P14-2014-41

В.В. Савин¹, В.А. Семин, В.К. Семина

РЕНТГЕНО- И НЕЙТРОНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ ФОРМИРОВАНИЯ И УСТОЙЧИВОСТИ ФАЗ СО СТРУКТУРОЙ ТИПА Е9₃ В СПЛАВАХ СИСТЕМЫ Ni–Nb

Направлено в журнал «Поверхность. Рентгеновские, синхротронные и нейтронные исследования»

 $^{^1}$ Институт физики и химии Тюменского государственного университета, Тюмень, Россия

Савин В. В., Семин В. А., Семина В. К. Р14-2014-41 Рентгено- и нейтронографические исследования формирования и устойчивости фаз со структурой типа E9₃ в сплавах системы Ni–Nb

При анализе фазовых состояний, формирующихся в сплавах Ni₆₀₋₃₀Nb₄₀₋₇₀ при закалке из жидкого состояния и кристаллизации аморфных сплавов, различными авторами отмечалось образование двух фаз типа E9₃ с различающимися периодами кристаллической решетки: η' ((1,120 ± 0,001) нм) и η'' ((1,164 ± 0,002) нм). Для уточнения структуры указанных фаз и объяснения причин их формирования при неравновесной кристаллизации переохлажденного расплава и аморфного сплава в работе были использованы рентгенографический и нейтронографический методы исследований и кристаллохимические критерии теории формирования и устойчивости промежуточных фаз и аморфных сплавов в системах переходных металлов. Экспериментально было доказано, что η' и η'' — это фазы двух разных структурных типов: Fe₆W₆C и Ti₂Ni. Формирование обеих фаз связано с соответствующими кристаллохимическими параметрами: размерным фактором и электронной концентрацией.

Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

P14-2014-41

Препринт Объединенного института ядерных исследований. Дубна, 2014

Savin V. V., Semin V. A., Semina V. K. Formation and Stability of the E9₃-Type Phases in Ni–Nb Alloy System Studied by X-Ray and Neutron Diffraction

By analyzing phase states formed in the Ni₆₀₋₃₀Nb₄₀₋₇₀ alloys under rapid melt quenching conditions and metal glasses crystallization, some researchers have revealed formation of two isotypic E9₃-type phases, denoted as η' and η'' , which exhibit different lattice parameters: (1.120 ± 0.001) nm (η') and (1.164 ± 0.002) nm (η''). To refine structures of these phases and to clarify their formation reasons in course of non-equilibrium crystallization of undercooled melt and amorphous alloy, we used X-ray and neutron diffraction methods as well as crystallochemical criteria from the theory of formation and stability for intermediate phases and metal glasses in transition metal systems. It was experimentally shown that the η' and η'' phases belong to different structural types, namely Fe₆W₆C and Ti₂Ni, respectively. Formation of these phases is correlated with respective crystallochemical parameters: the size factor and electron concentration.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2014

введение

В работе [1] обобщены факторы, влияющие на формирование и устойчивость фаз со структурой типа E9₃ в сплавах систем ПМ(VIII)–ПМ(IV–VI) или P3M при неравновесной кристаллизации в условиях закалки из жидкого состояния (ЗЖС) и при отжиге аморфных сплавов (АС). В системе Ni–Nb выявлено существование двух фаз указанного типа с разными периодами решетки: η' ((1,120±0,001) нм) и η или η'' ((1,164±0,002) нм) [2–4]. В системах исследованных переходных металлов (ПМ) атомы внедрения (H, N, C, O) способствуют образованию тройных фаз типа E9₃, родственных фазe Ti₂Ni: Fe₃W₃C или Fe₆W₆C [5]. Стабилизирующая роль кислорода в их формировании проявляется при его концентрации больше 5 ат. % [6,7].

В связи с этим в настоящей работе были выполнены системные исследования влияния примесей внедрения на формирование и устойчивость структуры фаз типа $E9_3$ при кристаллизации в условиях ЗЖС и отжиге AC $Ni_{60-30}Nb_{40-70}$.

При изменении технологических параметров метода ЗЖС [8] были получены ленты (чешуйки, иголочки) с толщинами в диапазоне 1–100 мкм. Это позволило провести рентгеновский фазовый анализ η' -фазы. Использование монохроматического рентгеновского излучения и варьирование режимов съемки обеспечило повышенную чувствительность метода. Это было особенно важно при анализе слабых дифракционных максимумов рассеяния рентгеновского излучения от кристаллической фазы, выделяющейся в малом количестве внутри аморфной матрицы, обогащенной ниобием [9]. Последнее позволило довести фазовый анализ до количественных оценок — сопоставления экспериментальной и теоретической интенсивностей рассеяния рентгеновского излучения η' -фазой. Наличие достаточного количества однотипных ЗЖС аморфных сплавов Ni₅₈Nb₄₂ позволило получить (при соответствующем изотермическом отжиге) порошковые образцы массой до 5 г, которые содержали η' -фазу в аморфной матрице. Указанные образцы были исследованы нейтронографически. Сопоставление результатов рентгенографического и нейтронографического исследований η' -фазы позволило установить кристаллографический базис и объяснить ее формирование стабилизирующим действием примесей внедрения.

РЕНТГЕНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ *η*'-ФАЗЫ

В результате фазового анализа большого числа образцов сплава Ni₅₈Nb₄₂ было обнаружено, что в ЗЖС-лентах толщиной больше 50 мкм в аморфной матрице присутствует фаза, рентгеновские рассеяния от которой не могут быть интерпретированы как рассеяния от равновесных фаз данного сплава, т. е. μ + Ni₃Nb [10, 11]. На рис. 1 приведены дифрактограммы ЗЖС сплава Ni₅₈Nb₄₂ в зависимости от толщины закаленного образца (кривые 2–4). Однако по дифрактограммам ЗЖС сплавов (кривая 4) затруднительно провести полный анализ и определить структуру выделяющейся фазы, так как дифракционные максимумы слабые и сильно размыты. Увеличение толщины лент на несколько микрометров приводит к выделению при кристаллизации в таких условиях ЗЖС (малые переохлаждения расплава) равновесных фаз. Дифракционные максимумы рассеяния рентгеновских лучей от равновесных фаз на-

Рис. 1. Дифрактограммы (Со K_{α} -излучение) сплава Ni₅₈Nb₄₂ в зависимости от условий получения и дальнейшей обработки: l — литой сплав; 2 — ЗЖС сплав, пластины с $t \sim 100$ мкм; 3 — ЗЖС сплав, ленты с $t \approx 50-60$ мкм; 4 — аморфные ленты с $t \leqslant 50$ мкм; 5 — AC + отжиг 620 °C, 20 мин; 6 — AC + отжиг 625 °C, 1 ч; 7 — AC + отжиг 700 °C, 20 мин; 8 — AC + отжиг 960 °C, 1 ч

кладываются на рассеяния от η' -фазы (кривая 2). Малые изменения толщины ленты (несколько микрометров) могут вызвать изменение скорости охлаждения на порядок [12]. Поэтому, изменяя толщину ленты, трудно создать условия, благоприятные для образования исключительно η' -фазы. С целью получения состояния, отвечающего существованию в сплаве только η' -фазы или максимального количества η' -фазы внутри аморфной матрицы, был осуществлен изотермический отжиг AC Ni₅₈Nb₄₂ при температурах, близких к температуре начала кристаллизации ($T_{\rm kp}$), которую определяли в процессе непрерывного нагрева со скоростью $v_{\rm harp} = 1-4$ К/мин методами дифференциального термического (DTA), резистометрического (DTR) и дилатометрического (DTL) анализов [13]. При $v_{\rm harp} = 4$ К/мин по кривым DTA была определена $T_{\rm kp} = (625, 0 \pm 2, 5)$ °C. Результаты DTA, DTL и DTR для AC Ni₅₈Nb₄₂ представлены на рис. 2.

