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1. IMPEDANCES AND WAKE FIELDS

Charged particles accelerated in a circular accelerator are a source of EM
ˇelds that act back on the beam perturbing the motion. This may cause dangerous
feedbacks leading to different kinds of instabilities Å Fig. 1.

Fig. 1. The beam-environment feedback
may lead to instability

The self-ˇelds are a superposition
of EM ˇeld generated by the beam in
the free space and of EM ˇeld pro-
duced by the image current induced on
the vacuum chamber walls. The wall
geometry is complicated. The smooth
metallic (usually stainless steel) vacuum
pipe with an oval cross section is inter-
rupted by steps, BPM plates, RF cav-
ities, bellows, �anges, ferrite kickers,
septum magnets, etc. The EM ˇeld pro-
duced by the beam and modiˇed by the
beam surroundings causes a force that acts back on the particles. Together with
the force due to the external EM ˇelds, which imposes the particle trajectories,
this self-force affects the motion of the particles in the accelerator, and under
some circumstances this motion becomes unstable.

It is impossible to solve analytically Maxwell's equations taking into account
a very complicated geometry of the vacuum chamber and various electromagnetic
properties of the walls. In an effort to generalize all the cases of wall geometry,
V. C.Vaccaro and A.M. Sessler have introduced the concept of wake ˇelds and
impedances [1Ä5].

The coupling impedance gathers in one quantity all the details of the elec-
tromagnetic interaction of the beam and its surroundings. The longitudinal im-
pedance is deˇned by one-turn voltage seen by the particles:

E z (t, θ ) = − 1
2πR

Z�(ω) I(t, θ), (1)

where θ is the azimuth, R is the machine mean radius, Ez is the longitudinal
electric ˇeld, and I is the beam current.
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Introducing the Fourier components of the beam current we have:

E z (t, θ) = − 1
2πR

∞∫
−∞

Z� (ω ) I(ω, θ) e i ω t dω. (2)

The transverse signal as it is measured by the PUEs, is deˇned as the product of
the beam current by the local center-of-mass displacement < x >:

D ( t, θ ) = I ( t, θ ) 〈x (θ) 〉. (3)

By historical reasons, the transverse coupling impedance is deˇned as:

[ �E + �β c × �B ]⊥ (t, θ) = − iβ0

2πR

∞∫
−∞

Z⊥(ω )D(ω, θ) e i ω t dω, (4)

i. e., the transverse de�ecting force on the unit charge (Lorentz force) over one
particle revolution divided by the dipole moment of the beam.

The dimension of Z!! is [Ω] and of Z⊥ is [Ω/m]. The impedance is a complex
function of frequency.

Types of the beam environment can be classiˇed in the following way.
• Perfectly conducting walls of uniform cross section (case of spaceÄcharge

dominated beam). The EM ˇeld emitted by an ultrarelativistic particle moving
with a velocity βc in a smooth pipe with perfectly conducting walls, is purely
transverse:

Er =
1

2πε0r
δ(z − βct),

Hφ =
1

2πZ0r
δ(z − βct),

(5)

where

Z0 =
√

μ9

ε0
= 376.7 Ω (6)

is the free-space impedance,
In the limit β → ∞, the ˇeld is as in the free space. This ®pancake¯-like ˇeld

will not act on the particles moving in front of or behind the source particle Å
Fig. 2.

In the longitudinal direction, the coupling impedance is (see Fig. 3):

ZSC
� (ω ) = − i Z0 g

2 β 0 γ2
0

ω

ω 0
, (7)

g = 1 + 2 ln(
b

a
), (8)

where a is the beam radius, b is the vacuum chamber radius.
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Fig. 2. EM ˇeld of the ultrarelativistic
charge moving in a perfectly conducting
pipe

The space-charge impedance is
purely reactive (negative inductance),
i.e., there is no energy loss during the
particle motion.

In the transverse direction:

ZSC
⊥ (ω ) = − i R Z0

β2
0 γ2

0

(
1
a2

− 1
b2

). (9)

The transverse space-charge im-
pedance is shown in Fig. 4.

The lower the particle energy is the
higher the space-charge impedance.

