P9-2013-49

Н. С. Азарян, М. А. Батурицкий ^а, Ю. А. Будагов, В. В. Глаголев, Д. Л. Демин, С. В. Колосов ⁶, А. А. Кураев ⁶, Т. Л. Попкова ⁶, А. О. Рак⁶, А. К. Синицын ⁶, Г. В. Трубников, Г. Д. Ширков, Н. М. Шумейко ^а

ВЛИЯНИЕ ГЕОМЕТРИИ СОПРЯЖЕНИЯ СВЕРХПРОВОДЯЩЕГО НИОБИЕВОГО РЕЗОНАТОРА С ТРУБКОЙ ДРЕЙФА НА ЕГО ХАРАКТЕРИСТИКИ

^а НИУ «Национальный научно-учебный центр физики частиц и высоких энергий» Белорусского государственного университета (НЦ ФЧВЭ БГУ), Минск

⁶ УО «Белорусский государственный университет информатики и радиоэлектроники» (БГУИР), Минск

Азарян Н.С. и др. P9-2013-49 Влияние геометрии сопряжения сверхпроводящего ниобиевого резонатора с трубкой дрейфа на его характеристики

На основе численного моделирования исследовано влияние геометрии сопряжения сверхпроводящего ниобиевого резонатора с трубкой дрейфа. Расчетным путем установлено преимущество эллиптического сопряжения резонатора с трубкой дрейфа по сравнению с сопряжением по окружности: вариант с эллипсом на 7-10 % снижает максимальную величину напряженности электрического поля на стенке резонатора.

Работа выполнена в Лаборатории ядерных проблем им. В.П. Джелепова ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 2013

P9-2013-49

Azaryan N.S. et al. The Influence of the Conjugation Geometry of a Superconducting Niobium Cavity with a Drift Pipe on Its Characteristics

Using numerical recipes geometry of connection of superconductive niobium cavity with beam-pipe is investigated. Calculations show the advantage of elliptical connection of the cavity with the beam-pipe in comparison with connection by circle: elliptical connection allows reducing the maximum electric field strength at the cavity wall by 7-10 %.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2013

введение

В рамках участия Объединенного института ядерных исследований в проекте Международного линейного коллайдера (International Linear Collider — ILC) [1,2] в 2010 г. инициированы работы по созданию сверхпроводящих СВЧ-резонаторов из ниобия силами ведущих научно-исследовательских организаций Республики Белоруссии [3]. Для компьютерного моделирования СВЧ-резонатора в этих работах задействован Белорусский государственный университет информатики и радиоэлектроники (БГУИР).

Общий вид одноячеечного резонатора представлен на рис. 1.

Рис. 1. Внешний вид одноячеечного резонатора

При изготовлении таких резонаторов предъявляются очень высокие требования к обеспечению его основных характеристик. Собственная добротность должна быть не менее 10^{10} , чтобы обеспечить величину ускоряющего градиента на оси около $E_{\rm acc} \approx 300-350$ кВ/см при ограничении на величины пробивного напряжения и магнитного поля на внутренней поверхности. Должна быть обеспечена возможность настройки заданной собственной частоты 1,3 ГГц резонатора при неизбежном отклонении геометрических размеров в процессе изготовления. Обеспечение этих требований невозможно без выяснения основных закономерностей влияния различных факторов на эти главные характеристики. Установление таких закономерностей возможно лишь на основе детального компьютерного моделирования электромагнитных полей в резонаторе при изменении его профиля. Опыт таких расчетов имеется в БГУИР [4].

В результате выполненных ранее в БГУИР исследований совместно с НЦ ФЧВЭ БГУ и ОИЯИ были наработаны методики и созданы оригинальные пакеты эффективных по сравнению с имеющимися программ расчета и оптимизации параметров рассматриваемых резонаторов [5–7].

1

Следует отметить, что разработанные программы хотя и являются эффективными, однако имеют существенные ограничения, связанные с невозможностью выполнения расчетов трехмерных задач для резонаторов с азимутальной неоднородностью границы. Эта особенность не позволяет, в частности, реализовать расчет резонатора с несимметричными элементами вводавывода СВЧ-мощности, элементами управления селекцией мод. Ввиду этого для азимутально-несимметричных задач стоит использовать пакеты трехмерного моделирования. Однако, как показывает сравнение, применение таких пакетов для решения азимутально-симметричных задач приводит к увеличению машинного времени на порядок при той же точности расчетов.

Цель исследования — поиск на основе вычислительного эксперимента с использованием современных профессиональных пакетов программ перспективных вариантов одноячеечного сверхпроводящего ниобиевого резонатора для ускорителя электронов и позитронов в ILC и разработка методики измерения его добротности.

