P11-2007-148

И. В. Амирханов, Д. З. Музафаров, Н. Р. Саркар, И. Сархадов, З. А. Шарипов

РЕШЕНИЕ КРАЕВЫХ ЗАДАЧ ДЛЯ СИНГУЛЯРНО-ВОЗМУЩЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ВЫСОКОГО ПОРЯДКА

P11-2007-148

P11-2007-148

Амирханов И.В. и др. Решение краевых задач для сингулярно-возмущенных дифференциальных уравнений высокого порядка

Исследованы две краевые задачи сингулярно-возмущенного уравнения 4-го порядка с малым параметром ε при старших производных для кулоновского и осцилляторного потенциалов. Показано, что при уменьшении значения малого параметра ε собственные значения обеих краевых задач стремятся к собственным значениям уравнения Шредингера. Однако производные от собственных функций первой краевой задачи в отличие от второй краевой задачи имеют в окрестности точки r = 0 (r — аргумент собственных функций) пограничные слои и не сходятся к производным собственных функций уравнения Шредингера. При увеличении параметра ε от малых до конечных величин собственные функции обеих краевых задач расширяются в сторону увеличения r. При этом собственные функции и собственные значения первой краевой задачи сильнее изменяются по сравнению с их значениями для второй краевой задачи. Свойство эквидистантности собственных значений уравнения Шредингера с осцилляторным потенциалом для уравнения 4-го порядка не сохраняется.

Работа выполнена в Лаборатории информационных технологий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 2007

Amirkhanov I. V. et al. Solution of Boundary-Value Problems for Singular Perturbed Differential Equations of High Order

Two boundary-value problems of the singular perturbed equation of the 4th order with small parameter ε at higher derivative are investigated for the Coulomb and oscillator potentials. It is shown that at diminution of a small parameter value ε eigenvalues of both boundary-value problems converge to eigenvalues of the Schrödinger equation. However derivatives from eigenfunctions of the first boundary-value problem, as opposed to the second boundary-value problem in a vicinity of a boundary r = 0 (r — argument of eigenfunction) have boundary layers and do not converge to derivatives of eigenfunctions of the Schrödinger equation. At increasing of parameter ε from small up to final quantities the eigenfunctions of both boundary problems are expanding to the side of increasing of r. Thus, eigenfunctions and eigenvalues of the first boundary-value problem are changing grossly in comparison with their values for the second boundary-value problem. The equidistance property of eigenvalues of the Schrödinger equation with the oscillator potential does not hold true for the equation of the 4th order.

The investigation has been performed at the Laboratory of Information Technologies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2007

введение

В данной работе, как и в предыдущих исследованиях [1–8], рассматривается квазипотенциальное уравнение [1] в релятивистском конфигурационном пространстве. В частности, для случая S-волны (l = 0) исходное уравнение имеет вид

$$[E - H - V(r)]\psi = 0,$$

где

$$E = \frac{2}{\varepsilon^2} \left[\sqrt{1 + \varepsilon^2 q^2} - 1 \right], \ H = \frac{2}{\varepsilon^2} \left[\operatorname{ch} \left(i \varepsilon \frac{d}{dr} \right) - 1 \right],$$

H — релятивистский гамильтониан; V — квазипотенциал; ε — малый параметр. Разлагая оператор ch $(i\varepsilon d/dr)$ в ряд, можно получить дифференциальное уравнение бесконечного порядка. При $\varepsilon \to 0$ это уравнение переходит в нерелятивистское уравнение Шредингера.

Если в разложении отбросить члены высших порядков, то получим обыкновенные дифференциальные уравнения конечного порядка:

$$\left[E + \frac{d^2}{dr^2} - \frac{2\varepsilon^2}{4!}\frac{d^4}{dr^4} + \frac{2\varepsilon^4}{6!}\frac{d^6}{dr^6} - \dots + \frac{2(-1)^{m-1}\varepsilon^{2(m-1)}}{(2m)!}\frac{d^{2m}}{dr^{2m}} - V(r)\right]\psi(r) = 0, \quad (1)$$

где 2m — порядок уравнений ($m = 2, 3, 4, \dots, M$).

Одной из важных особенностей уравнений (1) является наличие малого параметра при старших производных. Такие уравнения носят название сингулярно-возмущенных дифференциальных уравнениий.

В предыдущих работах [7,8] аналитическим и асимптотическим методами проводились исследования различных краевых задач для уравнений 4-го и 6-го порядков для прямоугольной потенциальной ямы с глубиной V_0 и шириной r_0 :

$$V(r) = \begin{cases} -V_0, & r \le r_0, \\ 0, & r > r_0. \end{cases}$$
(2)

В настоящей работе численно исследуется уравнение 4-го порядка для кулоновского и оцилляторного потенциалов:

$$V(r) = -\frac{2}{r}; (3)$$

$$V(r) = r^2. (4)$$

КРАЕВЫЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ 4-ГО ПОРЯДКА

Рассмотрим уравнение (1) при m = 2

$$-\mu^2 \frac{d^4 \psi}{dr^4} + \frac{d^2 \psi}{dr^2} + [2\bar{E} - V(r)]\psi(r) = 0; \ \mu^2 = \frac{\varepsilon^2}{12}, \ 2\bar{E} = -E,$$
(5)

со следующими граничными условиями:

(** *)

$$\psi(0) = 0; \ \frac{d\psi(0)}{dr} = 0; \ \psi|_{r=r0} = 0,$$
 (6)

$$\psi(0) = 0; \ \frac{d^2\psi(0)}{dr^2} = 0; \ \psi|_{r=r0} = 0.$$
 (7)

Уравнение (5) с граничными условиями (6) будем называть первой краевой задачей, а с граничными условиями (7) — второй краевой задачей.