• Walls with ˇnite conductivity σ. In the realistic case of the walls with ˇnite
conductivity σ, when the wall thickness is greater than the skin depth δ:

δ =
√

2
μ σ ω

, (10)

the EM ˇeld emitted by the source particle is more complicated Å Fig. 5.
At the distances bigger than d0 behind the source particle, the EM ˇeld is

accelerating the trailing particles of the same charge sign, while at the distances
less than d0, it is decelerating in agreement with the energy balance condition

d0 = 3

√
b2

Z0σ
. (11)

In the longitudinal direction, the coupling impedance is (see Fig. 6):

ZRW
� (ω ) = ( 1 + i )

Z0 β0 δ

2b

ω

ω0
. (12)

Fig. 3. Longitudinal space-charge im-
pedance Z�(p)/p, p = ω/ω0

Fig. 4. Transverse space-charge impedance
Z⊥
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Fig. 5. EM ˇeld in the vacuum pipe
with ˇnite conductivity

In the transverse direction, the coupling
impedance could be calculated applying the
relation between the transverse and longitu-
dinal impedances:

Z⊥ =
2c

b2

Z�
ω

, (13)

ZRW
⊥ r = (1 + i)

R Z0

b3
δ. (14)

Due to the factor b3 in the denominator,
accelerators with a small cross section of the
vacuum chamber have large resistive wall
impedance.

The transverse resistive wall impedance
is shown in Fig. 7.

• Resonant element. The EM ˇelds
generated by the beam in the RF cavities
are between the main sources of beam-
environmental interactions. Instead of the

fundamental mode, at frequency ωRF = h ω0 the accelerating cavities have many
other sharp resonances corresponding to all the resonant modes of the RF struc-
ture (higher-order modes, HOMs). When a bunch passes through the cavity, it
could excite these parasitic modes.

The ˇeld in the resonant element decays as exp (− ωr

2Q t), where ωr is the

resonance frequency, and Q is the quality factor. Time t = 2Q/ωr is needed for
the excited ˇeld to reduce ®e¯ times. As in the RF cavities the quality factor Q
is very high, 104 or higher, this ˇeld lasts long enough to couple the successive
bunches circulating around the ring.

Fig. 6. Longitudinal resistive wall im-
pedance

Fig. 7. Transverse resistive wall im-
pedance
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Fig. 8. Longitudinal narrow-band resonant
impedance

Fig. 9. Transverse narrow-band resonant
impedance

The longitudinal coupling impedance of a resonator is:

Z� =
Rs

1 + iQ ( ω
ωr

− ωr

ω )
, (15)

where Rs is the shunt impedance of the resonator.
Below resonant frequency (ω � ωr) the impedance is pure inductance; at

resonance (ω = ωr) is pure resistance, and above transition (ω � ωr) is pure
capacitance. The bandwidth (HWHM) is:

δω =
ωr

2Q
. (16)

The longitudinal narrow-band resonant impedance is shown in Fig. 8.
If in the accelerator there are many bunches, the attenuation between two

successive bunches is given by exp(−α), where:

α = π
fr tbunch-bunch

Q
. (17)

In the case of high Q (narrow band) resonator, the decay of the wake ˇeld is slow
(α � 1). Such a long-range wake ˇeld is a source of bunch coupling. The wake
ˇeld of a narrow-band resonator lasts for a long period of time, and successive
bunches will be coupled by such resonator.

The transverse narrow-band resonant impedance is shown in Fig. 9.
• Broad-band (BB) resonant element. This is the case of low quality factor

(Q ∼ 1) and high attenuation of the ˇeld (α � 1). Changes of vacuum chamber
such as bellows, �anges, etc., can trap some magnetic ˇeld. The measurements on
many existing machines have shown that such structures are well approximated by
a BB resonator with Q ∼ 1, and resonant frequency around the vacuum chamber
pipe cut-off frequency (∼ 1 GHz) is

ωr ≈ ωc.o. =
c

b
. (18)
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The shunt impedance of this BB resonator is adjusted to ˇt the impedance ob-
served at low frequencies. Just at resonance we have pure resistance Z(ωr) =
Rsh. The BB resonator has an impedance curve with a large bandwidth ( 1

δf �
T0
M ), M is the number of bunches and therefore the wake ˇeld decays rapidly.
This element represents local interactions which can couple only close particles.
The longitudinal broad-band resonant impedance is shown in Fig. 10.

The transverse broad-band resonant impedance is shown in Fig. 11. Let us
consider two-point charges rotating in a circular accelerator at frequency ω0 =
β0 c/R. The leading particle has charge q Coulombs. Following τ seconds behind
is a unit charge. Let Ez(z, t) be the longitudinal component of the electric ˇeld
generated by the leading particle.