Рис. 2. Кристаллизация аморфного сплава Ni₅₈Nb₄₂ при непрерывном нагреве: l — DTA, $v_{\text{нагр}} \approx 4$ К/мин; 2 — DTR = $(R - R_0)/R_0$, $v_{\text{нагр}} \approx 8$ К/мин; 3 — DTL = $(L - L_0)/L_0$, $v_{\text{нагр}} \approx 4$ К/мин

Анализ дифрактограмм ЗЖС лент разной толщины и отожженного AC показывает, что η' -фаза выделяется как на ранней стадии кристаллизации AC, так и при кристаллизации переохлажденного расплава при ЗЖС со скоростью охлаждения ($v_{\text{охл}}$), близкой к критической для аморфного затвердевания ($v_{\text{амор}}$).

Расчет дифрактограммы изотермически отожженного AC Ni₅₈Nb₄₂ (625 °C, 20 мин) с указанием измеренной интегральной интенсивности дифракционных максимумов и индицированием полученного ряда межплоскостных расстояний (d/n) приведен в табл. 1.

$2 heta,^{\circ}$	<i>d/n</i> , нм	hkl	I _{эксп} *, %	Расчетные данные для состава Ni ₅₈ Nb ₄₂ с базисом [[Ni: 16(d), 32(e) $x_{32(e)} = 0.838$; Nb: 48(f) $x_{48(f)} = 0.202$]]**			
				<i>I</i> , %	d/n	$\Delta I = I_{эксп} - I , \ \%$	
40,57	0,258	331	14	13	0,2569	1	
45,98	0,229	422	35	36	0,2286	1	
48,90	0,216	333 + 511	100	100	0,2155	0	
53,61	0,199	400	42	40	0,1980	2	
57,05	0,187	442	10	7	0,1866	3	
69,47	0,157	711+551	4	2	0,1568	2	
75,60	0,146	533 + 731	9	10 0,1458		1	
81,60	0,137	080 + 733	10	7; 2	0,1400; 0,1368	1	
85,27	0,1322	822 + 660	39	32	0,1320	7	
87,46	0,1293	175 + 555	12	10	0,1293	2	
105,21	0,1127	755 + 771	21	22	0,1125	3	
109,00	0,1099	862 + 20,10	12	10	0,1098	2	
111,44	0,1083	773+951; 210,2	20	14 6	0,1083 0,1078	0	
132,40	0,0978	595+179+13,11	4	9	0,0978	5	
137,37	0,0961	60,10+686	9	6	0,096	3	
146,70	0,0934	0,012+884	20	24	0,0933	4	
* Интенсивность определялась по площади под пиком, форму которого аппрок-							

Таблица 1. Экспериментальные интенсивности рассеяния рентгеновского Со K_{α} -излучения и расчет дифрактограмм от отожженного ЗЖС АС Ni₅₈Nb₄₂ (625 °C, 20 мин)

симировали треугольником. ** Атомы Nb занимают свои позиции с вероятностью 0,833, и с вероятностью

0,167 в этих позициях находятся атомы Ni.

Экспериментальный ряд (d/n) полностью индицируется, если предположить, что в сплаве присутствует фаза с ГЦК-решеткой и периодом a = 1,120 нм. Такую структуру и близкие значения периода решетки имеют фазы Ti₂Ni [14] и $\eta(\eta'')$ -фаза, образование которой в системе Ni–Nb (в сплавах, богатых Nb) установлено в работах [3, 4]. По аналогии с η -фазой фаза, обнаруженная в сплаве Ni₅₈Nb₄₂ после ЗЖС и при кристаллизации AC, обозначена как η' . Соответственно, вторая фаза типа E9₃, образующаяся в сплавах системы Ni–Nb при содержании ниобия больше 50 ат. %, далее обозначается как η'' .

Сопоставление значений экспериментально измеренной относительной интегральной интенсивности рассеяния рентгеновского излучения Со K_{α} (AC + 625 °C)-образцом с расчетными данными для η' -фазы с базисом, аналогичным Ti₂Ni [15, 16] или $\eta(\eta'')$ -фазе [4], дает хорошее качественное совпадение. Однако для самых сильных максимумов получаются различия, выходящие за пределы ошибки измерения их интенсивностей.

Металлографические исследования AC Ni₅₈Nb₄₂ после изотермического отжига (625 °C, 20 мин) выявляют наличие в матрице мелкодисперсных включений с размером < 1 мкм. На рис. 3 приведены результаты электронномикроскопического анализа фольги из такого образца. Из-за дисперсности и малого объемного содержания в сплаве частиц η' затруднительно прямыми методами точно установить ее химический состав. Поэтому возможное влияние изменения состава η' -фазы на относительную интенсивность рассеяния рентгеновского излучения оценивали расчетным путем.

Рис. 3. Результаты электронно-микроскопического анализа фольги из отожженного (625 °С, 20 мин) ЗЖС аморфного сплава Ni₅₈Nb₄₂: a — дифракционная картина от участка, содержащего выделения η' -фазы; δ — светлое поле (× 3000); s — темное поле в рефлексе основного кольца

Состав	Направление	Вероятность заполнения атомами правильных систем точек базиса структуры типа E9 ₃							
фазы	перехода	16	16(<i>d</i>)		(<i>e</i>)	48	48(<i>f</i>)		
	-	Ni	Nb	Ni	Nb	Ni	Nb		
A _{1,38} B		_		1,000	0,000	0,167	0,833		
AB		1,000	0,000	1,000	0,000	0,000	1,000		
AaBa	$2 \rightarrow 4$	0,400	0,600	1,000	0,000	0,000	1,000		
11203	$2 \rightarrow 6$	1,000	0,000	0,700	0,300	0,000	1,000		
AB_2		0,000	1,000	1,000	0,000	0,000	1,000		
AB ₂	$2 \rightarrow 4$	0,000	1,000	0,750	0,250	0,000	1,000		
1103	$2 \rightarrow 6$	1,000	0,000	0,250	0,750	0,000	1,000		
AB_5		1,000	0,000	0,000	1,000	0,000	1,000		
	•	•	•		-	-	•		

Таблица 2. Возможные базис и состав η' -фазы со структурой Е9₃

Примечание. Направление перехода определяет очередность заполнения подсистем базиса и характеризует стехиометрию, к которой стремится состав фазы AB при таком заполнении: например, $2 \rightarrow 4$ означает, что заполнение в базисе соответствует изменению состава от AB к AB₃, а $2 \rightarrow 6$ — от AB к AB₅.

