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On the Reduction of Dimensionality of a General Classical Three-Body Problem

The reduction of dimensionality of the general three-body classical problem is considered
in the framework of the ideas of separation of the internal and external motions of the body
system. Based on the fact that for a Hamiltonian system there exists equivalence between
phase trajectories and geodesic trajectories on the Riemannian manifold M (the Lagrangian
surface of the body system), the classical three-body problem is formulated in the framework
of six ordinary differential equations (ODEs) of the second order on the tangential bundle of
the Lagrange manifold Mt. It is shown that in the case when the total interaction potential
of the body system depends on the relative distances between particles, three out of the six
geodesic equations describing rotations of the triangle formed by three bodies are solved
exactly. Using this fact it was proved that the general three-body problem can be described
in the limits of three nonlinear ODEs of canonical kind. It is shown that the reduced problem
describes the dynamics of the three-body system on the scattering plane with consideration
of the total angular momentum of the rotating body triangle. The equations of geodesic
deviations on the manifold R3 (the space of relative distances between particles) are derived
in explicit form. A system of algebraic equations for ˇnding homographic solutions of the
restricted three-body problem is obtained. The initial and asymptotic conditions for solution
of the classical scattering problem are found.
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INTRODUCTION

The general three-body classical problem concerns the question of under-
standing the motions of three arbitrary point masses traveling in space according
to Newton's laws of mechanics. Many works on analytical mechanics, celestial
mechanics, stellar and molecular dynamics (see [1Ä9]) are devoted to the study
of this problem. Note that most thoroughly, in particular theoretically and nu-
merically, the three-body problem was studied in the case of a restricted problem
when one of the masses is negligible compared to the other two masses. In this
case, the problem is naturally reduced to the two-body problem, which was ˇrst
exactly solved by Newton in his Principia in 1687. For solution of the general
problem, different approaches based on series expansions methods have been pro-
posed; however, due to the poor convergence of these expansions they are often
used and are useful only for solving of particular problems where the system of
three bodies is in a stable bound state [2, 10]. Moreover, the three-body problem
is a typical example of a dynamic system where on the large scales of the phase
space we observe all features of a complex motion including the bifurcation and
chaos. That makes the numerical simulation method a basic way of research of
the mentioned problem.

Thus, we can say that despite the centuries of exploration, there is no solution
to the general three-body problem as there are no coordinate transformations that
can simplify the problem; unlike the two-body problem or the restricted three-
body problem, the motion of each body has to be considered along with the
motions of the other two bodies because the vectors of the mutual forces do not
line up with the center of mass.

Let us note that the general problem of three bodies with consideration of
speciˇcs of the multichannel scattering differs by additional complexities, which
are associated primarily with the need for numerical simulation of the problem
for an inˇnite number of initial data. In other words, for numerical investigation
of the problem, if this is possible, it is important to reduce the dimensionality
of the problem which allows one to reduce the volume of calculations and make
them true and accurate.
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The problem of separating the vibration motions from the collective mo-
tions, i.e., the translational and rotational motions of the molecular system, has
been under continuous attention in both classical and quantum mechanics. In any
case, the problem of separation of motions in a molecular system makes one study
what is meant by the Eckart condition of the translational and rotational
motions [11Ä13]. In particular, in work [14] the vibration motions were de-
ˇned rigorously, and it was thereby shown that the vibration motions cannot be
separated from the rotation motions in the theory of connections in differential
geometry. In paper [15], on the basis of the connection theory for the center-
of-mass coordinate system, it was proved that the Eckart frame exists for any
conˇguration of the molecule but not uniquely. Moreover, as is shown in this
work, one can choose a moving frame relative to which the molecule moves
without rotation.

In Krylov's outstanding work [16], where statistical properties of a dynamical
system consisting of N classical particles (gas relaxation) are studied, for the ˇrst
time geodesic 
ow on the Lagrangian surface of a system of particles was used.
Later, by means of this method, statistical properties of non-Abelian YangÄMills
gauge ˇeld [17, 18] and relaxation properties of stellar systems [19, 20] were
studied in detail.