1. ПРОФИЛЬ ИССЛЕДУЕМОГО РЕЗОНАТОРА

Рассматриваемый резонатор представляет собой полость в круглом волноводе. Профиль продольного сечения и используемые для изготовления геометрические параметры резонатора представлены на рис. 2. Радиус регулярного волновода b_0 является закритическим для симметричной E_{01} -волны на заданной частоте. Поэтому в полости резонатора $z_0 < z < z_L$ запирается симметричная собственная E-мода, которая для частоты f = 1,3 ГГц является рабочей при использовании такого резонатора в составе ускорительной секции коллайдера. При этом размер пролетного интервала 2d определяется условиями максимума ускорения и равен $\lambda/2$.

Рис. 2. Геометрия профиля резонатора

Детальная постановка электродинамической задачи для рассматриваемого резонатора, методы ее решения и описание основных рассчитываемых рабочих характеристик резонатора представлены в [4–7]. В данной статье приняты обозначения, приведенные в этих источниках.

Как выявили расчеты [7] по исследованию величины радиусов сопряжения окружностями (a = b), добротность повышается, если $a \to 0$ и $r \to d$. Однако при $a \to 0$ в области сопряжения с отрезком регулярного волновода (при $z \approx z_0 + 0.7a$) резко возрастает напряженность электрического поля на границе резонатора, в то же время при уменьшении a от $a < 0.35\lambda/2\pi$ выигрыш в добротности меньше 0,5%. Здесь и далее $\lambda = 230.8$ мм — длина волны, соответствующая рабочей частоте f = 1.3 ГГц. Несколько больший выигрыш в добротности (до 5%) достигается при увеличении верхнего радиуса сопряжения 1.1 < r < d. Однако при фиксированном a и приближении r к d возрастает тангенс наклона сопрягаемой прямой tg l на боковой границе и опять же наблюдается резкий рост напряженности электрического поля на границе вблизи $z \approx z_0 + 0.7a$. Исходя из компромисса по добротности и значению поля на границе, принятому в работе [7], были выбраны рекомендованные для изготовления радиусы сопряжения a = 0.31, r = 1.1, что согласуется с результатами [8].

В работе [8], однако, для нижнего сопряжения использована не окружность, а эллипс, хотя технологически и с точки зрения простоты расчетов легче было бы выполнить сопряжение обычной окружностью.

Для выявления целесообразности эллипсоидального сопряжения в настоящем исследовании были проведены расчеты с целью установления влияния параметров эллипсоидального сопряжения на величину значения поля на границе, которая характеризуется относительным параметром $E_g^{\rm max}/E_{\rm acc}$. Для этого был разработан модуль расчета эллипсоидального сопряжения, усовершенствована оригинальная программа, описанная в [7], и выполнены расчеты резонатора с профилем, в котором сопряжение с трубкой дрейфа получается с помощью эллипса, как показано на рис. 2.

2. РЕЗУЛЬТАТЫ РАСЧЕТОВ ХАРАКТЕРИСТИК РЕЗОНАТОРА С РАЗЛИЧНЫМ СОПРЯЖЕНИЕМ

В табл. 1 приведены параметры варианта профиля резонатора с нижним сопряжением окружностью (a = b), близкого к образцу резонатора, полученного из FNAL и используемого как эталон. В верхних строках табл. 1–5 приведены безразмерные значения (б/р) параметров (отнесенные к $\lambda/2\pi$), в нижних — их значения в миллиметрах.

При такой геометрии получены следующие основные выходные характеристики (их описание приведено в [4–6]):

Таблица 1. Параметры резонатора, вариант 1 ($a = b, d = \pi/2$), окружность W = 1

b_0	h	d	a	b	r	z_1	h_1	z_2	h_2
1,063	1,764	1,5708	0,31	0,31	1,10	0,298	0,224	0,514	0,970
39,05	64,79	57,65	11,380	11,38	40,37	10,9	8,18	18,9	35,41

$$\begin{split} E_z^{\max} &= 0,73683 \text{ (6/p)}; \quad V_0 = 1,30264 \text{ (6/p)}; \quad E_{\mathrm{acc}} = 0,41464 \text{ (6/p)}; \\ E_z^{\max}/E_{\mathrm{acc}} &= 1,77704; \quad E_g^{\max}/E_{\mathrm{acc}} = 1,69638; \\ B^{\max}/E_{\mathrm{acc}} &= 0,00039 \text{ Tr}/(\mathrm{\kappa B/cm}), \end{split}$$

 $A_Q \cdot Z_0 = 272.8; \ Q = 27186; \ Z_{\rm res} = R/Q = 418.1 \ {
m Om}.$

В табл. 2 приведены параметры варианта профиля резонатора с эллипсоидальным сопряжением $a \neq b$, соответствующего образцу имеющегося резонатора, полученному группой авторов из FNAL [3]. Этот вариант предлагается для изготовления.