The longitudinal wake potential (function) is deˇned as the potential per unit
charge seen by the trailing particle:

w�(τ) = − 1
q

∞∫
−∞

Ez (z,
z

βc
+ τ ) dz. (19)

The dimension of wake potential is [Ω/s]. This is a real function of time.
It could be shown that the wake potential is a Fourier transfer of the coupling

impedance:

w‖(τ) =
1
2π

∞∫
−∞

Z‖ (ω) ei ω τ dω. (20)

For smooth enough impedance or a long enough machine so that the wake ˇeld
is equal to zero after one revolution, it could be proved that:

w‖(τ) ≈ −2πR

q
Ez (τ), (21)

i.e., the wake potential is equal to one-turn voltage seen by the trailing particle
per unit charge.

Fig. 10. Longitudinal broad-band resonant
impedance

Fig. 11. Transverse broad-band resonant
impedance
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When the source and the test particles move not just on the axes but on
parallel to their trajectories, the test particle will experience also a transverse
force. The transverse wake potential is deˇned as follows:

w⊥( τ ) = − 1
q

∞∫
−∞

[ �E + �βc × �B ]⊥(z,
z

βc
+ τ ) dz. (22)

The EM ˇelds generated by the source particle fall in two categories. The long-
range wake ˇelds decay so slowly that can affect the particles in the next bunches.
The short-range wakes decay fast and they provide in�uence between the particles
of the same bunch but have no effect on the other bunches.

Useful formula for coupling impedances and wake functions are given in
Appendix 1, taken from [B3].

2. COASTING BEAM COHERENT INSTABILITIES [6Ä9]

Fig. 12. Coasting beam and wall cur-
rents

2.1. Longitudinal Direction. Coasting
beam is a beam of particles uniformly distrib-
uted around the accelerator circumference Å
Fig. 12.

On the stationary signal I , a perturba-
tion in the form of travelling waves with
®p¯ wavelength around the ring, is superim-
posed Å Fig. 13. In a frame moving with the
synchronous particle (angular velocity ω0),
the azimuth of the test particle relative to the
synchronous particle is Δθ. The travelling
wave in this coordinate system will be:

Îp e i( ω‖PCt−pΔθ ). (23)

In the stationary laboratory system this wave will be:

Îp e i( ΩC t−pθ ), Ωc = p ω0 + ω‖pc. (24)

Our patter consists in a closed wave of linear particle density with p wavelengths
along the accelerator circumference. The angular phase velocity of the wave in the
moving frame is ω�pc/p while in the laboratory frame it is Ωc/p = ω0 +ω�pc/p.

In the time domain

I (t, θ) = I + Îp e i(ΩC t−pθ), (25)
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Fig. 13. Longitudinal perturbation

where

I =
eZNβc

2πR
(26)

is the average current.
In the frequency domain:

I(ω, θ) = = I δ(ω) + Îpe
−ipθδ(ω − Ωc), (27)

i.e., the spectrum consists of two lines at ω = 0 and at ω = Ωc.
If

Im(ω�pc) < 0, (28)

the perturbation will increase exponentially with the time and the beam gets
bunched at harmonic ®p¯ Å Fig. 13. The growth rate of the instability is:

1
τi

= − Im (ω�pc). (29)

The coherent instabilities prevent the beam current from being increased above the
certain threshold. This kind of instability leads to an increase of the momentum
spread.

The dispersion relation from which ω�PC can be revealed, is obtained ap-
plying Vlasov's equation. We will not go in further details but only summarize
the ˇnal results.
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1. For a monochromatic beam:

• In the case of space-charge dominated interaction, the beam is stable
below transition (η <0) and unstable above transition (η > 0) Å
negative-mass instability.

• For the practically important case of BB impedance at low frequencies,
the above result is inverted.

• If the beam is cold and some resistance is present, the line density
modulation will grow up and instability will take place.