Состав фазы варьировался от $Ni_{1,38}Nb$ до $NiNb_5$ путем изменения расположения и вероятности заполнения позиций базиса атомами Ni и Nb. Соответствующие значения приведены в табл. 2.

Пространственная группа $Fd3m-O_h^7$ включает ряд правильных систем точек, в том числе 16(d), 32(e), 48(f). В фазе Ti₂Ni, согласно [16], Ni занимает позицию 32(e) с параметром x = 0,835, а Ti — позиции 16(d) и 48(f) с параметром x = 0,195. Такое заполнение атомами базиса точно отвечает стехиометрии AB₂. По результатам химического анализа, выполненного в [14], именно такой состав имеет фаза Ti₂Ni. Переменные параметры по данным [14, 16] отличаются от приведенных в работе [4], но согласуются со значениями для Fe₃W₃C [15].

Расчет относительной интегральной интенсивности рассеяния рентгеновского излучения фазой Ti_2Ni с базисом, согласно [4], дал хорошее совпадение с экспериментальными значениями интенсивности рассеяния фазой из [14].

Ошибочность базиса, приведенного в [14, 16], подтверждается вычислениями кратчайших межатомных расстояний в фазе со структурой типа E9₃. Расчет показывает невозможность (из-за большого дополнительного сжатия) нахождения металлических атомов в точках позиций 16(*c*) (табл. 3).

Правильная система точек (i, j) пространственной группы Fd3m		$ r_{ij}^{\min} $ $\pm 0,0025,$ нм	Число ближайших соседей, n _{ij}	Координационное число, N		
i	j		5	Общее	Без 16(с)	
	32(<i>e</i>)	0,245	6			
16(<i>d</i>)	48(<i>f</i>)	0,285	6	12	12	
10(0)	16(<i>d</i>)	0,395	6	12	12	
	16(<i>c</i>)	0,395	6			
	16(<i>d</i>)	0,245	3			
	48(f)	0,265	3		12	
32(<i>e</i>)	32(<i>e</i>)	0,270	3	15		
	48(f)	0,280	3			
	16(<i>c</i>)	0,330	3			
	16(<i>c</i>)	0,215	2		14	
	32(<i>e</i>)	0,265	2			
19(f)	32(<i>e</i>)	0,280	2	16		
48())	16(<i>d</i>)	0,285	2	10		
	48(f)	0,295	4			
	48(f)	0,310	4			
	48(<i>f</i>)	0,215	6			
16(c)	32(<i>e</i>)	0,330	6	12	_	
10(0)	16(<i>c</i>)	0,395	6	12		
	16(<i>d</i>)	0,395	6			

Таблица 3. Ближайшие межатомные расстояния (r_{ij}^{\min}) и число ближайших соседей в структуре типа Е9₃ с периодом решетки a=1,120 нм и переменным параметром базиса $x_{32(e)}=0,835$ и $x_{48(f)}=0,195$

Структура Fe₃W₃C отличается от структуры Ti₂Ni дополнительным заполнением в пространственной группе Fd3m правильной системы точек 16(c) атомами углерода [6]. При этом атомы Fe занимают позиции 16(d) и 32(e), а W — 48(f). В работе [16] приводятся данные для базиса структур фаз Me₂Ti₄O, где Me = Ni, Co, Fe, Mn, Cu, которые из-за присутствия в базисе атомов кислорода также не являются фазами структурного типа Ti₂Ni.

Фазы относятся к одному и тому же структурному типу только тогда, когда однотипные атомы располагаются в точках одних и тех же правильных

систем одной и той же пространственной группы, при этом атомы, занимающие позиции каждой правильной системы точек, имеют одинаковую координацию. В таком представлении фазы Fe_3W_3C , Ti_2NiO_x и Ti_2Ni относятся к разным структурным типам. В настоящей работе для фазы со структурой типа E9₃ с периодом решетки a = 1,120 нм и базисом [[16(c); 16(d); 32(e) x = 0,835; 48(f), x = 0,195]] для заданных распределений атомов по правильным системам точек были рассчитаны ближайшие межатомные расстояния (с точностью $\pm 0,0025$ нм) и соответствующие координационные числа. Результаты вычислений приведены в табл. 3.

Из таблицы видно, что структуры AB = {[32(e) + 16(d)]/48(f)}; AB₂ = {32(e)/[16(d)+48(f)]} и AB₅ = {16(d)/[32(e)+48(f)]}, где в числителе записаны позиции атомов сорта A, а в знаменателе — сорта B, в отношении координации неравноценны. Например, в AB₂ парциальные координационные числа $n_{\rm Ni-Nb} = 9$, $n_{\rm Ni-Ni} = 3$, в то время как в AB₅ $n_{\rm Ni-Nb} = 12$, $n_{\rm Ni-Ni} = 6$, т. е. имеется существенное различие парциальных координационных чисел, и, следовательно, фазы, отвечающие рассмотренным стехиометриям, относятся к разным структурным типам.

Если рассматривать структуры типа Ti_2Ni и Fe_3W_3C и, соответственно, структуры, отвечающие составам AB_2 и AB, как вырожденные [17], то можно утверждать следующее: переход от AB_2 к AB_5 требует существенной пространственной и временной перегруппировки атомов и поэтому маловероятен как процесс вырождения.

Рис. 4. Расчетная зависимость относительной интегральной интенсивности дифракционных максимумов (133), (242) и (440) рассеяния рентгеновского Со K_{α} -излучения η' -фазой в зависимости от ее состава и схемы вырождения: * — экспериментальные значения; **П**, **О**, **A** — вырождение по типу 2 \rightarrow 6; \Box , \bigcirc , \triangle — вырождение по типу 2 \rightarrow 4; обозначения согласно табл. 2

В соответствии с рассмотренными схемами вырождения выбирался базис заданного состава фазы, отличающегося от AB_2 или AB_5 . В табл. 2 указано направление соответствующего перехода. Результаты расчета влияния изменения состава фазы Ni_xNb_y со структурой $E9_3$ на относительную интегральную интенсивность рассеяния рентгеновского излучения в зависимости от направления перехода представлены на рис. 4. В левой его части нанесены экспериментальные значения относительной интегральной интенсивности, полученные усреднением данных более чем от 20 образцов (отмечены «**»). Статистическая ошибка измерения не превышала 2%. С учетом этого можно утверждать, что наблюдаемое расхождение экспериментальных и расчетных значений интенсивностей первых сильных максимумов нельзя объяснить только изменением состава фазы. Требуется анализ и других факторов, влияющих на интенсивность рассеяния рентгеновского излучения фазой Ni_xNb_y типа $E9_3$.