The main aim of the present work is to ˇnd new opportunities for separation
of the internal and collective motions in the general classical three-body problem,
which will be of key importance for the reducing of the dimensionality of the
studied dynamical problem. Following aforementioned works [19, 20], we have
used the geodesic trajectories approach on the Lagrangian surface of a three-body
system to describe the coupling between the rotational and internal motions at
the collision of bodies. We have shown the possibility of nontrivial separation
of motions in the general three-body problem on the Lagrangian surface of a
body system. It should be noted that for the ˇrst time the reducing of the
dimensionality of the classical three-body problem has been made on the basis of
heuristic considerations at the investigation of the problem of quantum chaos in
the system of three bodies [21].

In this work, we have strictly proven the possibility of reducing the dimen-
sionality of the general three-body classical problem twice (from the 6D to 3D)
and also developed new ideas for studies of the restricted and scattering problems.

1. FORMULATION OF THE PROBLEM

1.1. Reduction of the Problem of Multichannel Scattering to the Prob-
lem of Motion of Effective Mass in 6D Conˇguration Space. The 3D clas-
sical three-body problem in a most general formulation as the problem of
multichannel scattering with several possible outcomes can be represented
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as the scheme of multichannel scattering:

1 + (23) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + (23),
1 + 2 + 3,

(12) + 3,

(13) + 2,

(123)∗ →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + (23),
1 + 2 + 3,

(12) + 3,

(13) + 2,

where the numbers 1, 2 and 3 denote colliding particles; the brackets (. . .)
and (. . .)∗ denote two particles in bound state and the short-living resonance, cor-
respondingly. It is obvious that the investigation of short-living resonance (123)∗

is close to the restricted problem of three bodies. The classical Hamiltonian
of a three-body system in the Cartesian coordinates system (see ˇgure) has the
following form:

H =
3∑

i=1

p2
i

2mi
+ V (r1, r2, r3), (1)

where (r1, r2, r3) and (p1, p2, p3) are position vectors and momenta of the cor-
responding particles, respectively; (m1, m2, m3) are their masses; and V (r1, r2, r3)
denotes the total interaction potential between the particles. It will be assumed

The Cartesian coordinates system where the set of vectors r1, r2 and r3 denotes coordinates

of particles 1, 2 and 3, respectively. The � is the center of mass of pair (12) which in

the Cartesian system is expressed by R0. The Jacobi coordinates system described by the
radius-vectors R and r, in addition to θ, denote scattering angle
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that the total interaction potential of the body system depends on the relative
distances between the particles:

V (r1, r2, r3) ≡ V (||r12||, ||r13||, ||r23||), (2)

where r12 = r1 − r2, r13 = r1 − r3 and r23 = r2 − r3 are relative distances
between the particles; in the particular case, the total potential can consist of pair
potentials V (r1, r2, r3) = V12(||r12||) + V13(||r13||) + V23(||r23||).

After the Jacobi coordinates transformation, Hamiltonian (1) acquires the form

H =
3∑

k=1

P2
k

2μk
+ V ′(r,R), V ′(r,R) = V (||R − λ−r||, ||R + λ+r||, ||r||), (3)

where r = r2− r3 is the relative position of particle 2 to particle 3; R = r1 −R0

is the relative position of particle 1 to the center of mass of pair (23) the radius
vector of which is deˇned by the expression R0 = (m2r2 + m3r3)/(m2 + m3).
In addition, the following designations are made:

P1 = p1 + p2 + p3, P2 =
m3p2 − m2p3

m2 + m3
,

P3 =
(m2 + m3)p1 − m1(p2 + p3)

μ1
,

μ1 = m1 + m2 + m3, μ2 =
m2m3

m2 + m3
, μ3 =

m1(m2 + m3)
μ1

,

λ− =
μ2

m2
, λ+ =

μ2

m3
,

where P1 describes the total momentum of the three-body system; P2 = μ2ṙ =
μ2dr/dt is the momentum of the center of mass of pair (23); and P3 = μ3Ṙ =
μ3dR/dt is correspondingly the momentum of the effective mass μ3 which de-
scribes the three-body conˇguration 1 + (23).