2. For a coasting beam with momentum spread, the motion is stabilized by
the Landau damping mechanism. Landau damping is a phenomenon well
known from plasma physics. This is a natural mechanism that stabilizes
the coherent instabilities. In the presence of frequency spread, a collection
of lossless oscillators responds like a damped oscillator. In the transverse
direction, the spread in the betatron tune is due to different energies of the
particles in the beam and to the nonlinearities in the magnetic ˇeld which
cause the dependence of frequency on the amplitude. In the longitudinal
direction, the spread in the synchrotron tune is due to the nonlinear character
of the RF voltage. Also the revolution frequency depends on the particle
energy. The stability criterion is given by the Keil-Schnell formula [10, 11]:∣∣∣∣Z‖(p)

p

∣∣∣∣ ≤ (m0c2

e ) |η| γ 0β
2
0

( q
AI)

(
Δp

p
)FWHM . (30)

Fig. 14. Transverse instability

2.2. Transverse Direction. In the transverse
plane, the perturbation consists of a slight initial
displacement of the beam in the transverse direc-
tion Å Fig. 14. This causes coherent oscillations
of the particles in the external focusing ˇeld.

In the time domain, the wave of the coherent
betatron oscillation is:

D(t, θ) = D̂ e i [(pω0+ω⊥PC)t−pθ], (31)

in the frequency domain:

D(ω, θ) = D̂ e−ipθ δ [ ω − ( p ω 0 + ω⊥pc)]. (32)

The dispersion relation has two roots Å lower and upper betatron sidebands:

ω−
⊥pc = Q−

pcω0 = −(Q0 + ΔQpc)ω0, (33)

ω +
⊥pc = Q+

pcω0 = (Q0 + ΔQpc)ω0, (34)

where ΔQPC is the coherent transverse betatron tune shift.
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Fig. 15. Waves in a coasting beam

For ®Ä¯ solution the angular phase ve-
locity of the coherent wave is less than the
angular beam velocity ω0:

ω −
ph = ω0 −

(Q0 + ΔQpc)
p

. (35)

For that reason it is called the slow wave.
For ®+¯ solution the angular phase ve-

locity of the coherent wave is greater than
the angular beam velocity:

ω +
ph = ω0 +

(Q0 + ΔQpc)
p

, (36)

and is called the fast wave Å Fig. 15.
So, in the time domain the slow and fast waves have the following forms:

D −(t, θ) = D̂ ei [(p−Q0)ω0t−pθ] e−iΔQPCω0t, (37)

D +(t, θ) = D̂ e i [(p+Q0)ω0t−pθ] e iΔQP Cω0t. (38)

The transverse spectrum consists of the lower and upper betatron sidebands
around harmonics of the revolution frequency:

D −(ω, θ) = D̂ e−ipθ δ [ω − (p − Q0 − ΔQpc)ω0], (39)

D +(ω, θ) = D̂ e−ipθ δ [ω − (p + Q0 + ΔQpc)ω0]. (40)

The stability of the motion is determined by Im(ΔQpc).
For the cold beam (beam without tune spread) if the impedance has a resistive

part, the fast wave is always stable and the slow wave is always unstable. If Z⊥
is purely imaginary, the motion will be stable and the frequency shift ω⊥pc will
be a real number.

The momentum spread in the beam can stabilize the motion through the
Landau damping mechanism. The criterion for the transverse stability is given
by the following equation:

|Z⊥((p − Q0)ω0)| �
4Q0 (m 0c2

e ) γ0

( q
A ) I c

[(p − Q0)ω0 + ωξ] η (
Δp

p
)FWHM , (41)

where η is the frequency slip factor, ξ is the chromaticity, ωξ Å betatron angular
frequency shift due to chromaticity:

ω ξ = Q0ω0
ξ

η
. (42)
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3. BUNCHED BEAM COHERENT INSTABILITIES [12, 13]

3.1. Longitudinal Direction. The longitudinal instabilities can be looked at
from different viewpoints.

From the point of view how fast instabilities develop in time, they are divided
into two categories:

1. Slow instabilities: τi > Ts, where τi is the instability rise time, and Ts is
the period of synchrotron oscillations.

2. Fast instabilities: Ts > τi > T0, where T0 is the revolution period of
time.

From the point of view of the perturbation range:
1. Instabilities with short wavelength: λp < σL, where λp is the wavelength

of the perturbation, and σL is the rms bunch length in m.
2. Instabilities with long wavelength: λp > σL.
We have to separate also the cases of a single bunch from cases of multiple

bunches.
I. Single bunch longitudinal instabilities [14Ä18]. If the beam-environment

interaction is local (delta function wake), successive bunches ignore each other.
The single bunch stationary distribution in the longitudinal phase space de-

pends only on the momentum (energy) deviations from the reference momentum
(energy). The spectrum is linear at harmonics of the revolution frequency (pω0).
There are no synchrotron satellites; the synchrotron motion is hidden in the bunch.
The spectrum is peaked at zero frequency and extends to ±2π/τL, where τL is
the full bunch length in s, 4σ for Gaussian bunches. The EM ˇeld induced by
the stationary distribution is also at harmonics of revolution frequency.