Рис. 5. Расчетная зависимость относительной интегральной интенсивности дифракционных максимумов (331), (422) и (044) рассеяния рентгеновского Со K_{α} -излучения η' -фазой со структурой типа E9₃ состава AB от величины переменных параметров ее базиса

Базис, определяющий структурную амплитуду рассеяния рентгеновских лучей, зависит как от распределения атомов по позициям, так и от переменных параметров. В базисе анализируемой структуры типа E9₃ таких параметров два: $x_{32(e)}$ и $x_{48(f)}$. В настоящей работе изучали влияние малых изменений обоих переменных параметров базиса на интенсивность рассеяния рентгеновских лучей η' -фазой.

На рис. 5 представлены результаты расчета относительной интегральной интенсивности рассеяния рентгеновского Со K_{α} -излучения плоскостями (133), (242) и (440) η' -фазы для базиса с изменяющимся параметром $x_{32(e)}$ при постоянном $x_{48(f)}$ (*a*) и для базиса с изменяющимся параметром $x_{48(f)}$ при постоянном $x_{32(e)}$ (*б*). Распределение атомов по позициям базиса в обоих случаях остается неизменным, соответствует среднему составу сплава и направлению перехода $2 \rightarrow 4$ (см. табл. 2). Анализ хода кривых показывает, что малые отклонения переменного параметра $x_{32(e)}$ от значения 0,835, характерного для фаз Ti₂Ni и Fe₃W₃C [4], не в состоянии сильно изменить соотношение $I^p(422)/I^p(044)$: кривые интенсивностей данных максимумов практически параллельны. Изменение параметра $x_{48(f)}$ вблизи значения 0,195, известного для тех же фаз, приводит к пересечению кривых $I^p(422)$ и $I^p(004)$ и изменению их соотношения.

Переменный параметр в базисе фаз с изоморфными структурами может меняться, если позиции определенного сорта атомов занимаются атомами другого размера (другого сорта) [17]. Несмотря на то, что атомные радиусы у Nb и Ti для координационного числа KЧ = 12 одинаковые, период решетки у Ti₂Ni a = 1,128 нм [14], т. е. больше, чем у η' -фазы. Следовательно, эффективный радиус Nb в структуре E9₃ меньше, чем радиус Ti. Это вполне может вызвать малые изменения переменных параметров базиса. Данное влияние усиливается возможным замещением атомов Nb атомами Ni, которые имеют меньший атомный радиус.

Сопоставление результатов расчетов с экспериментальными данными позволило выбрать начальные значения переменных параметров $x_{32(e)}$ и $x_{48(f)}$, которые в дальнейшем уточнялись методом проб и ошибок с шагом 0,001 по x. Было получено, что фактор достоверности (сходимости) Q', определяемый по шестнадцати линиям, приведенным в табл. 1, становится минимальным для базиса с $x_{48(f)} = 0,202$ и $x_{32(e)} = 0,838$: $Q' \leq 0,1$. Достигнутая в работе сходимость лучше аналогичной величины для фазы Ti₂Ni, определенной в работе [14].

ФОРМИРОВАНИЕ И УСТОЙЧИВОСТЬ ФАЗ СО СТРУКТУРОЙ Е9₃ В СПЛАВАХ СИСТЕМЫ Ni–Nb

Выше отмечалось, что в сплавах переходных металлов неметаллические примеси способствуют образованию тройных фаз со структурой типа E9₃ [6]. Поэтому в работе был выполнен химический анализ исследованных сплавов на общее содержание элементов внедрения. Для достоверности результатов по каждому элементу анализ проводился на трех одинаковых образцах в двух различных лабораториях. Анализировали содержание указанных элементов в литых (Л) и закаленных из жидкого состояния (ЗЖС) сплавах. Сплавы различались состоянием компонентов в исходной шихте: (С1) — порошковые компоненты; (С2) — компоненты в виде ленты (фольги). Результаты химического анализа для сплава Ni₅₈Nb₄₂ приведены в табл. 4. Суммарное содержание примесей в Л(С1) в три раза больше, чем в Л(C2). ЗЖС снижает содержание в ЗЖС(С1) по-прежнему в два раза выше их содержания в ЗЖС(С2).

	Метод получения сплава и состояние основных компонентов									
		в исходнои шихте								
	Элект	родугово	ой переп.	лав на	Закал	Закалка на мелный барабан				
	медн	юм водо	охлажда	емом	ИЗ	жилкого	о состоян	ия		
	ПС	оддоне на	авески 2	υг		,, .				
Элемент	Пороц	іковые	Компс	ненты	Пороц	іковые	Компо	оненты		
	компо	ненты	в виде фольги		компо	компоненты		фольги		
	Л(С	Л(C1)		Л(C2)		ЗЖС(С1)		ЗЖС(С2)		
	Содержание примесей, %									
	масс.	ат.	масс.	ат.	масс.	ат.	масс.	ат.		
0	0,3080	1,3846	0,0740	0,3362	0,2430	1,0944	0,0510	0,3115		
Ν	0,0148	0,0760	0,0029	0,0145	0,0180	0,9460	0,0040	0,0207		
Н	0,0026	0,1852	0,0016	0,1152	0,0032	0,2283	0,0025	0,1798		
С	0,0300	0,1800	0,0200	0,1210	0,0300	0,1800	0,0400	0,2419		
Σ	0,3554	1,8258	0,0985	0,5869	0,2942	1,4487	0,0975	0,6739		
$\langle \Sigma \rangle$	0,36	1,83	0,10	0,59	0,29	1,45	0,10	0,67		

Таблица 4. Химический анализ примесей внедрения в сплаве $Ni_{58}Nb_{42}$, полученном различными методами

Полученные данные согласуются с результатами рентгеновского спектрального анализа. В сплаве ЗЖС(С1) Ni₅₈Nb₄₂ кислород равномерно распределен по объему, и его суммарное содержание не превышает $(0,20 \pm 0,05)$ масс. %. Ожидать стабилизирующего влияния на образование тройных фаз Е9₃ такого малого количества равномерно распределенного кислорода неправомерно. Необходимо учитывать кристаллохимические факторы, влияющие на формирование и устойчивость фаз указанного типа. Это согласуется

с данными о распаде при термообработке фазы NiTi в системе Ni–Ti–O–N на фазы Ni₃Ti и Ti₂Ni при содержании кислорода меньше 2 ат. % [18].

Используя только дифракцию рентгеновских лучей, практически невозможно обнаружить присутствие и определить положение легких неметаллических элементов в структуре средних и тяжелых атомов [19]. Но это можно сделать, используя дифракцию нейтронов [20]. Нейтронограмму снимали от порошка отожженного AC(C1) Ni₅₈Nb₄₂ на кольцевом многодетекторном дифрактометре ДИСК повышенной светосилы, $\lambda_{cp} = 0,1769$ нм [21]. Съемка проводилась в НИЦ «Курчатовский институт». Сопоставление рентгеновской дифрактограммы и нейтронограммы приведено в табл. 5.