При численном решении краевых задач перепишем уравнение (5) в виде системы двух уравнений 2-го порядка и используем непрерывный аналог метода Ньютона (НАМН) [9, 10] и сплайн-коллокационную схему [11, 12]. При использовании НАМН (при малых значениях параметра ε) в качестве начального приближения берется решение уравнения Шредингера, а потом найденные решения будут служить начальным приближением для следующих значений параметра ε , т. е. дальше решения краевых задач определяются методом продолжения по параметру.

При решении краевых задач для сингулярно-возмущенных дифференциальных уравнений, как правило, часто появляется область, где решения задачи и (или) их производные резко меняются при уменьшении малого параметра (возникают пограничные слои). Поэтому появляется необходимость выбора оптимального шага интегрирования h от малого параметра ε . Для этой цели выбрали следующие модельные краевые задачи, которые имеют точные аналитические решения:

$$\varepsilon u''(x) - u(x) = \cos^2 \pi x + 2\varepsilon \pi^2 \cos 2\pi x; \ u(0) = u(1) = 0;$$
(8)

$$\varepsilon u^{(1V)}(x) - u''(x) = 1; \ u(0) = 1; \ u'(0) = -\gamma; \ u(1) = 0, 5; \ u'(1) = \gamma - 1, \ (9)$$

$$\gamma = \frac{1}{\sqrt{\varepsilon}} \frac{1 - e^{-1/\sqrt{\varepsilon}}}{1 + e^{-1/\sqrt{\varepsilon}}};$$
$$u(x) = \frac{e^{-x/\sqrt{\varepsilon}} + e^{(x-1)/\sqrt{\varepsilon}}}{1 + e^{-1/\sqrt{\varepsilon}}} - \cos^2 \pi x;$$
$$u(x) = \frac{e^{-x/\sqrt{\varepsilon}} + e^{(x-1)/\sqrt{\varepsilon}}}{1 + e^{-1/\sqrt{\varepsilon}}} - \frac{x^2}{2}.$$

На рис. 1 приведены решения краевых задач (8), (9) при разных значениях ε . Как видно, при уменьшении значения параметра ε решения обеих модельных краевых задач в окрестности границ x = 0 и x = 1 начинают резко

Рис. 1. Решения краевой задачи (8) (*a*) и краевой задачи (9) (*б*) для разных значений малого параметра ε ($\varepsilon_1 = 10^{-1}$; $\varepsilon_2 = 10^{-2}$; $\varepsilon_3 = 10^{-3}$; $\varepsilon_4 = 10^{-4}$)

Краевая задача	ε	$\max y^{\operatorname{cal}} - y^{\operatorname{an}} $	x_{\max}
	0,1	$1,\!294020446351851\cdot 10^{-12}$	0,50700
(8)	0,01	$1,\!139518167325715\cdot 10^{-12}$	0,53200
	0,001	$8,\!461442657647922\cdot10^{-11}$	0,03200
	0,0001	$8{,}521920058512933\cdot10^{-9}$	0,01000
	0,1	$3,089750677531811 \cdot 10^{-13}$	0,64400
(9)	0,01	$1,\!107437752612128\cdot 10^{-11}$	0,52200
	0,001	$1,\!157253542993786\cdot 10^{-9}$	$0,\!48100$
	0,0001	$1,\!156122617293476\cdot 10^{-7}$	0,20400

Максимальные разности точных решений от численных решений краевых задач (8), (9) при разных значениях парметра ε

меняться, т. е. эти задачи имеют решения с пограничными слоями. В таблице приведены максимальные разности численных решений краевых задач (8) и (9) от их точных аналитических решений.

Из численных опытов следует, что функция резко меняется в интервале $0 \leq x \leq \sqrt{\varepsilon}$ (пограничный слой в окрестности x = 0), поэтому при выборе шага интегрирования h необходимо выполнение условия $h \ll \sqrt{\varepsilon}$. В дальнейшем при исследовании краевых задач для уравнения 4-го порядка учитываем это обстоятельство.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

На рис. 2 показаны собственные функции без узлов, с одним, двумя и тремя узлами первой (слева) и второй (справа) краевых задач для осцилляторного потенциала при разных значениях параметра ε . Аналогичные кривые приведены на рис. З для кулоновского потенциала. Видно, что с ростом ε решения обеих краевых задач расширяются в сторону увеличения r. При уменьшении параметра ε собственные значения обеих краевых задач стремятся к собственным значениям уравнения Шредингера.