The perturbation consists in small oscillations (in azimuth and in time) about
the stationary distribution. The longitudinal perturbation introduces EM ˇelds at
harmonics of synchrotron frequency. The spectrum of the perturbation consists
of lines at

ω = pω 0 + mω s + Δωcm, (43)

where Δωcm is the coherent frequency shift. This is a complex number. Its
imaginary part determines whether the motion is stable or unstable. Instability
occurs when

Im (Δωcm) < 0. (44)

The spectrum is peaked at
(m + 1)π

τL
, (45)

and extends to ±2π/τL.
The type of oscillation of individual bunches is speciˇed by the integer

index m Å the synchrotron mode. m = 1 denotes the so-called dipole mode,
which represents off-centered oscillations of a rigid bunch in the longitudinal
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phase space Å Fig. 16. The coherent dipolar perturbation is caused by RF phase
errors or energy errors. The dipole perturbation develops in time with a coherent
frequency:

ωc = ωs + Δωc1, (46)

m = 2 denotes the quadrupole or breading mode, which represents the bunch
shape oscillations in the longitudinal phase space Å Fig. 17. It is caused by RF
focusing mismatched. The EM ˇeld induced by the quadrupole perturbation is at
frequencies

pω 0 + 2ωs + Δωc2. (47)

The line density distribution of the ˇrst two longitudinal modes is shown in
Fig. 18.

II. Coupled bunch longitudinal instabilities [14-18]. Coupled bunch modes
are dominated by the resonant impedance (narrow band). Such impedance is due
to parasitic higher order modes in the RF cavities. In this case the attenuation of
the wake ˇeld between two successive bunches is weak Å the environment can
memorize the passing of a bunch longer than the bunch repetition period. For M

Fig. 16. Dipole (rigid) mode Fig. 17. Quadrupole (breading) mode
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Fig. 18. Line density distribution of the ˇrst longitudinal modes

equally spaced bunches only every M th line occurs in the spectrum:

ωp = (n + pM)ω0 + m ωs + Δω cm, (48)

where n = 0, 1, . . ., (M − 1) is the so-called coupled-bunch mode number. It
speciˇes how the individual bunch modes are lined together. The phase shift
between oscillations in successive bunches is 2πn/M . Another line of separation
is between the low and high intensity cases.

3.1.1. Low Intensity Longitudinal Instabilities. Low intensity coherent modes
are well described by F. Sachere's integral equation or J. Laclare's eigenvalue
equation. A resistance is needed to drive the instability depending on the sign of
the revolution harmonic number ®p¯. Below transition upper sidebands (positive
®p¯) are stable and lower sidebands (negative ®p¯) are unstable. Above transition
the situation is reversed.

In the case of a single bunch or two bunches (M = 1, 2), the upper and
lower sidebands in the spectrum belong to the same mode ®n¯. The impedance
will cover both sidebands which will cancel each other. In the case of more than
two bunches (M � 2), the upper and lower sidebands belong to different couple-
bunch modes ®n¯. In this case even a resonator with a narrow band impedance
curve will push up one of the couple-bunch modes and suppress the other.

For the couple-bunch mode it is needed to have the narrow band resonant
impedance with impedance decay time much longer than the time between two
successive bunches;

1
Γ

� T0

M
, (49)

where Γ is the width of Z(ω).
Let us now look how different types of longitudinal coupling impedances

drive the coupleÄbunch instability.

