role of overall dimension d needs some comments. Normally one may expect
modiˇed FSS above the upper critical dimension d>. However, for some special
geometries it is not the case. Considering the exactly solvable 5d spherical model
with one ˇnite dimension, Barber and Fisher, as early as 1973 [8], stated that the
scaling variable should be the standard one, i.e., L/ξ in our notation. In Ref. [9] it
was shown that for the Ising model in block geometry (d > 4, d′ = 0) and under
Dirichlet boundary conditions ξ ∼ L. The ˇnite-size geometry determines the
level of the 	uctuations at T ≈ Tc, which is different in comparison with that of
the bulk system. The applicability of the mean-ˇeld theory to the study of ˇnite-
size critical behaviour, for d > d>, is strictly valid only as d → ∞ [10]. A list,
focusing on various aspects of standard and modiˇed FSS, can be found in [4, 5]
and references therein. While the FSS description of isotropic systems is relatively
better understood, some speciˇc problems arise in the case of anisotropic systems,
systems with disorder, etc. It is possible to demonstrate that FSS in its standard
form takes place also for a certain class of systems regardless of the nature of their
anisotropic properties: both anisotropy of shape (e.g., rectangular systems with
linear dimensions different in two lattice direction; L|| � L⊥) and anisotropic
critical behaviour (correlation lengths ξ|| and ξ⊥diverging with different critical
exponents ν|| and ν⊥in different directions) are considered in [11, 12]. In such a
system the FSS behaviour is governed by the ®perpendicular¯ scaling combination
y = ξ⊥/L only. In reality the description of effects of disorder on the ˇnite-size
critical behaviour is also of important relevance. A formulation of general FSS
concepts in this case is strongly complicated due to the additional averaging over
the different samples. Here, an important theoretical problem of interest is related
to the property of self-averaging (SA) [13]. The lack of SA in disordered systems
implies that the standard FSS breaks down. Due to the presence of randomness
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it is necessary to deal with a two-variable problem: the standard scaling variable
y and one additional λ. In the mean-ˇeld regime d > 4, the second variable λ
depends on the distribution of the random variable in the problem. In the case
d = 4 − ε, ε � 1, the ε expansion to ˇrst order in ε shows that close to the
critical temperature we are really dealing with a one-variable problem, since the
second variable λ is a ˇxed universal number. For more details one can see [14]
and references therein.

Since the Casimir force is a consequence of conˇnement and boundary con-
ditions upon the critical point approach its theoretical understanding is based on
the FSS theory.

2. THE CASIMIR FORCE

The ˇlms provide the simplest geometry for studying the Casimir force
theoretically and experimentally as well. Let us consider a statistical-mechanical
system with slab geometry L×∞d−1 under given boundary conditions τ im-
posed in the ˇnite direction. If it is at a critical point TC (i.e., undergoing a
second order phase transition) or in a phase with broken continuous symmetry,
the system in its ®bulk phase¯ (i.e., in the limit L → ∞) exhibits long-range
correlations. These correlations decaying algebraically rather than exponentially
fast give rise to 	uctuation-induced long-range force Å the Casimir force in the
critical phenomena.

The Casimir force between the slab faces is deˇned as [4, 5]

F (a,b)(T, L) = −∂f
(a,b)
ex (T, L)

∂L
, (2)

where f
(a,b)
ex (T, L) is the so-called excess free energy deˇned as

f (a,b)
ex (T, L) = f

(a,b)
L (T ) − Lfbulk(T ).

Here, f
(a,b)
L (T ) is the total free energy density (per unit area and per kBT ) of

a d-dimensional critical system in the form of a slab with thickness L, area A,
and boundary conditions (a) and (b) at the opposite surfaces. At the bulk critical
point TC , it has the asymptotic form

f
(a,b)
L (TC) ∼= Lfbulk(TC)+f

(a)
surf(TC)+f

(b)
surf(TC)+L−(d−1)Δ(a,b)(TC)+ . . . (3)

as A → ∞, L � 1. Here, f
(a)
surf and f

(b)
surf are the surface energy contributions

and Δ(a,b) is the so-called Casimir amplitude. The L dependence of the last term
in Eq. (3) follows from the scale invariance of the free energy as it was pointed
out by Fisher and de Gennes [3].
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Let us consider the ˇnite-size part of the excess free energy