Р	ентгенограм	мма	Нейтронограмма			hkl	
$2\theta, \circ$	I, %	d/n, нм	$2\theta, \circ$ I, % θ		d/n, нм	1161	
	Ср. сл. **	0,645	15,57	14	0,654	111	
		0,557					
			25,75	Оч. сл.	0,397	220	
			30,15	Оч. сл.	0,340	311	
	Оч. сл. **	0,279		Оч. сл.		222,400	
40,57	14	0,258	_			331	
45,98	35	0,229	45,62	10	0,228	224	
48,90	100	0,216	48,43	100	0,216	333 + 511	
53,61	42	0,199	52,82	44	0,199	440	
57,05	10	0,187	56,16	20	0,188	153	
			56,57			244 + 600	
	—		59,94	Оч. сл.	0,177	062	
			62,49	20	0,177	533	
					0,169	622	
69,47	4	0,157		—		711 + 551	
75,60	9	0,146		—		533 + 731	
81,60	10	0,137	80,77	Оч. сл.	0,137	080 + 733	
85,27	39	0,132	83,93	30	0,132	282 + 660	
87,46	12	0,129	86,57	20	0,129	555 + 175	
			92,20	30	0,123	911 + 375	

Таблица 5. Сопоставление дифрактограммы (монохроматическое Со K_{α} -излучение) с нейтронограммой ($\lambda = 0,1769$ нм) для отожженного AC Ni₅₈Nb₄₂

Продолжение табл. 5

P	ентгенограм	лма	Нейтронограмма			bkl	
2θ , °	I, %	d/n, нм	2θ , °	<i>I</i> , %	d/n, нм	10100	
			92,76			284	
			96,94	Оч. сл.	0,118	466	
			97,78			193	
105,21	25	0,113	103,10	26	0,113	177 + 393 + 575	
109,00	12	0,1099	109,42	10	0,1084	862+20,10	
111,44	20	0,1085				773 + 951 22,10 + 665	
132,40	4	0,0978				595 + 13,11 + 179	
137,37	9	0,0961				686 + 60,10	
146,70	20	0,0934				884+00,12	
	Cp. *	0,0903	161,98	Оч. сл.	0,0896	22,12+46,10 975+53,11	
			167,76	Cp.	0,0890	40,12	
	Сл. *	0,0835				60,12+84,10	
	Оч. сл. *	0,0792				86,10+02,14 + 010,10	

* Определено из дебаеграммы на Си-излучении.

** Определено из дебаеграммы на Fe-излучении.

Для ряда дифракционных максимумов наблюдается существенное расхождение в интенсивностях рассеяния рентгеновских лучей и нейтронов. Интенсивность рассеяния может измениться как из-за наличия в фазе атомов внедрения, так и из-за изменения амплитуды рассеяния нейтронов ядрами по сравнению с атомной амплитудой рассеяния рентгеновских лучей. Поэтому были проведены расчеты структурного фактора и относительной интенсивности рассеяния рентгеновских лучей и нейтронов сплавом, содержащим η' -фазу. Вычисления проводили по формуле для структурного фактора точек общего положения пространственной группы $Fd3m - O_h^7$ [22] в соответствии с [23].

Результаты расчета представлены в табл. 6 и 7, где кроме относительных интенсивностей (I_j^p/I_j^n) приведены структурные амплитуды (S_j^p/S_j^n) рассеяния рентгеновских лучей и нейтронов атомами (ядрами), расположенными в определенных правильных системах точек базиса (в частных положениях).

	Структурная амплитуда рассеяния рентгеновского излучения и нейтрог									
		атомами (ядрами), находящимися в правильной системе точек								
hkl ,	$S_i^{p,n}$	пространстве	енной группы	$Fd3m: S_j^p = (fA)$	$\mathbf{A}_j + if\mathbf{B}_j$; $S_j^m =$	$= (b\mathbf{A}_j + ib\mathbf{B}_j)$				
	5	16(<i>c</i>)	16(<i>d</i>)	$32(e) \ x = 0.835$	$48(f) \ x = 0,202$	8(a)				
		С	Ni	Ni	Nb	С				
111	S_j^p	363 - 363	-1774 + 1774	-169 + 1269	1146-1146	513 + 513				
	S_j^n	1137 – 1137	-1774 + 1774	-1269 + 1269	535-535	1608 + 1608				
311	S_j^p	-299-299	1724 + 1724	-575 - 575	-215-215	423 + 423				
	S_j^n	-1104-1104	1724 + 1724	-575 - 575	-107 - 107	1562 + 1562				
400	S_j^p	-755 + 0	-4278 + 0	-2292 + 0	4963 + 0	756 + 0				
100	S_j^n	-2742 + 0	-4278 + 0	-2292 + 0	2270 + 0	2740 + 0				
331	S_j^p	-251-251	-1466 + 1466	1052 - 1052	-1370 + 1370	354-354				
551	S_j^n	939-939	-1466 + 1466	1052 - 1052	-623 + 623	1328 - 1328				
422	S_j^p	0+0	0 + 0	-495 + 0	-2642 + 0	655 + 0				
122	S_j^n	0 + 0	0 + 0	-495 + 0	-1197 + 0	2552 + 0				
333	S_j^p	-222-222	1378 + 1378	-1946-1946	-2402 - 2402	314 + 314				
555	S_j^n	-882-882	1378 + 1378	-1946-1946-	1050-1050	1248 + 1248				
511	S_j^p	-222-222	1378 + 1378	1515 - 1515	1602-1602	314-314				
511	S_j^n	-882-882	1378 + 1378	1515 - 1515	724-724	1248-1248				
440	S_j^p	585 + 0	3767 + 0	1082 + 0	3106 + 0	585 + 0				
	S_j^n	2413 + 0	3767 + 0	1082 + 0	1400 + 0	2413 + 0				
153	S_j^p	198 + 198	-1305-1305	-471-471	471 + 471	280 + 280				
100	S_j^n	198 + 198	-1305-1305	-471-471	212 + 212	1182 + 1182				
442	S_j^p	0+0	0+0	0 + 2291	0+0	0 + 0				
	S_j^n	0+0	0+0	0 + 2291	0+0	0 + 15				
533	S_j^p	-178 + 178	1240 + 1240	797 – 797	-557 + 557	252-252				
555	S_j^n	-795 + 795	1240 + 1240	797 – 797	-249 + 249	1124 - 1124				
262	S_j^p	0 + 495	0 + 3487	0-168	0 + 0	0 + 0				
202	S_j^n	0 + 2235	0 + 3487	0+168	0+0	0 + 0				
. <u> </u>										

Таблица 6. Влияние присутствия атомов внедрения (углерода) в базисе η' -фазы на структурную амплитуду рассеяния рентгеновского Со K_{α} -излучения и тепловых нейтронов

Примечание. Значения f_j взяты из [19] без дисперсионной поправки; b_j взяты из [20]; b_j принимались не зависящими от угла дифракции. Для облегчения сравнения результатов амплитуду рассеяния нейтронов умножали на $(f_{\rm Ni}/b_{\rm Ni})$.

