P13-2011-120

Ю. Г. Соболев*, М. П. Иванов, Ю. Э. Пенионжкевич

УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ПОЛНЫХ СЕЧЕНИЙ ЯДЕРНЫХ РЕАКЦИЙ

Направлено в журнал «Приборы и техника эксперимента»

*E-mail: sobolev@nrmail.jinr.ru

Соболев Ю. Г., Иванов М. П., Пенионжкевич Ю. Э. Р13-2011-120 Установка для измерения полных сечений ядерных реакций

Описывается экспериментальная методика и установка для проведения измерения энергетической зависимости полных сечений ядерных реакций с пучками стабильных и радиоактивных ядер при кинетических энергиях вблизи кулоновского барьера. Использован модифицированный метод трансмиссии, дополненный регистрацией γ -квантов в 4π -геометрии и идентификацией частиц полупроводниковым детектором по форме импульса.

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2011

Sobolev Yu. G., Ivanov M. P., Penionzhkevich Yu. E.P13-2011-120Set-up for Measuring Total Cross Sections in Nuclear ReactionsP13-2011-120

Experimental method and set-up for measurements of energy dependence of total cross sections in nuclear reactions are described. The modified transmission method, registration of γ quanta in 4π geometry and charged-particle identification by pulse-shape analysis in semiconductor detector are used.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2011

введение

Известно, что экспериментальные исследования реакций с экзотическими ядрами придали новый стимул развитию экспериментальных методик. В первую очередь это связано с тем, что наиболее интересные для исследования пучки радиоактивных ядер имеют низкую интенсивность, неудовлетворительные параметры, такие как эмиттанс, элементная чистота пучка и др., чтобы соответствовать требованиям традиционных методик, разработанных для пучков стабильных ядер. В полной мере это относится и к проблеме измерения полных сечений реакций, где особенно критичны такие параметры пучка, как его чистота и интенсивность. Описываемая ниже экспериментальная установка, согласно классификации, предложенной в [1], связана с группой методик, адаптированных к условиям работы с пучками радиоактивных ядер, получаемых методом «фрагмент-сепаратора» [2]. В ней используется модифицированный для экспериментов в области низких энергий с различными мишенями известный метод трансмиссии [3], который в измененном виде успешно применяется в современных исследованиях [5, 6].

МЕТОД ТРАНСМИССИИ

Метод трансмиссии (или метод пропускания, согласно обзору [4]) основан на измерении величины относительного убывания частиц пучка из-за вступления их в реакцию с ядрами мишени. Другими словами, последовательное применение метода подразумевает корректное измерение количества частиц пучка перед (I_0) и после (I) прохождения мишени толщиной N (удельное число ядер) в соответствии с формулой для определения сечения реакции σ_R :

$$I = I_0 \exp\left(-N\sigma_R\right). \tag{1}$$

Для упрощения экспоненциального выражения (1) допустим, что $N\sigma_R \ll 1$. Поскольку в данной работе рассматривается случай измерения сечения на тонких мишенях, это допущение справедливо и выражение (1) приводится к линейному виду:

$$N\sigma_R = (I_0 - I)/I_0.$$
 (2)

Преимущество простоты идеи метода умаляется сложностью реализации корректного измерения величины I из-за трудности отделения событий реакции от фоновых процессов, например событий неупругого и упругого рассеяния при $\theta = 0$. В экспериментах по измерению σ_R на Si-мишени с пучками различных ионов высоких энергий данные трудности относительно успешно решались методом многослойного телескопа [3, 5, 6]. Возможно распространение данного метода с Si-мишеней на германиевые и алмазные монокристаллические детекторы-мишени. Недостаток методики проявляется при снижении энергии пучка к области кулоновского барьера. Ограничение трансмиссионной методики многослойного телескопа в выделении каналов реакции можно исключить с помощью методики γ -спектрометра полной геометрии.