δf
(a,b)
L (T ) ≡ f

(a,b)
L (T ) − Lfbulk(T ) − f

(a)
surf(T ) − f

(b)
surf(T ). (4)

The ˇnite-size scaling analysis for the ®singular part¯ of δf
(a,b)
L (T ) shows

δf
(a,b)
ex,sin g(T, L) = L−(d−1)X(a,b)

ex (attL
1/ν), (5)

where t = (T − TC)/TC is the reduced temperature, at is a nonuniversal scaling

factor, X
(a,b)
ex is a universal scaling function, X

(a,b)
ex (0) ≡ Δ(a,b)(TC), and ν

is the critical exponent of the correlation length. The non-singular at TC part

of f
(a,b)
ex (T, L) is usually proportional to O(L−d) and can be omitted. The

relation (5) is valid in the ˇnite-size scaling region, when tL1/ν= O(1). When the
system leaves this region away from the critical temperature (i.e., towards high
temperatures) one usually expects small excess free energy

f (a,b)
ex (T, L) = O

(
e−tL

)
, (6)

thus the Casimir force is equal to zero.
The universal amplitude Δ(a,b) depends on the bulk universality class and

the universality classes of the boundary conditions [4, 5]. It is just the subject of
the theory in the framework of different model calculations.

3. MODEL CALCULATIONS

First, let us consider the model of Perfect Bose-Gas (PBG). It is known
that the PBG undergoes a phase transition (the BoseÄEinstein condensation) in
the grand canonical ensemble if the chemical potential μ � 0 equals its critical
value μc = 0. The PBG is the simplest system showing spontaneously broken
continuous symmetry with a long-distance power decrease of particleÄparticle
correlations in the condensed phase. As so, the PBG may be a nice illustration
of a critical system where the Casimir phenomenon can take place. For example,
in the case of slab with thickness L and with DirichletÄDirichlet b.c. (D), for the
Casimir force the following result

FPBG = − ς (3)
4π

1
L3

, (7)

was obtained [15].
Simple dimension analysis can explain the difference in power of L in

Eqs. (1) and (7). The thermodynamic Casimir force (it is per unit area and
per kBT ), as one can see, is classical in origin. This re	ects the fact that the
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phase transition in the condensed state is governed by classical (or thermody-
namic) 	uctuations. This is in contrast to the electromagnetic Casimir force (per
unit area), Eq. (1), which is quantum in origin and hence proportional to �c
(�c has dimension of (energy times length)).

The above result is relevant in the critical point, μ = μc = 0. It can be
extended outside of the critical point as it was pointed out in [16], (see also [6]).
In terms of the polylogarithms Lip(p) deˇned by the series

Lip(z) =
∞∑

k=1

zk

kp

with |z| � 1 for p � 2 and −1 � z < 1 for p = 1, the Casimir force has the form

FPBG (u) = −
[
Li3

(
e−2u

)
+ 2uLi2

(
e−2u

)
+ 2u2 ln

(
1 − e−2u

)] 1
4πL3

. (8)

Here, u = (−2βμ)
1
2 L/λ ∼ L/ξ+ is the intrinsic scaling combination

(ξ+ ∼ (μ − μc)
− 1

2 ). Equation (8) is obtained under the condition L/λ � 1
(λ = �

√
β/m denotes the thermal wavelength). If we are in the bulk regime

L/ξ+ � 1, the Casimir force becomes exponentially small

FPBG (u) = −
[(

e−2u
)

+ 2u2
(
e−2u

)
+ ...

] 1
4πL3

(9)

and so invisible. The above study can be also performed for the other types
of boundary conditions. Being of a pedagogical interest, the PBG underlies a
number of its ultimate features [6, 15, 16]. For example, the Casimir effect is an
order of magnitude larger for Periodic and Antiperiodic b.c. In the case of equal
boundary conditions the Casimir force is attractive. Unequal boundary conditions
(Antiperiodic and DirichletÄNaumann) lead to positive Casimir amplitude, which
means a repulsive Casimir force between the conˇning plates, so that the PBG
may be a nice illustration of a critical system in which the Casimir phenomenon
takes place.