After deleting the motion of the center of mass of the three-body system (that
is equivalent to the condition P1 = 0) [22, 23], we can ˇnd for the Hamiltonian
the following expression:

H̃ =
1

2μ0

3∑
k=2

P̃2
k + V ′(r,R), (4)

where

μ0 =
√

m1m2m3

μ1
, P̃2 =

√
μ2μ0ṙ, P̃3 =

√
μ3μ0Ṙ.
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More clearly, Hamiltonian (4) can be represented as

H̃(Px1 ,Px2 ;x1,x2) =
1

2μ0
(P2

x1
+ P2

x2
) + Ṽ (x1,x2) =

= H(Px;x) =
1

2μ0
P2

x + U(x), (5)

where

x1 =
√

μ2/μ0r, x2 =
√

μ3/μ0R, x = (x1,x2)T = R
6;

in addition, (. . .)T designates the transposed vector, Px1 ≡ P̃2, Px2 ≡ P̃3, and
U(x) = Ṽ (x1,x2) ≡ V ′(r,R).

Thus, the three-body scattering problem can be reduced to the problem of
motion of imaginary point with the effective mass μ0 on the six-dimensional
conˇguration manifold R

6.
1.2. The Equation of Motion on the Lagrangian Surface of a Three-Body

System. As is easy to see, the classical system of three bodies at their motion
in the 3D Euclidean space permanently forms a triangle, and Newton's equations
describe the dynamical system on the space of such triangles. This means that we
can formally consider the motion of a body system consisting of two parts. The
ˇrst is the rotational motion of the body-triangle in the 3D Euclidean space and
the second is the internal motion of bodies on the plane deˇned by the triangle.
It follows that theoretically the aforementioned motions can be separated by
introducing a nontrivial moving coordinate frame.

Mathematically, the conˇguration manifold of solid body R
6 can be repre-

sented as a direct product of two subspaces [24]:

R
3 × S3 :⇔ R

6,

where R
3 is the manifold which is deˇned as an orthonormal space of relative

distances between the bodies (the internal space), while S3 denotes the space of
rotation group SO(3) (the external space). However, in the considered problem
the connections between the bodies are not holonomic and, correspondingly, the
conˇguration manifold M must be different:

M ∼= Mt × S3 ⊂ R
6, Mt ⊂ R

3,

where the manifold Mt denotes a space of relative distances between moving
bodies (see deˇnition (7)).

Let us now introduce a local system of generalized coordinates:

(x1, x2, x3, x4, x5, x6) ∈ M, (6)
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where we assume that in the conˇguration space M the set of the ˇrst three
coordinates (internal coordinates) {x̄} = (x1, x2, x3) ∈ Mt, while the second set
of three coordinates (x4, x5, x6) ∈ S3.

The coordinates which describe the internal motions are deˇned as follows:

x1 = ||x1|| ∈ [0,∞), x2 = ||x2|| ∈ [0,∞),
(7)

x3 = ||x1 + x2|| =
√

(x1)2 − 2x1x2 cos θ + (x2)2 ∈ [|x1 − x2|, |x1 + x2|],

where θ is the angle between the vectors x1 and x2 (see ˇgure) which in the
Jacobi coordinates system coincides with the scattering angle.

The set of external coordinates (x4, x5, x6) describes the rotational motion of
a triangle (plane) and is uniquely related with the Euler angles (ω1, ω2, ω3) the
changing ranges of which are correspondingly deˇned as (ω1, ω2) ∈ (−π, π] and
ω3 ∈ [0, π].

Now, Hamiltonian (5) can be represented in the form of bilinear expansion
in the system of local coordinates (6):

H(Px;x) =
1

2μ0
gij({x})p ip j , i, j = 1, 2, . . . , 6, {x} = (x1, . . . , x6), (8)

where gij is a symmetric matrix which deˇnes the metric of some Riemannian
manifold; pi are the components of decomposition of the 6D momentum in the
local coordinate frame. Note that in (8) and below in the text by the dummy
indices summation is implied.

Using representation (8), we can obtain equations of motion in the Hamil-
tonian form:

dxi

dt
=

∂H
∂pi

=
1

2μ0
gijpj ,

dpi

dt
= −∂H

∂xi
= − 1

2μ0
gkl
;i pkpl, (9)

where glj
;i = ∂xiglj and t is the usual time.