МЕТОД ү-СПЕКТРОМЕТРА ПОЛНОЙ ГЕОМЕТРИИ

Идея использовать так называемое prompt *γ*-излучение, сопровождающее подавляющее большинство событий ядерной реакции, в качестве метки события реакции не нова [7]. Трансмиссионная методика многослойного телескопа, дополненная γ -спектрометром, описана, например, в работе [8]. Телескоп из 4 кремниевых dE-E-детекторов был окружен 14 NaI(Tl) сцинтилляционными у-детекторами с целью измерения полных сечений реакции по методу [9]. Были измерены усредненные по энергии величины полных сечений реакции для ряда нейтронно-избыточных изотопов частиц вторичного пучка. Поскольку все детекторы телескопа, как тонкие dE_{-} , так и E_{-} детекторы полной остановки частиц пучка, находились внутри γ -спектрометра, то он с одинаковой эффективностью регистрировал *ү*-излучение как от тонких dE-, так и от Е-детекторов телескопа. В итоге в работе были получены только величины «средневзвешенных по энергии полных сечений реакции». Очевидно, для измерения $\sigma_R(E)$ с достаточной точностью необходимо вынесение всех, за исключением тонкой мишени, элементов телескопа как потенциальных источников фона за чувствительную область спектрометра. В этих условиях задачи, решаемые с помощью детекторов телескопа, сводятся к подготовке события к измерению. Для этого необходимо: идентифицировать частицу пучка; определить (при необходимости снизить) ее энергию; доставить в заданную область мишени (метод «активного коллиматора» [1]). События, подготовленные таким образом, принимаются установкой для накопления в ансамбль I_0 , который анализируется посредством *E*-детектора и разбивается на два подмножества. Первое подмножество событий (когда *E*-детектор не зарегистрировал частицу) характеризуется малочисленностью. Каждый элемент данного подмножества представляет собой событие взаимодействия частицы пучка с мишенью, такое как упругое или неупругое рассеяние частицы вне телесного угла E-детектора Ω , рис. 1, a, либо ядерная реакция, не сопровождаемая эмиссией заряженной частицы в Ω. Подчеркнем, что в данном под-

Рис. 1. а) Схематическое изображение сборки детекторов CsI(Tl)-спектрометра. АК — активный коллиматор, М — мишень, E — детектор, Рb — вкладыш из свинца, Ω — телесный угол E-детектора, dE1-dEn — тонкие dE-детекторы. δ) Двумерный E-T-спектр идентификации заряженных частиц E-детектора [10]. По оси абсцисс — полная энергия частиц в E-детекторе; по оси ординат — разница времен T быстрой и медленной токовых компонент переднего фронта импульса E-детектора

множестве, где решающий анализ проводится с помощью γ -спектрометра, *E*-детектор не является источником фона. Второе, более многочисленное подмножество из I_0 анализируется средствами модифицированной трансмиссионной телескопной методики, и анализ средствами γ -спектрометра несет вспомогательный характер.

В частности, для идентификации заряженных частиц, зарегистрированных Е-детектором, в установке реализована методика идентификации заряженных частиц по форме импульса [10, 11], действие которой может быть проиллюстрировано двумерным спектром, представленным на рис. 1, б. По оси абсцисс отложена полная энергия частицы в Е-детекторе. По оси ординат отложена разница (Т) времен пересечения порогового уровня передними фронтами быстрой и медленной токовых компонент импульса Е-детектора. Идентификация частиц одним Si-детектором основана на экспериментальном факте значительного различия удельной ионизации, производимой регистрируемыми заряженными частицами, а также значительной разницы скоростей носителей заряда в материале детектора. В результате этого каждый изотоп в определенном энергетическом диапазоне, см. рис. 1, б, имеет ярко индивидуальную форму области распределения в $T \times E$ -представлении. Эта область не пересекается с областями других частиц и зависит только от свойств детектора и соответствующей электроники. Предварительное измерение областей распределений частиц $p, d, t, {}^{3,4}$ Не было проведено с продуктами реакций, полученными на ускорителе университета г. Ювяскюля, Финляндия [10], где также была измерена зависимость их распределения от угла Θ их влета в E-детектор, т. е. были определены допустимые границы для телесного угла Ω , образуемого E-детектором. В качестве E-детектора в работе применялся p-*i*-n-детектор ($S = 20 \times 20$ мм, H = 1400 мкм).