На рис. 4, 5 приведена динамика изменения собственных значений первой и второй краевых задач для осцилляторного и кулоновского потенциалов при изменении μ от нуля до единицы. Для обоих потенциалов собственные значения первой краевой задачи сильнее меняются по сравнению с их значениями для второй краевой задачи. Эквидистантность собственных значений уравнения Шредингера для осцилляторного потенциала при переходе в уравнение 4-го порядка для обеих краевых задач не сохраняется.

На рис. 6 изображено поведение безузловых решений и их производных в окрестности границы r = 0, первой и второй краевых задач для осцилляторного потенциала при уменьшении параметра ε . Видно, что первая краевая задача имеет пограничный слой на границе r = 0 для производных, а для второй краевой задачи производные не имеют пограничных слоев.

ЗАКЛЮЧЕНИЕ

В работе численно найдены решения краевых задач для уравнения 4-го порядка для двух типов потенциала. Результаты исследования позволяют сделать следующие выводы.

 При уменьшении значений параметра ε собственные значения первой краевой задачи уравнения 4-го порядка стремятся к собственным значениям уравнения Шредингера, однако производные от собственных

Рис. 2. Решения первой (слева) и второй (справа) краевых задач для осцилляторного потенциала при разных значениях параметра ε ($\varepsilon_1 = 5 \cdot 10^{-4}$; $\varepsilon_2 = 0.5$; $\varepsilon_3 = 1.5$; $\varepsilon_4 = 3.5$)

Рис. 3. Решения первой (слева) и второй (справа) краевых задач для кулоновского потенциала при разных значениях параметра ε ($\varepsilon_1 = 5 \cdot 10^{-4}$; $\varepsilon_2 = 0.5$; $\varepsilon_3 = 1.5$; $\varepsilon_4 = 3.5$)

Рис. 4. Зависимость собственных значений первой (*a*) и второй (δ) краевых задач от параметра μ для осцилляторного потенциала

Рис. 5. Зависимость собственных значений первой (*a*) и второй (δ) краевых задач от параметра μ для кулоновского потенциала

функций в окрестности начала координаты r=0 имеют пограничные слои.

- 2. Для второй краевой задачи собственные функции и собственные значения стремятся к решениям уравнения Шредингера.
- 3. При увеличении параметра ε от малых до конечных величин собственные функции краевых задач расширяются в сторону увеличения r.
- 4. Свойство эквидистантности собственных значений уравнения Шредингера с осцилляторным потенциалом для уравнения 4-го порядка не сохраняется.

Рис. 6. Поведение безузловых решений первой (слева) и второй (справа) краевых задач для осцилляторного потенциала при разных значениях параметра ε ($\varepsilon_1 = 2 \cdot 10^{-3}$; $\varepsilon_2 = 4 \cdot 10^{-3}$; $\varepsilon_3 = 8 \cdot 10^{-3}$; $\varepsilon_4 = 1, 6 \cdot 10^{-2}$)

Работа выполнена при финансовой поддержке РФФИ, гранты № 05-01-00645-а, № 07-01-00738.

ЛИТЕРАТУРА

- 1. Кадышевский В.Г., Мир-Касимов Р.М., Скачков Н.Б. // ЭЧАЯ. 1972. Т.2, вып. 3. С. 637.
- 2. Amirkhanov I. V., Konnova S. V., Zhidkov E. P. // Comp. Phys. Commun. 2000. V. 126. P. 12–15.
- 3. *Амирханов И.В., Жидков Е.П., Коннова С.В.* Сообщение ОИЯИ Р11-2000-54. Дубна, 2000.
- 4. Амирханов И. В. и др. // Дифференциальные уравнения. 2000. Т. 37, № 1. С. 83-90.
- 5. Амирханов И.В. и др. // Математическое моделирование. 2003. Т. 15, № 9. С. 3–16.
- 6. Амирханов И.В. и др. Сообщение ОИЯИ Р11-2004-147. Дубна, 2004.
- 7. Амирханов И.В. и др. Сообщение ОИЯИ Р11-2006-107. Дубна, 2006.
- 8. Амирханов И.В. и др. // Математическое моделирование. 2007. Т. 19, вып. 11.
- 9. Жидков Е.П., Макаренко Г.И., Пузынин И.В. // ЭЧАЯ. 1973. Т.4, вып. 1. С. 127.
- 10. Пузынин И.В. и др. // ЭЧАЯ. 1999. Т. 30, вып. 1. С. 210-265.
- 11. Бояджиев Т. Л. Сообщение ОИЯИ Р2-2002-101. Дубна, 2002.
- 12. Жанлав Т., Пузынин И.В., Ракитский А.В. Сообщение ОИЯИ Р11-1988-823. Дубна, 1988.

Получено 5 октября 2007 г.

Редактор Е. В. Сабаева

Подписано в печать 23.11.2007. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,75. Уч.-изд. л. 0,82. Тираж 310 экз. Заказ № 55974.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/