More elaborate ˇnite-size theory is possible in the framework of the O(N )
GinzburgÄLandau model. In the Gaussian approximation the universal scaling
functions for the Casimir force (for different boundary conditions) are calculated
by Krech and Dietrich [17, 18]. The results, if N = 2, coincide with the corre-
sponding results for the PBG. The two-component Gaussian model and the PBG
share the same universality class, see also [14]. It is important that this statement
is valid under the condition L � λ. Strictly speaking, the Gaussian model, as
an approximation, becomes relevant to one-loop order above the upper critical
dimension d = 4. A further more reˇned consideration of the problem in the
framework of the GinzburgÄLandau model is due to the ˇeld-theoretical analysis
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in d = 4 − ε dimensions (ε � 1). It allows universal quantities, like the scaling
function at d = 3, to be computed by a perturbation theory around the upper
critical dimension dc = 4, so far up to the ˇrst order in ε = 4 − d [17, 18]. The
question of how trustworthy such results are for a three dimensional system (by
setting ε = 1) is quite difˇcult. The problem manifests itself in the case of Perio-
dic b.c. Having in mind that we know the exact result in the limit N → ∞ [19],
contrary to the common expectation, the O(ε) results for ΔP do not approach,
but deviate from the exact one as N grows (see Fig. 2 of [20]). Note that Monte-
Carlo result for the Ising model ΔP = −0.1526 ± 0.0010 [21] is surprisingly
close to the exact value ΔP (N → ∞) = −2ς (3) / (5π) ≈ −0.1530 [19]. Thus,
one may conclude that the ˇrst order in ε results has an incorrect N -dependent
behaviour, being too crude approximation in order to capture the way in which the
exact N → ∞ result is approached [5]. Especially for the case of Periodic b.c.
as it was pointed out in [22], the ε expansion is ill-deˇned beyond two-loop
order, because of infrared singularities. The presented revised theory yields well-
deˇned small ε expansion involving fractional powers and logarithms of ε. The
estimated values of ΔP are: −0.1967 (for N = 1), −0.2147 (for N = 2) and
−0.2311 (for N = 3) [22], i.e., again we have a deviation from the exact N → ∞
result −0.1530 as N grows. Although, in the case of DirichletÄDirichlet b.c., the
ε expansion has no infrared complications, further work is necessary to answer
the question of ®how reliable the ε expansion is in the case of slab geometry in
order to obtain d = 3 results?¯.

4. EXPERIMENTAL CONFIRMATIONS: 4He

While micro- and nanoscale experiments precisely verify the original elec-
tromagnetic Casimir force, the experimental characterization of the thermody-
namic Casimir force has been scarce and, often, ambiguous. The most re-
liable experimental testing of the thermodynamic Casimir effect is related to
measurements on thin 4He ˇlms at and near the super	uid/normal transition
Tc = Tλ = 2.1768 K. This is due to the nearly-ideal impurity-free nature of
liquid 4He and its low-sensitivity to gravitational rounding errors [23, 24]. As the
super	uid order parameter vanishes at both ˇlm interfaces the DirichletÄDirichlet
boundary conditions seem to be relevant [25]. This causes an attractive Casimir
force, as follows from the theoretical considerations. If this force appears, it
must produce near Tλ a temperature-dependent change in the equilibrium ˇlm
thickness.

Let us consider a surface of a substrate placed at a height h of a reser-
voir of liquid 4He that is in coexistence with its vapor. A thin liquid ˇlm
with thickness d is formed on the substrate. The ˇlm thickness d can be deter-
mined by the force balance equation among the gravitational, van der Waals and
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Casimir forces (see, e.g., [24, 26])

mgh =
γ0

d3

(
1 +

d

d1/2

)−1

+
kBTλV

d3
X

(D,D)
Cas (d/ξ) .