13



Fig. 19. Form factor Fig. 20. Attenuation factor

Å Space-charge impedance. In this case iZ(p)/p is constant and real. There
is no instability. The coherent frequency is real. Once started, the synchrotron
mode ®m¯ continues to oscillate inˇnitely.
Å Resistive wall impedance. It is peaked at low frequencies and acts very weakly
on the longitudinal motion and can be neglected.
Å Parasitic high Q modes in the RF cavities. If the distance between two adjacent
lines in the spectrum is larger than the resonator bandwidth Δω, a single line will
drive the instability. For large bandwidths, more than one line must be taken into
account and there is some cancellation between the upper and lower sidebands.
The growth rate of the instability is:

1
τi

= −Im(Δωcm) =
mωs

m + 1
4MI

π2B2hV cosφs

Rsω0

ωr
Fm D, (50)

where:
D =

α

sinh (α)
, (51)

α =
π ωr

Q ω 0 M
, (52)

Fm is a form factor Å Fig. 19, and D is an attenuation factor Å Fig. 20. There
is no instability for wake ˇelds that decay appreciably before the next bunch to
arrive.

3.1.1.1. Robinson's Instability. The RF cavities of a circular accelerator are
tuned to the fundamental mode ωr = hω 0, h is the harmonic number. The quality
factor Q is very high and the resonator bandwidth Δω is very narrow.

In these circumstances, the imaginary part of the coherent frequency which
indicates whether the motion will be stable or unstable, is proportional to the
difference of the resonator resistance at the upper coherent sideband (hω0 +mωs)
and at the lower coherent sideband (hω0 − mωs):

Im(ω c) ∼
I

V cos φ s
[R(hω 0 + mω s) − R(hω 0 − mω s)]. (53)
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Fig. 21. Robinson instability

As below the transition cos φs > 0, the beam
will be unstable (Im(ωc) < 0) if the reso-
nant frequency ωr is slightly below hω0 Å
Fig. 21. Above the transition, the condition
for instability is reversed.

The so-described phenomenon is known
as Robinson's effect Å [22].

Qualitatively, if ΔE > 0 below transi-
tion, then Δω > 0 and the bunch will move
to the right and see lower resistance R−. Thus, less energy will be taken from
the beam and ΔE will continue to increase, i. e., some instability will occur.

The Robinson instability is removed by tuning the RF cavity slightly away
from hω0 or recently by applying an active feedback.

3.1.2. High Intensity Longitudinal Instabilities. In the case of low intensity
the coherent force is treated as a perturbation compared to the longitudinally
focusing by RF cavities. In this case different synchrotron modes ®m¯ are
decoupled. This is the case of low beam intensity.

If the beam intensity is high, the spectra of synchrotron modes ®m¯ and
®m + 1¯ will be very close and partly overlapped. While increasing the beam
current, the bunch lengthening suddenly jumps up Å this phenomenon is called
turbulent bunch lengthening. Also the bunch widening or increasing of Δp/p
takes place. All these can be explained by synchrotron mode coupling.

3.1.2.1. Microwave Instability (MWI). This is the high-frequency-fast-single-
bunch instability. The microwave instability develops in time with frequency
Ω > ωs, ωs being the synchrotron frequency. Also the perturbation wavelength
is much shorter than the bunch length: λp < σL. The PUE signal is in the
microwave region, from 100 MHz up to several GHz. MWI has been observed
for the ˇrst time in CERN PS and ISR [19, 20].

The microwave instability is observed in high intensity machines. This is a
single bunch effect. It leads to a very fast blow-up of the bunch area which soon
exceeds the longitudinal acceptance of the accelerator.

According to the suggestion by D. Boussard [19] the condition of the mi-
crowave instability is given by the coasting beam stability criterion by Keil and
Schnell, but the local values of current and Δp/p must be used instead of average
current. This approach predicts the instability threshold quite well:∣∣∣∣Z�(p)

p

∣∣∣∣ ≤ 2π |η|E0A

qeIpeak
(
Δp

p
) 2, (54)

|Z⊥| ≤
4
√

2π |η|E0A

qeIpeak 〈β〉
(
Δp

p
). (55)
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The peak current depends on the distribution of particles in the bunch or bunching
factor. By deˇnition:

Bf =
I0

Ipeak
(56)

for M bunches in the ring:

Bf =
ML

S2πR
, (57)

where L is the full bunch length, L = 4σL for Gaussian bunch, and S is a shape
factor, S = 1 Å for ®water bag¯ bunch, S = 1.6 Å for a Gaussian bunch.

3.2. Transverse Direction. In the transverse direction a modulation of the
betatron oscillations by synchrotron motion takes place. This is the source of the
so-called head-tail modes.