Таким образом, вышеописанная логика эксперимента и инструментарий позволяют синтезировать трансмиссионный метод многослойного телескопа и γ -спектрометра полной геометрии так, чтобы компенсировать недостатки друг друга.

Гамма-спектрометр собран из шести CsI(Tl) сцинтилляционных детекторов, см. рис.1, а. Каждый детектор состоит из сцинтиллятора в виде прямой призмы высотой H = 14 см, в основании которой лежит правильный шестиугольник с радиусом описанной окружности R = 10 см, и фотоумножителя ФЭУ110, оптически соединенного с торцом призмы CsI(Tl). Поверхность каждого сцинтиллятора отполирована и покрыта светоотражающей пленкой Tyvek (DuPontTM, Wilmington, DE), $H = 2 \times 150$ мкм и светозащитным пластиком толщиной H = 1 мм, образующим герметичный корпус. Сборка из шести CsI(Tl)-детекторов образует в центре, по оси симметрии, туннель шестигранной формы, в котором расположена тонкостенная цилиндрическая вакуумная реакционная камера из нержавеющей стали размерами $D_{\rm out} = 8,4$ см, H = 1 мм, L = 40 см. В реакционной камере расположены, см. рис. 1, a: система $dE_1...dE_n$ -детекторов идентификации пучка и снижения его энергии, система детекторов активного коллиматора АК [1], мишень М, два блока ү-защиты спектрометра Pb, представляющие собой свинцовые цилиндры размерами H = 5 см, $D_{in} = 2$ см, $D_{out} = 8$ см (показан только передний Рb-цилиндр защиты), и E-детектор. Для повышения эффективности регистрации спектрометра предусмотрена установка вокруг мишени двух кольцевых цилиндрических CsI(Tl) сцинтилляционных детекторов размерами H = 5 см, $D_{in} = 2$ см, $D_{out} = 8$ см (на рисунке не приведены). Энергетический спектр модуля спектрометра от источников ⁶⁰Со и ¹³⁷Сs, расположенных в позиции мишени M, представлен на рис. 2, а.

Из рисунка видно, что при энергетическом разрешении для линии $E_{\gamma} = 662 \text{ кэВ}$, ПШПВ = 13 % достигнут резкий энергетический порог регистрации $E_{\text{порог}} = 200 \text{ кэВ}$, что при высоком значении величины относительной эффективности регистрации в пике полного поглощения $P(E_{\gamma}) = 82 \%$ для $E_{\gamma} = 200 \text{ кэВ}$, см. рис. 2, δ , обеспечивает достаточную точность величины $E_{\text{порог}}$.

Точность установки величины $E_{\text{порог}}$ определяет точность соответствия измеренных характеристик спектрометра их расчетным величинам. Результаты компьютерного анализа, проведенного методом Монте-Карло, программа GEANT-3.21 [12], показали, что выбранные размеры сцинтилляционных детекторов и вышеописанная геометрия компоновки модулей в спектрометр позволяют проводить регистрацию γ -излучения в широком энергетическом диапазоне с высокой эффективностью их регистрации. Во всех последующих

Рис. 2. *а*) Энергетический спектр детектора спектрометра источников ⁶⁰Со и ¹³⁷Cs, находящихся в позиции мишени. *б*) Расчетная функция энергетической зависимости $P(E_{\gamma})$ — отношение суммы событий регистрации моноэнергетического γ -излучения в пике полного поглощения к полному числу событий в спектре

вычислениях параметры расчета треков вторичных частиц имели величины CUTGAM и CUTELE, равные 10 кэВ, остальные параметры соответствовали общепринятым рекомендациям по моделированию γ -излучения.

Приведенная на рис. 2, δ энергетическая зависимость расчетной величины $P(E_{\gamma})$ определяет отношение суммы событий регистрации моноэнергетического γ -излучения в пике полного поглощения к полному числу событий в спектре.