The linear inˇnitesimal element on the metric gij({x}) can be deˇned by the
following:

(ds)2 = gij({x})dxidxj , (10)

where gij is the inverse to gij matrix.
In view of the physical reasoning, the metric of the Riemannian manifold will

be conveniently deˇned as the energy surface of the body system (Lagrangian
surface) which has the conformal Euclidean form:

gij({x}) = gij({x}) = [E − U({x})]δij = g({x})δij , gij = g−1δij , (11)

where E is the total energy of the body system; in addition, for the metric we
have the expression gij({x}) = gij({x̄}) (see Eq. (2)).
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Finally, we can write the explicit dependence of the total potential energy
on the internal coordinates. Using Eqs. (3), (5) and (6), it is easy to obtain the
following expression:

U({x̄}) = V (f+({x̄}), f−({x̄}), ax1), (12)

where f±({x̄}) =

√
3∑

k=1

b±k (xk)2 > 0; in addition, the following designations

are made:

a =
√

μ0

μ2
, b±1 =

μ0

μ2

(
1 ± λ±

√
μ2

μ3

)
, b±2 =

μ0

μ2

(
1 ± λ±

√
μ3

μ2

)
,

b±3 = ∓λ±
μ0√
μ2μ3

.

Let us note that the bilinear form under the square root is positive by deˇnition
regardless of coefˇcients' values b±k , where k = 1, 2, 3.

2. THE EQUATION OF MOTION FOR GEODESIC TRAJECTORIES

Since the Hamiltonian H describes a conservative system, the energy is an
integral of motion; hence the equation H(Px;x) = E = const determines the
11-dimensional energy hypersurface in the 12-dimensional phase space. As is
well known, the phase trajectories (9) which describe the behavior of Hamiltonian
system (8) may be presented as geodesic trajectories of the Riemannian manifold
(see [26, 27]) given generally in a subspace Ξ ⊂ Mt deˇned by the inequality
U({x̄} ∈ Ξ) < E.

The geodesic equations on the Riemannian manifold can be derived using
the variational principle of Maupertuis [24, 25] and are obviously equivalent to
system of equations (9):

ẍi + Γi
jkẋj ẋk = 0, i, j, k = 1, . . . 6, (13)

where ẋi = dxi/ds and ẍi = d2xi/ds2; in addition, Γi
jk designates Christoffel

symbol:

Γi
jk({x}) =

1
2
gil(∂kglj + ∂jgkl − ∂lgjk), ∂α ≡ ∂xα . (14)

Taking into account (10) and (14), we can obtain the following system of six
ordinary differential equations which describe the motion of the effective mass μ0
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on the conˇguration manifold M ⊂ R
6:

ẍ1 = −a1

⎧⎨
⎩(ẋ1)2 −

6∑
i�=1,i=2

(ẋi)2

⎫⎬
⎭ − 2ẋ1{a2ẋ

2 + a3ẋ
3},

ẍ2 = −a2

⎧⎨
⎩(ẋ2)2 −

6∑
i=1, i�=2

(ẋi)2

⎫⎬
⎭ − 2ẋ2{a3ẋ

3 + a1ẋ
1},

ẍ3 = −a3

⎧⎨
⎩(ẋ3)2 −

6∑
i=1, i�=3

(ẋi)2

⎫⎬
⎭ − 2ẋ3{a1ẋ

1 + a2ẋ
2},

ẍ4 = −2ẋ4{a1ẋ
1 + a2ẋ

2 + a3ẋ
3},

ẍ5 = −2ẋ5{a1ẋ
1 + a2ẋ

2 + a3ẋ
3},

ẍ6 = −2ẋ6{a1ẋ
1 + a2ẋ

2 + a3ẋ
3},

(15)

where the following denotations are made:

g({x̄}) = g11({x̄}) = . . . = g66({x̄}), ak({x̄}) = (1/2)∂k ln g({x̄}),
k = 1, 2, 3.

In system (15), the last three equations are solved exactly:

ẋl = Jl/g({x̄}), Jl = constl, l = 4, 5, 6. (16)

Let us note that J4, J5 and J6 are the integrals of motion. They can be interpreted
as projections of the total angular momentum of the three-body system onto
corresponding axes which are clearly deˇned by the initial conditions.