Here, g is the gravitational acceleration, m is the atomic weight of helium, γ0

and d1/2 are speciˇc interpolation parameters that characterize the van der Waals
interaction of the liquid with the substrate, V = 45.81 
A3/atom is the speciˇc

volume of liquid 4He, and X
(D,D)
Cas is the dimensionless Casimir force scaling

function. Since the Casimir force is attractive, it favors a thinner ˇlm.
Thinning of the super	uid ˇlms was experimentally observed and studied

in [23, 24]. The 4He ˇlms were formed on the surfaces of polished Cu capacitor
plates, set in a cell containing liquid 4He at the bottom [23]. The force balance
equation and the experimental data were utilized in order to obtain the Casimir
force scaling function. A number of obstacles arise in such experiments related
to minimization of surface roughness, precise control of the cleanness of the
surfaces, precise control of the temperature, etc. For example, the roughness
of the Cu surface changes the effective areas of the Cu plates and makes the
accurate determination of the ˇlm thickness impossible. Recently there have been
more precise capacity measurements [24], where ˇlms of 238, 285, and 340 
A
thickness adsorbed on N -doped silicon substrates with roughness ≈ 8 
A, were
studied. In the region below Tλ, where the effect is the greatest, the scaling

function X
(D,D)
Cas (x), deduced from the thinning of these three ˇlms, collapses

onto a single universal curve, attaining a min X
(D,D)
Cas (x) = −1.30 ± 0.03 at the

value of the scaling variable x = tL1/ν , xm = −9.7 ± 0.8 
A
1/ν

. The collapse
conˇrms the ˇnite-size scaling origin in the ˇlm thickness. Also, the presence
down to 2.13 K of the Goldstone/surface 	uctuation force makes the super	uid
ˇlm ∼ 2 
A thinner than the normal ˇlm [24].

One might ask about the correlation of the theoretical estimations with the
experimental results. From a theoretical point of view, the situation is again
quite complicated. The existing renormalization group calculations [4, 17, 18] are
valid only for T � Tλ. They are in good agreement with experiment only at the
transition temperature [24, 26]. However, the regime T < Tλ is more interesting,
since the effect is the greatest there. The amplitude of the Casimir force at xm

is approximately an order of magnitude larger than its value at Tλ [23, 24]. This
regime is apparently far more difˇcult for a theoretical description. The existing
theory is still under development [25Ä31] exhibiting some controversies.

Deep in the super	uid state, coming from the Goldstone modes in the bulk
of the ˇlm, the following result for the Casimir force (per unit area and per kBT )

Fbulk = − ς (3)
8π

1
L3

,
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has been obtained [32]. If only these modes caused the thinning of the ˇlm, the
ˇlm would be roughly the same at the critical point and beneath the transition,
which is not the experimental situation.

To resolve the discrepancy with the experimental observations,
Zandi et al. [26] added the effect of surface 	uctuations, which also act as a
source of the Casimir force. It was shown that surface 	uctuations lead to an
additional force

Fsurf = −7
4

ς (3)
8π

1
L3

nearly twice as large as the bulk one. As pointed out in [23], the experimentally
obtained thinning of the ˇlm is consistent with the following asymptotic, low-
temperature value of the Casimir amplitude Δ

4He
exp ≈ −0.30 ± 0.10, which is

marginally larger than the theoretical result Δ
4He
theor ≈ −0.15 [25], due to both the

Goldstone modes and the surface 	uctuations.
The most challenging for the theory is the region immediately below Tλ,

where the experimental scaling function has a deep minimum. In [29], due to
the fact that Helium ˇlm is in equilibrium with the bulk Helium liquid, the
authors postulated an additional atom transfer contribution to the ˇlm thinning
below point λ. Utilizing a simple mean-ˇeld calculation with appropriately renor-
malized critical 	uctuations some qualitative consistence with the experimental
data is obtained in [29]. However, the mean-ˇeld analysis of the classical XY
model (which one believes to describe pure 4He near the critical point) also
exhibits the behaviour of the scaling function with a characteristic deep mini-
mum, which can be interpreted in encouraging comparison with the experimental
data [30]. At least, the Monte-Carlo simulations [31] of the 3d−XY model with
DirichletÄDirichlet b.c. give results in excellent agreement with the experimental
results [23, 24] below the transition, as well as with theoretical calculations for
T � Tλ [17, 18].

As a result, one may conclude that the ˇnite-size scaling theory and the
thermodynamic Casimir effect are unambiguously conˇrmed by the experiment
on liquid 4He ˇlms. However, an accurate comparison between theory and
experiment requires further precise measurements and more reliable theoretical
estimations.
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