Для расчета данной зависимости для каждой энергетической точки разыгрывалось 10⁶ событий изотропной эмиссии γ -квантов с энергией E_{γ} из мишени. После расчета траекторий и потерь энергии всех вторичных частиц величины энергий, выделенных в каждом детекторе спектрометра, суммировались и проводился анализ суммарного энергетического спектра. Очевидно, высокое значение величины $P(E_{\gamma})$ еще не гарантирует выполнения основного требования к установкам, применяемым в экспериментах данного рода, а именно, требования постоянства величины $\rho(E_{\gamma}, M_{\gamma}) \approx \text{const}$ эффективности регистрации γ -излучения вне зависимости от его энергии E_{γ} и множественности M₂. Для проверки этого условия в GEANT-расчетах были эмитированы каскады множественностью $M_{\gamma} = 2$. Исследованы зависимости $ho(E_1,E_2)$ от величин $E_{
m nopor}$ и энергий E_γ квантов каскада. На рис. 3 представлены четыре группы зависимостей $\rho(E_1, E_2)$ как функции энергии E_2 при постоянных величинах $E_1 = 100, 200, 511, 1173$ кэВ и различных значениях величины $E_{\text{nopor}} = 0, 50, 100, 150, 200, 500$ кэВ. Для каждой точки по энергии моделировалось $N = 10^6$ событий изотропного излучения каскада с множественностью $M_{\gamma} = 2$ из позиции мишени. На рис. 3, *а*, б видны две группы распределения кривых зависимости, первая группа $\rho(E_1, E_2) \approx 0.6$

Рис. 3. Эффективности регистрации $\rho(E_1, E_2)$ спектрометра каскада γ -квантов множественностью $M_{\gamma} = 2$ как функции энергии E_2 при постоянных энергиях $E_1 = 100, 200, 511, 1173$ кэВ и различных значениях $E_{\text{порог}} = 0-500$ кэВ. Темными треугольниками с цифрами I, 2, 3 показаны «измеренные» эффективности регистрации γ -каскадов $\rho(E_1, E_2)$ для $M_{\gamma} = 1, 2, 3$ и $E_{\gamma} = 1173$ кэВ, процедура «измерения» $\rho(E_1, E_2)$ описана в тексте

соответствует случаям, когда энергия E_1 одного из γ -квантов ниже величины $E_{\text{порог}}$. Вторая группа позиционируется в области $\rho(E_1, E_2) > 0.9$ для $E_1 = 100,200$ кэВ. Для более высоких энергий кривые эффективностей регистрации выходят на плато $\rho(E_1, E_2) \approx 0.85$ и $\rho(E_1, E_2) \approx 0.8$ для энергий $E_1 = 500$ и 1173 кэВ соответственно. Темными треугольниками с цифрами 1, 2, 3 на рис. 3, г показаны реконструированные значения $\rho(E_1, E_2)$, полученные при регистрации γ -каскадов множественностью $M_{\gamma} = 1, 2, 3$ и энергией γ -квантов E = 1173 кэВ. Данные величины были получены посредством конструирования искусственных событий из реальных, зарегистрированных спектрометром с помощью источника ⁶⁰Со и детектора NaI(Tl) $\emptyset150 \text{ мм} \times 100 \text{ мм}$. Детектор NaI(Tl) размещался вместо *E*-детектора и служил для запуска системы набора. Последующий «off-line» отбор событий по условию регистрации в NaI(Tl)-детекторе пика с E = 1332 кэВ позволял создавать искусственные события с M = 2 или 3 соответственно. С этой целью из первичных данных изготавливался новый файл физических событий, удовлетворяющих условию регистрации в NaI(Tl)-детекторе γ -квантов