Finally, substituting (16) into Eqs. (15), we obtain the following system of
nonlinear second-order differential equations which describe dynamics of the
three-body system on the internal space Mt taking into account rotations of the
triangle on the external space S3:

ẍ1 = −a1{(ẋ1)2 − (ẋ2)2 − (ẋ3)2 − (J/g)2} − 2ẋ1{a2ẋ
2 + a3ẋ

3},
ẍ2 = −a2{(ẋ2)2 − (ẋ3)2 − (ẋ1)2 − (J/g)2} − 2ẋ2{a3ẋ

3 + a1ẋ
1},

ẍ3 = −a3{(ẋ3)2 − (ẋ1)2 − (ẋ2)2 − (J/g)2} − 2ẋ3{a1ẋ
1 + a2ẋ

2},
(17)

where J =
√

J2
4 + J2

5 + J2
6 = const is the integral of motion of the total angular

momentum of the three-body system.
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Thus, we have proved that the general 3D classical three-body scattering
problem can be reduced to the problem of solution of the three nonlinear second-
order differential equations on the tangential bundle Mt of the Lagrange manifold
M = [{x̄} ≡ (x1, x2, x3) ∈ Mt; gij = (E − U{x̄})δij > 0].

Many important properties of the dynamical system can be studied by means
of investigation of the behavior of linear deviations ηi = x̃i − xi between close
geodesic trajectories l̃ = l̃(x̃1, x̃2, x̃3) and l = l(x1, x2, x3). Recall that the linear
deviation satisˇes the equation [24]

D2
sηi = −Ri

jkl({x̄})ẋj ηk ẋl, i, j, k, l = 1, 2, . . . , 6, (18)

where Ri
jkl

(
{x̄}

)
= ∂kΓi

lj − ∂lΓi
jk + Γi

kλΓλ
lj − Γi

lλΓλ
jk is the Riemann tensor and

DsA
i ≡ DAi/Ds = Ȧi + Γi

jl({x̄})ẋjAl denotes the covariant derivative.
The explicit form of the deviation equations is very difˇcult to derive

from (18). However, this can be done easily by way of expansion of equations
system (17) on degrees of deviations keeping only the linear terms of deviation:

η̈1 = −{c1l[(ẋ1)2−(ẋ2)2−(ẋ3)2]−2ẋ1(c2lẋ
2 +c3lẋ

3)+(2a1al−g−2)J2}ηl−
− 2a1{ẋ1η̇1 − ẋ2η̇2 − ẋ3η̇3} − 2η̇1{a2ẋ

2 + a3ẋ
3} − 2ẋ1{a2η̇

2 + a3η̇
3},

η̈2 = −{c2l[(ẋ2)2−(ẋ3)2−(ẋ1)2]−2ẋ2(c3lẋ
3 +c1lẋ

1)+(2a2al−g−2)J2}ηl−
− 2a2{ẋ2η̇2 − ẋ3η̇3 − ẋ1η̇1} − 2η̇2{a3ẋ

3 + a1ẋ
1} − 2ẋ2{a3η̇

3 + a1η̇
1}, (19)

η̈3 = −{c3l[(ẋ3)2−(ẋ1)2−(ẋ2)2]−2ẋ3(c1lẋ
1 +c2lẋ

2)+(2a3al−g−2)J2}ηl−
− 2a3{ẋ3η̇3 − ẋ1η̇1 − ẋ2η̇2} − 2η̇3{a1ẋ

1 + a2ẋ
2} − 2ẋ3{a1η̇

1 + a2η̇
2},

where ck,l = ∂lak and k, l = 1, 2, 3.
While analyzing system of equations (19), we can construct the explicit

form of the Riemann tensor. It is obvious that system of linear equations for
deviations (19) can be solved together with nonlinear equations of geodesics (17).

3. THE RESTRICTED THREE-BODY PROBLEM

Using representation for the Hamiltonian (8) and solutions (16), we can ˇnd
the reduced Hamiltonian on the internal space Mt:

H̄({x̄}; { ˙̄x}) =
μ0

2g({x̄}){u
2 +v2 +w2 +(J/g({x̄}))2}, { ˙̄x} = (u, v, w), (20)

where ({x̄}, { ˙̄x}) ∈ Mt.
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As is easy to see, equations system (17) can be transformed to the system of
nonlinear differential equations of Riccati type:

u̇ + a1{u2 − v2 − w2 − (J/g)2} + 2{a2v + a3w}u = 0, u = ẋ1,

v̇ + a2{v2 − w2 − u2 − (J/g)2} + 2{a3w + a1u}v = 0, v = ẋ2,

ẇ + a3{w2 − u2 − v2 − (J/g)2} + 2{a1u + a2v}w = 0, w = ẋ3.