Таблица 2. Параметры резонатора, вариант 2 (a < b, $d = \pi/2$)

b_0	h	d	a	b	r	z_1	h_1	z_2	h_2
1,063	1,777	1,5708	0,245	0,349	1,098	0,2166	0,186	0,541	1,061
39,05	65,27	57,65	9,0	12,82	40,33	7,96	6,83	19,87	38,97

При такой геометрии получены следующие основные выходные характеристики:

 $\begin{array}{ll} E_z^{\max}=5,96941 \ ({\rm G/p}); \ \ V_0=10,62594 \ ({\rm G/p}); \ \ E_{\rm acc}=3,38244 \ ({\rm G/p}); \\ E_z^{\max}/E_{\rm acc}=1,76482; \ \ E_g^{\max}/E_{\rm acc}=1,57989; \\ B^{\max}/E_{\rm acc}=0,00038 \ {\rm Trl/(\kappa B/cm)}, \\ A_Q\cdot Z_0=278,1 \ {\rm Om}; \ \ Q=27710; \ \ Z_{\rm res}=R/Q=418 \ {\rm Om}. \end{array}$

Из сравнения таблиц видно, что при изменении параметров сопряжения несколько изменилось расположение точек сопряжения.

На рис. 3 представлено характерное распределение электрического поля на оси и на границе резонатора.

Как следует из сравнения характеристик этих двух вариантов резонаторов, при замене сопряжения окружностью на эллипсоидальное, даже несмотря на то, что средний радиус эллипса (a + b)/2 = 0.29 меньше радиуса окружности (a = 0.31), величина $E_g^{\max}/E_{\rm acc}$ (т.е. максимальное значение поля на границе) получается на 7 % меньше при использовании сопряжения эллипсом.

Ниже приведены результаты расчетов резонатора при изменении различных параметров. У варианта 3 уменьшен радиус b_0 и немного увеличено d по сравнению с вариантом 2.

4

Рис. 3. Распределения полей при A = 0,1, $\sigma = 5,6 \cdot 10^7$ (медь): a — поле E_{z0} на оси резонатора; δ — поле E_g на стенке резонатора; b(z) — профиль резонатора

Таблица 3. Параметры резонатора, вариант 3 ($a < b, d > \pi/2$), эллипсW = 1,009, f = 1,31

b_0	h	d	a	b	r	z_1	h_1	z_2	h_2
1,06128	1,7547	1,625	0,245	0,3484	1,143	0,2119	0,1736	0,5666	1,0433
39,00	64,45	59,7	9,0	12,8	42,00	7,78	6,376	20,81	38,32

Основные выходные характеристики, получаемые при такой геометрии:

 $\begin{array}{ll} E_z^{\max}=5,84483~({\rm G/p}); & V_0=10,53943~({\rm G/p}); & E_{\rm acc}=3,24290~({\rm G/p});\\ E_z^{\max}/E_{\rm acc}=1,80235; & E_g^{\max}/E_{\rm acc}=1,54632;\\ B^{\max}/E_{\rm acc}=0,00039~{\rm Tr/(\kappa B/cm)},\\ A_Q\cdot Z_0=286,6~{\rm Om}; & Q=28435; & Z_{\rm res}=R/Q=433,4~{\rm Om}; ~{\rm tg}~l=2,5. \end{array}$

Варианты 4 и 5 (табл. 4 и 5) рассчитаны при сопряжении окружностями. У них выдержаны b_0 , h, d, как у варианта 3.

Таблица 4. Параметры резонатора, вариант 4 (
 $a=b,\ d>\pi/2$), окружность $W=1,0,\ f=1,3$

b_0	h	d	a	b	r	z_1	h_1	z_2	h_2
1,06128	1,7547	1,625	0,31	0,31	1,186	0,299	0,227	0,4825	0,887
39,00	64,45	59,7	11,38	11,38	43,56	10,98	8,34	17,72	32,58

$$\begin{split} E_z^{\max} &= 5,47196 \text{ (6/p); } \quad V_0 = 9,73783 \text{ (6/p); } \quad E_{\mathrm{acc}} = 2,99626 \text{ (6/p); } \\ E_z^{\max}/E_{\mathrm{acc}} &= 1,82626; \quad E_g^{\max}/E_{\mathrm{acc}} = 1,71622; \\ B^{\max}/E_{\mathrm{acc}} &= 0,00039 \text{ Trl/(kB/cm), } \\ A_Q \cdot Z_0 &= 281,7 \text{ Om; } \quad Q = 28070; \quad Z_{\mathrm{res}} = R/Q = 421 \text{ Om; } \quad \mathrm{tg}\, l = 3,5. \end{split}$$