Таблица 7. Влияние наличия атомов внедрения (углерода) в базисе η' -фазы на относительную интенсивность рассеяния рентгеновского Со K_{α} -излучения и тепловых нейтронов данной фазой

		Рассчитанная рассеяния η' -ф	Экспе-					
ηκι		Ni: 16(<i>d</i>), 32(<i>e</i>) Nb: 48(<i>f</i>)	Ni: 16(<i>d</i>), 32(<i>e</i>) Nb: 48(<i>f</i>) C: 16(<i>c</i>)	Ni: 16(<i>d</i>), 32(<i>e</i>) Nb: 48(<i>f</i>) C: 8(<i>a</i>)	римент, I _{экс} , %			
111	Рентг.	0,024	0,009	0,012	Сл. **			
111	Нейтр.	0,233	0,146	0,166	14			
211	Рентг.	0,000	0,003	0,001	Нет			
511	Нейтр.	0,003	0,036	0,041	Оч. сл.			
400	Рентг.	0,072	0,056	0,080	Оч. сл.			
400	Нейтр.	0,016	0,100	0,000	Нет			
331	Рентг.	0,157	0,138	0,139	14			
331 Нейтр.		0,039	0,003	0,007	Нет			
422	Рентг.	0,393	0,401	0,360	35			
422	Нейтр.	0,216	0,250	0,101	10			
511+	Рентг.	1,000	1,000	1,000	100			
333	Нейтр.	1,000	1,000	1,000	100			
440	Рентг.	0,406	0,446	0,415	42			
440	Нейтр.	0,411	0,725	0,458	44			
153	Рентг.	0,004	0,003	0,003	10			
155	Нейтр.	0,038	0,010	0,014	20			
442	Рентг.	0,063	0,065	0,062	10			
2	Нейтр.	0,151	0,174	0,135	20			
533	Рентг.	0,007	0,005	0,008	Нет			
555	Нейтр.	0,024	0,078	0,078	20			
262	Рентг.	0,023	0,032	0,023	Нет			
202	Нейтр.	0,060	0,204	0,054	20			
$I_{\text{reop}} = [\Sigma S_i(\mathbf{k}_{\text{ч.п}}/\mathbf{k}_{\text{o.n}})]^2 A(\theta) \cdot P; P - фактор повторяемости; A(\theta) - 2 P - фактор повторяемости; A(\theta) - 2 P - 4 P $								

 $T_{\text{reop}} = [\Sigma S_i(\kappa_{\text{u,n}}/\kappa_{\text{o,n}})]^2 A(\theta) \cdot P; P - фактор повторяемости; A(\theta)$ $угловой множитель: <math>A^p(\theta) = (1 + \cos^2 2\theta)/(\sin^2 \theta \cdot \cos \theta)$ и $A^n(\theta) = 1/(\sin \theta \cdot \sin 2\theta); \kappa_{\text{u,n}}$ и $\kappa_{\text{o,n}}$ - кратность точек частного и общего положений в базисе. ** Сильно размытые линии.

Присутствие значений структурной амплитуды рассеяния атомами (ядрами) в частных положениях важно для анализа возможного распределения примесных атомов по позициям базиса η' -фазы.

Сопоставление экспериментальных и расчетных относительных интенсивностей рассеяния рентгеновских лучей и нейтронов исследованными образцами и η' -фазой для различных вариантов заполнения позиций базиса примесными атомами (O, C, N, H) позволяет сделать следующие выводы.

Во-первых, примесные атомы не находятся в позициях базиса 16(c), так как в этом случае $I^n(440) \approx 70\%$, т.е. сравнима с $I^n(511 + 333)$, что не наблюдается в эксперименте: $I^n(440) \ll I^n(511 + 333)$. Сказанное дополнительно подтверждается отсутствием на нейтронограмме линии (400) и маленькой величиной $I^n(242) < 10\%$, в то время как по расчетам $I^n(242) \approx 25\%$.

Во-вторых, объяснить наблюдаемые различия интенсивностей на дифрактограмме и нейтронограмме только различием величин атомной амплитуды рассеяния рентгеновских лучей и ядерной амплитуды рассеяния нейтронов нельзя. Это хорошо видно при сопоставлении $I^p(242)$ с $I^n(242)$. Уменьшение $I^n(242)$ можно связать с внедрением неметаллических атомов в позиции 8(a). Эти позиции занимают, например, атомы углерода в структуре Fe₆W₆C с переменными параметрами базиса, близкими к переменным параметрам η' -фазы [24]. При этом в структуре карбида допускается большой дефицит атомов внедрения и возможно замещение углерода кислородом, азотом и водородом [7].

В табл. 3 приведены кратчайшие межатомные расстояния в η' -фазе с a = 1,120 нм и базисом, включающим правильные системы точек 8(a), 16(c), 16(d), 32(e) и 48(f). Путем изменения величины периода решетки (a) и расчета кратчайших межатомных расстояний в структуре фазы (r_{ij}^{\min}) в работе были получены зависимости межатомных расстояний от периода решетки для различных переменных параметров $x_{48(f)}$ при $x_{32(e)} = 0,835$. Для фаз η' , $\text{Тi}_2\text{Ni}$ и $\eta(\eta'')$, приняв их стехиометрию AB, AB₂ и AB₅, оценили степень сжатия атомов по соответствующим контактам: $\Delta r_{ij} = \{(|r_{ij}^{\min} - r_{\mathfrak{II}}|)/r_{\mathfrak{II}}\}$, где $r_{\mathfrak{II}}$ — межатомное расстояние в структуре чистых металлов для KH = 12. В табл. 8 представлены рассчитанные значения Δr_{ij} для $x_{48(f)} = 0,202$ и $x_{32(e)} = 0,835$.

Анализ расчетных данных показывает, что для η' -фазы с периодом решетки a = 1,120 нм и стехиометрией AB при сопоставимом суммарном сжатии наблюдается наименьшее парциальное сжатие атомов в структурах всех рассмотренных фаз. Кроме того, позиции 16(c), в которые может внедряться углерод (кислород, азот, водород) в η' -фазе, имеют r_{ij}^{\min} меньше, чем в Ti₂Ni; поэтому его внедрение в данные позиции структуры η' -фазы менее вероятно, чем в Ti₂Ni или $\eta(\eta'')$ -фазе, которая имеет период решетки a = 1,164 нм [1,3,4]. Внедрение углерода (кислорода) должно неизбежно сопровождаться увеличением периода решетки для компенсации межатомных