(21)

System of equations (21) describes the dynamics of a general three-body system
on the Lagrange manifold M and, obviously, their solutions must satisfy the
energy conservation law: H̄({x̄}; { ˙̄x}) = E = const. Note that this equation
deˇnes the 5-dimensional energy hypersurface in the reduced 6-dimensional phase
space.

An important class of solutions for the three-body problem is the restricted
problem (123)∗ (see the scheme of scattering). Some basic properties of this
problem can be studied without solving equations of motion (17) (or (21)).

Using Eqs. (21), we can derive conditions at which formation of stable con-
ˇgurations for a three-body system is possible.

The ˇrst condition which must be satisˇed for stable conˇguration of a body
system is obviously the condition of absence of external forces:

∇H̄({x̄}; { ˙̄x}) = 0, ∇ = gij∂j = g−1
3∑

j=1

∂j , ∂j = ∂/∂xj . (22)

Substituting (20) into (22) with account of the deˇnition of coefˇcients ai

(see (15)), we can ˇnd the following system of algebraic equations:

a1({x̄}) = 0, a2({x̄}) = 0, a3({x̄}) = 0. (23)

Solving system (23), we can ˇnd sets of stationary points {x̄}i where i = 0, 1 . . .
It is obvious that from these sets of points stable conˇgurations will form

only those for which the following conditions are satisˇed:

∂2
11H̄({x̄}0i; { ˙̄x}0i) > 0, det (∂2

ijH̄({x̄}0i; { ˙̄x}0i)) > 0,
(24)

det (∂2
klH̄({x̄}0i; { ˙̄x}0i)) > 0,

where i, j = 1, 2 and k, l = 1, 2, 3; in addition, in (24) designation ∂2
kl =

∂2/∂xk∂xl is made. However, system of equations (23), together with condi-
tions (24), deˇnes stable conˇgurations ({x̄}0i; { ˙̄x}0i = 0) of motionless bodies.
Note that these stable stationary conˇgurations are interesting in that they can
serve as bases for constructing homographic solutions (the solutions which con-
serve the conˇguration of bodies during the time). In other words, near the
stationary points {x̄}i ≈ {x̄}0i conˇguration of bodies should be moving freely.
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The latter means that we can ignore the ˇrst derivatives in Eqs. (21) and write
them in the form of algebraic equations:

a1{u2 − v2 − w2 − (J/g)2} + 2{a2v + a3w}u = 0,

a2{v2 − w2 − u2 − (J/g)2} + 2{a3w + a1u}v = 0, (25)

a3{w2 − u2 − v2 − (J/g)2} + 2{a1u + a2v}w = 0.

If we assume that coefˇcients satisfy the following limit transitions:

λlk = lim
{x̄}i→{x̄}0i

ak/al, λlk = λ−1
kl , k, l = 1, 2, 3,

in this case system of equations (25) at the stationary point {x̄}0i can be written
in the form

u2 − v2 − w2 − λ0 + 2(λ12v + λ13w)u = 0,

v2 − w2 − u2 − λ0 + 2(λ23w + λ21u)v = 0, (26)

w2 − u2 − v2 − λ0 + 2(λ31u + λ32v)w = 0,

where λ0 = (J/g({x̄}0i))2 = consti � 0.
Solving system of equations (26), we can ˇnd, in the general case, eight sets

of solutions for velocities { ˙̄x}k
0i, where k = 1, . . . , 8. The existence of sets of

real solutions will mean that for the body system with account of rotations on
Euler angles there are homographic solutions. In the case when there is at least
one set of solutions for system of equations (26), it is important to seek solutions
to (25) near a stationary point with consideration of conditions (24). By these
computations, we can ˇnd a region in the phase space where the coupled three-
body system (123)∗ depending on speciˇc conditions can be in the stable or
quasistable equilibrium state.

4. THE INITIAL AND ASYMPTOTIC CONDITIONS
OF THE THREE-BODY SCATTERING PROBLEM

For the solution of equations system (17) and interpretation of its results
from the point of view of multichannel scattering, it is necessary to deˇne the
initial conditions of the problem and analyze the asymptotic behavior of these
solutions. Obviously, for the solution of the scattering problem using the example
of a speciˇc system, the initial position and velocity of the imaginary mass μ0

on the conˇguration space M must be deˇned. However, for the qualitative
investigation of the scattering problem the initial conditions can be deˇned from
the physical considerations on the reduced space more clearly on the bundle Mt

of the Lagrange manifold M.