Если сделать высоту h = 65,26 мм чуть большей, то при r = 40,4 мм получаем значение $E_g^{\rm max}/E_{\rm acc} = 1,65$, т. е. оно уменьшается и приближается к значению в американском варианте, но при этом добротность также уменьшается: $A_Q \cdot Z_0 = 277$ Ом.

5

У следующего варианта 5 радиус сопряжения приближен к меньшему значению полуоси эллипса у варианта 3. Это сразу привело к увеличению E_q^{\max}/E_{acc} на 10 %.

Таблица 5. Параметры резонатора, вариант 5 (
 $a=b,\,d>\pi/2$), расчетные $W=1,0,\,f=1,3$

b_0	h	d	a	b	r	z_1	h_1	z_2	h_2
1,06128	1,7547	1,625	0,26	0,26	1,212	0,248	0,184	0,4656	0,896
39,00	64,45	59,7	9,54	9,54	44,52	9,11	6,76	17,10	32,91

 $\begin{array}{ll} E_z^{\max}=5,68714~(\text{6/p}); \ V_0=10,16337~(\text{6/p}); \ E_{\mathrm{acc}}=3,12719~(\text{6/p}); \\ E_z^{\max}/E_{\mathrm{acc}}=1,81861; \ E_g^{\max}/E_{\mathrm{acc}}=1,71800; \\ B^{\max}/E_{\mathrm{acc}}=0,00038~\mathrm{Trl/(\kappa B/cm)}, \end{array}$

 $A_Q \cdot Z_0 = 285,65$ OM; Q = 28463,486; $Z_{\rm res} = R/Q = 422,57333$ OM; tg l = 3,2.

В результате этих расчетов было установлено, что если выбирать скругление радиусом при фиксированной высоте h, то крутизна боковых стенок получается больше, чем у исходного американского варианта с эллипсоидальным сопряжением. За счет этого E_g^{\max} получается выше. Поэтому при использовании простого сопряжения окружностью не удается уменьшить напряженность поля на границе по сравнению с использованием сопряжения эллипсом.

выводы

В результате проведенного исследования можно сделать следующий вывод: сопряжение резонатора с отрезком регулярного волновода является наиболее критичным местом для возможного электрического пробоя. Сравнение двух способов сопряжения — с помощью окружности и с помощью эллипса — показало, что использование эллипса позволяет на 7–10 % снизить максимальную величину напряженности электрического поля на границе по сравнению с сопряжением окружностью.

ЛИТЕРАТУРА

- 1. International Linear Collider: Reference Design Report. V. 3 Accelerator. 2007.
- 2. International Linear Collider: A Technical Progress Report. 2011.
 - 6

- Azaryan N. et al. Dubna–Minsk Activity on the Development of 1.3 GHz Superconducting Single-Cell RF-Cavity // Proc. of RUPAC2012, WEPPD023. Saint Petersburg, Russia, 2012. P. 602–604.
- 4. *Kolosov S. V. et al.* The simulation codes CEDR // 11 IEEE IVEC. USA, Monterey, California, 2010. P. 115–116.
- Колосов С. В., Кураев А. А., Синицын А. К. Расчет ячейки ускорителя электронов и позитронов на сверхпроводящем ниобиевом резонаторе // Материалы 21-й Международной крымской конференции «СВЧ-техника и телекоммуникационные технологии». Севастополь, 2011. С. 285–286.
- Колосов С. В., Кураев А. А., Синицын А. К. Расчет девятисекционного резонатора линейного коллайдера // Там же. С. 267–268.
- 7. Азарян Н. С. и др. Расчет одноячеечного сверхпроводящего ниобиевого резонатора для ускорителя электронов и позитронов // Письма в ЭЧАЯ. 2012. Т. 9, № 2(172). С. 247–268.
- 8. Aune B. et al. Superconducting TESLA Cavities // Phys. Rev. Special Topics Accelerators and Beams. 2000. V. 3. P. 092001.

Получено 6 мая 2013 г.

Редактор Е.В. Сабаева

Подписано в печать 28.05.2013. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,62. Уч.-изд. л. 0,74. Тираж 235 экз. Заказ № 58000.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/