		$\Delta r_{ij} = (r_{ij} - R_i - R_j)/r_{ij}, \%$							
Тип контактов	Коли- чество контак-	Тип	Тип фазы, ее состав и период решетки, нм						
	тов, $n_{i,j}$	η' -NiNb	NiTi ₂ *	Ti ₂ Ni *	Ti ₂ Ni **	$\eta(\eta'')$ -NiNb ₅			
		1,198	1,1273	1,1278	1,1312	1,1640			
16(c)-48(f)	6								
Nb–C		-3,1	-2,6	—	—	0			
Nb(Ti)–Ni		_	_	0	0	—			
48(f)-48(f)	4	0	0		. 17				
$Nb(T_1)-Nb(T_1)$ 16(d) 32(c)	6	0	0	+0,3	+1,/	+ 2,8			
Ni–Ni	0	-2,6	_	_	_	_			
Ni–Nb(Ti)			-10,4			-5,9			
32(e)-48(f)	3+3		,			,			
Ni–Nb(Ti)		-2,2+1,4	-1,4+2,1	-4,8+6,3	-3,0+6,3	—			
Nb-Nb(Ti)		—	_	—	_	-3,5-0,7			
32(e) - 32(e)	3								
Ni–Ni		+7,4	+8,2	+14,8	+12,9	—			
Nb(Ti)–Nb(Ti)						-3,4			
16(d)-48(f)	6								
Ni–Nb		+2,3	—	—		+6,5			
Nb(Ti)–Nb(Ti)			-3,4			—			
16(c)-32(e)	6								
Ni–C		+58,6	+61,5			+71,2			
Nb(Ti)–Ni		—	_	-7,8	-8,0	—			
8(a)-48(f) Nb(Ti)-C	12	-1,8	_	_	—	+71,2			
$\Sigma(-\Delta r_{i,j})$		-9,7	-17,8	-12,6	-11,0	-13,5			
$\Sigma(-\Delta r_{i,j}\cdot n_{i,j})$		-62,4	-102,6	-61,2	-57,0	-58,2			
$[-\Delta r_{i,j}]^{\max}$		-3,1	-10,4	-7,8	-8,0	-5,2			
* Позицию базиса 16(с) занимают атомы углерода.									
** Позицию базиса 16(c) заполняют атомы Ті [14, 16].									

Таблица 8. Сжатие атомных радиусов Δr_{ij} компонентов в фазах со структурой Е9 $_3$ в системах Ni–Nb и Ni–Ti

сжатий в структуре фазы. По расчетам, для переменного параметра базиса $x_{48(f)} = 0,202$ сжатие атомов C–Nb по контактам 16(c)–48(f) обнуляется $(\Delta r_{ij} = 0)$ для $a \approx 1,166$ нм. В системе Ni–Nb–C действительно был обнаружен карбид структурного типа E9₃ с приблизительной стехиометрией Nb₄Ni₂C и a = 1,166 нм [25]. Таким образом, в системе Ni–Nb заполнение атомами внедрения позиций 16(c) базиса может стабилизировать структуры типа E9₃ в фазах с увеличенным периодом решетки, т. е. фазу $\eta(\eta'')$, а не η' .

Расчеты показывают, что при внедрении углерода в позиции 8(*a*) базиса η' -фазы сжатие атомов C–Nb по контактам 8(*a*)–48(*f*) менее 2%. Более того, согласно результатам химического анализа, внедряться в указанные позиции могут не только атомы углерода, но и атомы кислорода, азота и водорода. Их атомные радиусы для координационного числа 12 соответственно равны $r_{\rm C} = 0,088$ нм, $r_{\rm O} = 0,060$ нм, $r_{\rm N} = 0,071$ нм, $r_{\rm H} = 0,046$ нм [23], и, следовательно, внедрение последних должно уменьшать сжатие по указанным контактам. Кроме того, сжатия могут релаксировать за счет изменения переменных параметров базиса, происходит подстройка параметров базиса под его заполнение.

В нашей работе была выполнена оптимизация значений переменных параметров базиса через минимизацию суммарного размерного сжатия атомов в кристаллической структуре: $R' = \sum \{ [r_{ij} - (R_i + R_j)]/r_{ij}] \} = \min$, где r_{ij} — сжатые межатомные расстояния в базисе; R_i, R_j — атомные радиусы для соответствующего координационного числа компонентов в точках i и j. При расчете учитывались только $r_{ij} < (R_i + R_j)$.

Для исследованных фаз минимальное значение R' получено для переменных параметров базиса: $x_{32(e)} = 0,838$; $x_{48(f)} = 0,201$. Они хорошо совпадают со значениями переменных параметров, полученными методом проб и ошибок через Q(Q') — фактор достоверности (сходимости): $x_{32(e)} = 0,838$ и $x_{48(f)} = 0,202$. Таким образом, в системе Ni–Nb для фаз типа E9₃ в условиях кристаллизации переохлажденного расплава и аморфных сплавов имеет место «коррекция» размерного фактора и облегчается проявление других факторов, контролирующих образование данных фаз.

Наряду с размерным фактором для устойчивости топологических плотноупакованных структур (ТПУ), к которым принадлежит большинство фаз типа E9₃, важен фактор электронной концентрации (ЭК) и учет особенностей химического взаимодействия атомов в структуре. В работе влияние указанных факторов оценивалось через число вакантных состояний на *d*-уровне (N_h) и свободный атомный параметр (\varnothing) [26–29]. Для ТПУ-структур \varnothing удовлетворительно коррелирует с объемным сжатием атомов в фазе: $\Delta V = -5,567 \times$ ($\Delta \varnothing$)³ + 0,25; где $\Delta V = \{V(A_m B_n) - m \times V(A) + n \times V(B)]/(m+n)\}; \Delta \varnothing =$ $\varnothing(A) - \varnothing(B); V(A_m B_n), V(A), V(B)$ — средний атомный объем в фазе $A_m B_n$ и атомные объемы элементов в основной модификации [26, 27]. Используя \varnothing

для Ni, Ti и Nb, можно оценить влияние особенностей химического взаимодействия при переходе от Ti к Nb на дополнительное объемное (атомное) сжатие в TПУ-структуре стехиометрии AB₂. Оно не превышает 1 %. В то же время изменения фактора ЭK, определенного через параметры N_h элементов как $\Delta N_h = \{[N_h(\text{NiNb}_2) - N_h(\text{NiTi}_2)]/N_h(\text{NiTi}_2)\}$, где $N_h(A_nB_m) = \{[n \times N_h(A)] + [m \times N_h(B)]/(n + m)\}$ [28,29], достигает 18 %. Такое существенное количественное различие изменений параметров рассмотренных кристаллохимических факторов при замене атомов Ti на атомы Nb позволяет с высокой степенью вероятности говорить о том, что потерю устойчивости TПУ-структуры со стехиометрии AB₂ в системе Ni–Nb в первую очередь надо связывать с изменением фактора ЭК. Следовательно, если в какой-то концентрационной области системы Ni–Nb в сплавах обнаруживается фаза типа E9₃, то электронная концентрация такого сплава должна отвечать диапазону значений электронной концентрации, характерных для указанного типа фаз.

Переход к стехиометрии AB₅ изменяет значение фактора ЭК до $N_h(\text{NiNb}_5) = 4,85$ и существенно приближает фактор ЭК до $N_h(\text{Ti}_2\text{Ni}) = 4,73$. Увеличение процентного содержания Ni в $\eta(\eta'')$ -фазе уменьшает $N_h(\text{Ni}_{1+x}\text{Nb}_{5-x})$ и еще более приближает его к $N_h(\text{Ti}_2\text{Ni})$. В [3] состав $\eta(\eta'')$ -фазы определили как Nb₈₁Ni₁₉. Для такого состава $N_h(\text{Nb}_{81}\text{Ni}_{19}) = 4,73$, что очень хорошо совпадает с $N_h(\text{Ti}_2\text{Ni})$. Более того, при замещении в базисе позиций Nb атомами Ni общее сжатие не увеличивается, а парциальные ослабевают (см. табл. 8).