11



As is seen from the scheme of multichannel scattering given at the beginning,
the system of three bodies is located in the subspace (in) where particle 1 is in
the free state, while the other two particles 2 and 3 form the bound state (23).
In terms of coordinates of the internal space Mt, this asymptotic state is deˇned
by the following characteristic distances:

x1 � l23 = const > 0, x2 → ∞, x3 → ∞, (27)

where l23 denotes the oscillation amplitude of imaginary point with the mass μ0,
which is proportional to the distance between particles 2 and 3 when pair (23) is
in the equilibrium. In addition, projections of the initial velocity of the imaginary
point will be deˇned as follows:

ẋ1 = |v1| � v01 = const > 0, ẋ2 = ẋ3 = v0, (28)

where v01 and v0 are the maximum velocity at oscillations by the coordinate x1

and the velocity of translational motion of the imaginary point, respectively. The
total energy of the body system is an important integral of motion which can be
written with the help of initial conditions:

E =
μ0

2
[(v2

01 + 2v2
0) + 2J2] + V23(l23), (29)

where V23 denotes the interaction potential between bodies 2 and 3.
Thus, (27) and (29) are the necessary initial conditions for the solution of

system of nonlinear equations (17) (equivalent to system (21)) which describes
multichannel scattering in a three-body system.

Let us note that we can analyze behavior of geodesic trajectories in the limit
s → ∞ and ˇnd full information on the outcome of the collision.

In particular, after the collision of particles the geodesic trajectory comes to
one of (out) asymptotic subspaces which are characterized by speciˇc conˇgura-
tions of particles (see the scheme of scattering):

a) in the case when f−({x}) → ∞, f+({x}) → ∞ and x1 � l23, we have
the outcome 1 + (23) (the excitation);

b) when (f−({x}), f+({x})) → ∞ and x1 → ∞, the outcome of the process
is the dissociation 1 + 2 + 3 (all the particles are free);

c) when f−({x}) � l12 = const, f+({x}) → ∞ and x1 → ∞, the out-
come is the regrouping of particles with formation of the new bound state
(12) + 3, where l12 is the scaled distance between the particles of pair (12)
at the equilibrium;

d) when f−({x}) → ∞, f+({x}) � l13 = const and x1 → ∞, the outcome
is new regrouping of the particles (13) + 2, where l13 is the scaled distance
between the particles of pair (13).

Note that all processes which go across a phase of formation of the transition
complex (123)∗ eventually come to one of the four aforementioned asymptotic
subspaces.
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CONCLUSION

As was shown by Poincare, the three-body problem is generally a noninte-
grable system where the system of bodies in the phase space often demonstrates
chaotic behavior. It means that the small differences in the initial conditions pro-
duce very signiˇcant changes in the motion of the system on relatively smallish
intervals of time, which makes practically impossible the prediction of evolution
of bodies system in the phase space. The latter in turn means that any small error
at calculations of the three-body problem can develop in a short time into an
enormous mistake. Based on the foregoing, the reduction of the dimensionality
of the general classical three-body problem is a mathematical problem of great
importance. It should be noted that for the solution of this problem a lot of
effort has been made, but the maximal possible reduction of dimensionality of
the three-body and N -body problem is achieved only when the motion of bodies
is constrained on a plane [28].

As is shown by this study, the problem of reducing the general three-body
problem can be successfully solved if the dynamical problem is formulated as a
geodesic trajectories problem on the energy surface of bodies system. Note that
in this case the dynamics of the three-body system is described in the internal
space Mt by the system of three nonlinear ODEs of canonical form (17) instead
of the usual six ODEs. System of equations (17) simply reduces to a system
of Riccati equations, which is in stationary points correspondingly transformed
into system of algebraic equations (26). If the interaction potential between the
bodies is deˇned, we can solve system of equations (26) and ˇnd all homographic
solutions of a moving three-body system. In the paper, the initial and asymptotic
conditions of the multichannel scattering problem are also discussed in detail.
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