E = 1332 кэВ только в пике полного поглощения. Иными словами, этот файл содержал события изотропной (в допущении аппроксимации угловых корреляций γ -квантов ⁶⁰Со изотропным распределением) эмиссии γ -кванта с E = 1173 кэВ из позиции мишени спектрометра. Так как NaI(Tl)-детектор в измерениях являлся триггерным, то отношение событий, в которых сработал (импульс от γ -кванта превысил величину порога дискриминатора) хотя бы один CsI(Tl)-детектор спектрометра, к полному числу событий определяет эффективность спектрометра зарегистрировать γ -квант с E = 1173 кэВ при данном пороге, т. е. величину $\rho(E_{\gamma} = 1173 \text{ кэB}, M_{\gamma} = 1)$. Создавая из данного файла событий новый файл, в котором последующие два события объединены в одно, получаем оценку величины $\rho(E_{\gamma} = 1173 \text{ кэB}, M_{\gamma} = 2)$, и так далее. Несмотря на ряд допущений, принятых в данной операции (аппроксимация угловых корреляций *ү*-квантов ⁶⁰Со изотропным распределением, пренебрежение суммированием энергий, если $E < E_{nopor}$ и др.), полученные величины служат иллюстрацией справедливости выражения $\rho(E\gamma, M_{\gamma} = M_{\text{max}}) \rightarrow 1$ при $M_{\rm max} > 5$. Это, с необходимостью, требует выполнения условия

$$\rho(E_{\gamma}, M_{\gamma} = 1) \to 1, \tag{3}$$

так как спектрометр должен с одинаковой эффективностью ρ регистрировать каналы реакции в широком диапазоне по $M_{\gamma} = (1 - M_{\text{max}})$, т. е. с наименьшей неопределенностью $\Delta \rho$, находящейся согласно выражению

$$\Delta \rho = \rho(E_{\gamma}, M_{\gamma} = M_{\max}) - \rho(E_{\gamma}, M_{\gamma} = 1). \tag{4}$$

Проведенные GEANT-расчеты позволили определить оптимальную геометрию спектрометра и соответствующий ей диапазон энергетических переходов E_{γ} между нижайшими состояниями исследуемых ядер, в котором γ -спектрометр обеспечит минимум величины $\Delta \rho$.

Исходя из вышеописанного основные требования к γ -спектрометру следующие:

а) постоянство $\rho(E, M_{\gamma}) \approx \text{const}$ эффективности регистрации γ -излучения вне зависимости от энергии E_{γ} и множественности M_{γ} излучения. Эта необходимость приводит к выражению $\rho(E, M_{\gamma}) \approx 1$.

б) высокая эффективность регистрации нейтронов $\rho(E_n, M_n) \approx 1$. Регистрация каналов холодного развала, которые не сопровождаются γ -эмиссией. в) низкая эффективность регистрации фоновых событий.

СИСТЕМА НАБОРА

Блок-схема установки, использованной для проведения экспериментов с пучками ⁶Не и ⁸Не малой интенсивности ($I \sim 10^3 \text{ c}^{-1}$), представлена на рис. 4. Аналоговые импульсы с детекторов dE_1, dE_2 , АК, E после предусилителей ПУ разветвлялись на два тракта — энергетический и временной.

Рис. 4. Блок-схема экспериментальной установки

Каждый из трактов имел стандартный набор электронных блоков, таких как спектроскопический усилитель СУ, пиковый преобразователь «амплитудацифра» АЦП, а также быстрый усилитель БУ, дискриминатор переднего фронта ПД, линии задержки ЛЗ, преобразователь «время-цифра» ВЦП. Поскольку частота циклов работы системы набора $\sim 10^3 \text{ c}^{-1}$ характеризуется небольшим мертвым временем, старт записи событий реализовался от dE_1 детектора, группы детекторов, предназначенных для идентификации частиц пучка и снижения их энергии. Логический сигнал временной привязки от блока ПД подавался на блок счетчика событий СЧЕТ и на вход блока мастертриггер МТ. При получении этого сигнала МТ вырабатывал импульсы «старт» и подавал их на постоянно закрытые блоки ВЦП и сигнал «ворот», открывающий на время $\tau = 4 \cdot 10^{-6}$ с постоянно закрытые блоки АЦП, после чего МТ вырабатывал сигнал запроса LAM для контроллера КК крейта КАМАК. Компьютер ПК, связанный с КК-интерфейсом, производил запись событий в диск, что позволяло накапливать события с последующим отбором согласно приведенной выше логике. Первый эксперимент по изучению энергетической зависимости полного сечения $\sigma_R(E)$ реакции ⁶He + ¹⁹⁷Au в энергетической области вблизи кулоновского барьера был проведен на ускорителе МЦ400 Лаборатории ядерных реакций ОИЯИ, Дубна. Вторичный пучок ядер ⁶Не с энергией E = 18A МэВ был получен на канале ахроматического сепаратора установки ACCULINA [13]. Таким образом, было проведено прямое и модельно-независимое измерение [14] функции возбуждения $\sigma_R(E)$ реакции 6 Не + 197 Аи в энергетическом диапазоне пучка 6 Не $E_{\rm ла6} = 24-72$ МэВ.