Ранее было доказано, что η' -фаза является карбидной фазой, содержит примесные атомы, включая кислород. Кислород во многих случаях является акцептором электронов и существенно влияет на изменение электронной концентрации сплава. Следовательно, параметр ЭК для η' -фазы надо сравнивать с аналогичным параметром для карбида стехиометрии M₁₂C, например Fe₆W₆C. Самый простой способ оценки параметра ЭК сплава — это средний групповой номер (СГН) [30]. В нашем случае уменьшение СГН из-за перехода от W к Nb компенсируется увеличением СГН из-за перехода от Fe к Ni. Соответственно, ЭК сплава оказывается благоприятной для формирования и устойчивости карбидной η' -фазы со структурой Е9₃ при стехиометрии AB. Более того, количество η' -фазы, кристаллизующееся в переохлажденном расплаве при ЗЖС и отжиге AC, качественно и количественно согласуется с суммарным содержанием примесей внедрения в сплаве [5].

ЗАКЛЮЧЕНИЕ

По результатам выполненных рентгено- и нейтронографических исследований можно сделать следующие выводы.

1. Подтверждено, что в сплавах системы Ni–Nb существуют две фазы типа E9 $_3$.

2. Показано, что это фазы двух разных структурных типов: Fe $_6W_6C$ и Ti $_2Ni$.

3. В сплаве Ni₅₈Nb₄₂ при неравновесной кристаллизации в условиях ЗЖС со скоростью охлаждения $v_{\text{охл}}$, близкой к критической, необходимой для аморфизации, и при отогреве аморфного состояния кристаллизуется η' -фаза состава Ni₆(Nb_{1-x}Ni_x)₆(C,O,N,H), относящаяся к структурному типу Fe₆W₆C.

4. Фаза η' фаза не является метастабильной по отношению к нагреву, однако она не может быть получена при равновесных условиях кристаллизации.

5. Формирование обеих фаз связано с соответствующими факторами: фактором электронной концентрации и размерным фактором.

6. Для η' -фазы соответствующий фактор электронной концентрации реализуется за счет наличия в сплаве примесных атомов.

7. Образование η'' -фазы состава Ni(Nb_{1-x}Ni_x)₅, где x — малая величина, обусловлено наличием благоприятной стехиометрии (1:5) в рамках пространственной группы $Fd3m-O_h^7$, для которой в системе Ni–Nb существенную роль играет фактор ЭК, определенное значение которого способствует образованию фаз типа Ti₂Ni. При этом размерный фактор меняется незначительно.

ЛИТЕРАТУРА

- 1. Савин В. В., Костенко Е. Ю. Кристаллохимия промежуточных фаз и аморфных сплавов на основе переходных металлов. Запорожье: Изд-во ЗНУ, 2005. 348 с.
- 2. Savin V. V. // Materials Science Forum. 1993. V. 133-136. P. 493.
- 3. Корнилов Н. И., Пыляева Е. Н. // Изв. АН СССР. Металлы. 1966. № 5. С. 132.
- 4. Крипякевич П.И., Пыляева Е.Н. // Кристаллография. 1967. Т. 12, вып. 2. С. 350.
- Савин В. В. и др. Влияние примесей внедрения на особенности кристаллизации AC Ni₅₈Nb₄₂ // Аморфные (стеклообразные) металлические материалы. М.: Институт металлургии АН СССР. 1992. С. 94.
- 6. Nevitt M. V. // Trans. Metals Soc. AIME. 1960. V. 218. P. 327.
- 7. Уманский Я. С., Чеботарев Н. Т. // Изв. АН СССР. Сер. физ. 1951. Т. 15, № 1. С. 24.
- 8. Скаков Ю.А. и др. // Изв. вузов. Черная металлургия. 1984. № 5. С. 85.
- Савин В. В., Шелехов Е. В. Дифракционные и резонансные методы исследования: Дифракционные исследования структуры аморфных сплавов. Методические указания. Запорожье: Изд-во ЗГУ, 1992. 44 с.
- 10. Дьяконова Н. П. и др. Проблемы исследования структуры аморфных металлических сплавов. М.: МИСиС, 1984. С. 44.
- 11. Дьяконова Н. П. и др. // Металлофизика. 1989. Т. 11, № 2. С. 25.
- 12. Мирошниченко И. С. Закалка из жидкого состояния. М.: Металлургия, 1982. 168 с.
- Уолтер Дж., Бертрам С.Ф. Быстрозакаленные металлы / Ред. Б.Кантор. М.: Металлургия, 1983. С. 165.

- 14. Yurko G.A., Barton J.W., Gordon P. // Acta Cryst. 1959. V. 12. P. 909.
- 15. Смитлз К. Дж. Металлы. Справочник. М.: Металлургия, 1980. 448 с.
- 16. Mueller M. H., Knott H. W. // Trans. Metals Soc. AIME. 1963. V. 227. P. 674.
- 17. Пирсон У. Кристаллохимия и физика металлов. Т. 1. М.: Мир, 1977. С. 419.
- Банных О.А., Волкова Р. М., Боженов В.А. // Изв. АН СССР. Металлы. 1984. № 2. С. 202.
- 19. Уманский Я. С. и др. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982. 632 с.
- 20. *Нозик Ю. 3., Озеров Р. П., Хенниг К.* Нейтроны и твердое тело. Т. 1. Структурная нейтронография. М.: Атомиздат, 1979. 344 с.
- 21. Глазков В. П. и др. // Приборы и техника эксперимента. 1974. № 3. С. 47.
- 22. International Tables for X-ray Crystallography. Birmingham: Kynoch Press, 1962.
- 23. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-микроскопический анализ. М.: Металлургия, 1970. 368 с.
- 24. Leciejewicz J. // J. of the Less-Common Metals. 1964. V.7, No.4. P. 318.
- 25. Диаграммы состояния металлических систем. М.: ВИНИТИ. 1975. С. 154.
- 26. Watson R. E., Bennett L. H. // Acta Metall. 1982. V. 30, No. 10. P. 1941.
- 27. Watson R. E., Bennett L. H. // Phys. Rev. B. 1978. V. 12, No. 12. P. 6439.
- 28. Watson R. E., Bennett L. H. // Acta Metall. 1984. V. 32, No. 4. P. 491.
- 29. Watson R. E., Bennett L. H. // Acta Metall. 1984. V. 32, No. 4. P. 477.
- Невитт М. В. // Электронная структура переходных металлов и химия их сплавов. М.: Металлургия, 1966. С. 99.

Получено 29 мая 2014 г.

Редактор Е.В. Сабаева

Подписано в печать 28.07.2014. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 1,5. Уч.-изд. л. 1,7. Тираж 230 экз. Заказ № 58301.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/