The spectrum of the transverse perturbation is a line spectrum at frequencies
ω = (p + Q)ω0 + m ω s, p = . . .,−1, 0, +1, . . . and m = 0, 1, 2, . . . Synchrotron
modes ®m¯ are no longer sidebands of the revolution harmonics pω 0. They
are now sidebands of the betatron sidebands, the upper: (p + Q)ω 0 and lower:
(p − Q)ω 0. The transverse perturbation is coherent only with the synchrotron
satellite number ®m¯

D(ω, θ) =
4π2I

2

∞∑
p=−∞

e−ipθσm(p) δ(ω − [(p + Q)ω0 + mωs + Δωcm]). (58)

Fig. 22. Transverse PUE signals for
the low order coherent modes. The
revolution number is denoted by k.
Five passings of the beam are super-
imposed at the third line

The transverse PUE signals for the ˇrst three
coherent modes are shownin Fig. 22.

It is essential that the spectrum is cen-
tered at ω ξ Å the betatron frequency shift
due to chromaticity. This is the fundamen-
tal difference between the transverse and the
longitudinal cases. For standard machines
the uncorrected chromaticity ξ is negative,
therefore ω ξ is a negative frequency above
the transition energy and positive frequency
below this.

The mechanism of the head-tail instabil-
ity is shown in Fig. 23.

Particles at the head of the bunch gen-
erate transverse wake ˇelds that will excite
oscillations of the particles at the bunch tail.
Because of the synchrotron motion after a

half synchrotron period, the tail particles will go to the bunch head and vice
versa. New transverse wakes are generated that affects the new tail particles.
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Fig. 23. Head-tail instability

If the head-tail particle exchange and the excitation
by the transverse wake ˇelds act in the phase, the
particle oscillations will grow up and instability will
happen.

A photo of the ˇrst three head-tail modes reg-
istered at CERN PSB is shown in Fig. 24. If the
transverse impedance is sufˇciently smooth, the
growth rate of the instability for mode m = 0 is:

1
τ 0

= − eIbc

2Qω 0E0τL
Re(Z⊥), (59)

Ib being the bunch current.
For a positive chromaticity above transition ωξ > 0, the bunch spectrum is

shifted to the right by ωξ Å Fig. 25. It is clear from Fig. 25 that a slightly positive
value of ωξ is sufˇcient to stabilize the dipole mode m = 0 as the beam sees
more impedance in positive frequency than in negative one. The higher modes
require a larger value of ωξ for achieving stability.

In the case of space charge impedance i Z⊥(p) is real and constant. The
coherent frequency shift is real and the motion is stable. Resistance is needed to
drive instability.

In the case of very narrow parasitic high Q modes in RF resonators, the
motion is driven by a single line at (p + Q)ω 0 + m ω s, p = −∞, ..., +∞.
The imaginary part of the coherent frequency that determines the stability of the
motion, is proportional to the resistance:

Im(ω c ) ∼ I.Re(Z⊥(p)). (60)

Fig. 24. The ˇrst three head-tail modes measured at PSB, a −−−m = 0, b −−−m = 1
and c −−− m = 2 modes
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Fig. 25. Stabilization of resistiveÄwall head-tail instability by chromaticity

For instability to occur the negative resistance (negative frequency or p < 0) is
needed. A positive value of ω ξ is necessary to stabilize the motion.

If there is no single bunch but M , equally spaced bunches are present, and
the couple-bunch modes can be driven. Similar to the longitudinal case the
couple-bunch mode number ®n¯ is introduced, n = 0, 1, . . ., (M − 1). This index
determines the phase shift between the coherent perturbations in two successive
bunches. This phase shift is equal to 2πn/M . Now the spectrum is a line
spectrum at frequencies:

ω = (n + pM + Q)ω 0 + m ω s + Δω cm. (61)

4. STEPS AGAINST COHERENT INSTABILITIES

A careful design of the circular accelerator is usually sufˇcient to avoid the
coherent instabilities. The vacuum chamber must be as smooth as possible. All
the remained changes of the vacuum chamber cross section must be systematically
shielded.

In electron/positron machines, a natural damping mechanism is due to the
synchrotron radiation. To suppress the instability, the radiation damping time
must be shorter than the instability growth time. The higher order modes (HOMs)
in the accelerating resonators are the main source of concern in these accelerators.
The HOMs are reduced by a special design of RF cavities.

In hadron machines, the Landau damping mechanism is usually sufˇcient to
suppress the instability. At present, feedback systems are used in the modern
accelerators with high intensity beams.
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Appendix. Impedances and wake functions Å[B3]
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