ЗАКЛЮЧЕНИЕ

Представлена разработанная в ЛЯР ОИЯИ методика для прямого и модельно-независимого измерения полных сечений, реализующая модифицированный метод трансмиссии, дополненный методиками γ -спектрометра полной геометрии и идентификации частиц Si-детектором по форме импульса. Проведены первые эксперименты с применением данной методики по измерению функции возбуждения $\sigma_R(E)$ полного сечения реакции ⁶He + ¹⁹⁷Au в энергетическом диапазоне пучка ⁶He $E_{\text{лаб}} = 24-72$ МэВ.

Авторы благодарны коллективу сектора №6 ЛЯР ОИЯИ (установка ACCULINA) и коллективу ускорителя МЦ400 за существенную помощь при проведении эксперимента.

Авторы благодарят инженера ЛЯР ОИЯИ В.В.Щетинкину за помощь, оказанную в конструировании установки.

Настоящая работа была выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ при поддержке гранта РФФИ 09-02-00196а и гранта полномочного представителя правительства Республики Чехия в ОИЯИ.

ЛИТЕРАТУРА

- 1. Соболев Ю. Г., Иванов М. П. и др. // ПТЭ. 2011. № 3. С. 1.
- 2. Пенионжкевич Ю. Э. // ЭЧАЯ. 1994. Т. 25. С. 930.
- 3. Tanihata I. et al. // Phys. Rev. Lett. 1985. V. 55. P. 2676.
- 4. Немец О. Ф. и др. // ЭЧАЯ. 1975. Т. 6, № 4. С. 827.
- 5. Warner R. E. et al. // Phys. Rev. C. 1996. V. 54. P. 1700.
- 6. Соболев Ю. Г. и др. // Изв. РАН. Сер. физ. 2005. Т. 69, № 11. С. 275.
- 7. Saint Laurent M. G. et al. // Z. Phys. A. 1989. V. 332. P. 457.
- 8. Khouaja A. et al. // Nucl. Phys. A. 2006. V. 780. P. 1.
- 9. Villari A. C. C. et al. // Phys. Lett. B. 1991. V. 268. P. 345.
- 10. Sobolev Yu. G. et al. Application of Pulse-Shape Discrimination Method for Wide Aperture Si-Detector // AIP Conf. Proc. 2010. V. 1224. P. 552.
- Tyurin G. P. LCP Identification Method Based on Pulse Shape Analysis // AIP Conf. Proc. 2010. V. 1224. P. 564.
- 12. Brun R. et al. // GEANT3. Geneva: CERN Data Handling Division, DDD/EE/84-1, 1987.
- 13. Rodin A. M. et al. // Nucl. Instr. Meth. B. 1997. V. 126. P. 236.
- 14. Соболев Ю. Г. и др. // Сборник тезисов докладов 61-й Международной конференции «Ядро-2011», 10–14 окт. 2011 г., Саров. Саров, 2011. С. 86.

Получено 22 ноября 2011 г.

Редактор М. И. Зарубина

Подписано в печать 07.02.2012. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,75. Уч.-изд. л. 0,89. Тираж 265 экз. Заказ № 57572.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/