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Behavior of Welded Straws in Vacuum

The possibility of working welded straw tubes in vacuum is considered. The
behavior of straw in a vacuum is considered in the framework of the cylindrical shells
theory. A solution to the equilibrium state equation for a straw tube describing its
behavior under the effect of pre-tensioning and internal pressure is provided. The
analysis of the solution shows that the rotation of self-supporting straws is due to
the moment acting on the unˇxed ends. The estimation of strain caused by the
overpressure is made. An original technique of measurement of straw Poisson's
ratio is presented and its dependence on tension is investigated. The effect of
the temperature and the deformation rate on the mechanical properties of straw is
considered with polybutylene terephthalate as an example. The optimum temperature
range for the long-term straw operation in the experiment is speciˇed.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems and the Veksler and Baldin Laboratory of High Energy Physics, JINR.
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INTRODUCTION

Many experiments aimed at studying physical processes need track detectors
with a lot of event detection channels, capable of operating in vacuum. The
detectors are required to have a high coordinate resolution, small amount of
material on the way of the beam, and low cost. In view of these requirements,
drift detectors based on thin-walled tubes, straws, have found wide use as track
detectors. A straw is a gas-ˇlled drift detector made from plastic ˇlm. The inner
side of the ˇlm is carbon coated or metalized. This layer simultaneously serves as
a cathode and a screen, which decreases the effect of the ˇred straws on each other.
The ends of the tubes are closed with plugs, to which the signal wire is attached
and through the holes in which a working gas mixture is supplied. Characteristics
and operation principles of the straws made by wrapping the ˇlm round a rod
and gluing the wrapped layers are presented in [1]. While operating, the straw
must maintain its cylindrical shape. Otherwise, inhomogeneous distribution of the
electric ˇeld in angle ϕ occurs inside the tube, which leads to loss of accuracy
in determination of the charge particle coordinate. In modern experiments straw
detectors have to operate in a vacuum of ∼ 10−6 mbar, and the straw tubes
therefore need to be pre-tensioned for reducing the effect produced on their shape
by the pressure difference, gravity, and temporary creep of their material. A
new straw production technology using ultrasonic welding has been developed
at JINR [2], which allows producing straw tubes featuring high strength, high
coordinate resolution, and ability to operate in vacuum for a long time. Straw
tubes of this type ˇnd wide use [3Ä5]. Deformation of straws under the effect
of forces is considered within the theory of shells [6Ä9], which was used in the
study of a behavior of the straws. The experience of employing straws in vacuum
reveals unsolved problems related to the optimum tension, internal pressure effect,
and allowance for straw material creep. The authors of [10] were faced with such
a phenomenon as rotation of the straw under the effect of the internal pressure and
failed to ˇnd out its cause. The goal of this work was to investigate deformation
of a pre-tensioned straw under the effect of the internal pressure and estimate the
effect of temperature on mechanical properties of a straw.
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MATHEMATIC MODEL OF THE STRAW EQUILIBRIUM STATE

Figure 1 shows the system of coordinates for an element of a cylindrical
shell and the forces and moments acting on it. The ˇgure and the equation are
borrowed from [11].

The action of the forces, tension, and pressure difference is symmetric about
the central axis, which allows an analytical solution to be obtained for the equi-
librium state equation. The equilibrium equation for a cylindrical shell describes
its radius variation under the effect of the applied forces. With gravity ignored,
the equation for a shell with constant thickness and homogeneous properties has
the form

d4w

d4x
+ 4β4w =

1
D

(
qz − μ

r
Nx

)
, (1)

where w is the cylinder radius variation, β is the parameter depending on the
properties of the material of the cylinder and on its size, D is the rigidity of the
cylinder, μ is Poisson's ratio for the material of the tube, qz is the density of the
radial force, Nx is the force per unit length of the tube perimeter acting along
the X axis, r is the inner radius of the cylinder, E is the elastic modulus of the
tube material, and h is the tube wall thickness. The cylindrical rigidity D and

Fig. 1. Cylindrical shell
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the parameter β are deˇned by the expressions

D = Eh3/12(1 − μ2), (2)

β4 = 3(1 − μ2)/r2h2. (3)

To describe the equilibrium of the straw, Eq. (1) will involve the force qz , which
is equal to the action of the internal and external pressure difference, and the
tension force Nx. When the straw operates in vacuum, the stress caused by the
pressure difference P will be equal to qz = P , which amounts to about one
atmosphere (1 kg/cm2). In the theory of shells, forces are expressed per unit
length or unit area of the corresponding cross section [11], and the longitudinal
force Nx in Eq. (1) will therefore be Nx = T0/2πr. With the values of the acting
forces substituted into it, the equilibrium equation takes the form

d4w

d4x
+ 4β4w =

1
D

(
P − μ

2πr2
T0

)
. (4)

THE SOLUTION TO HOMOGENEOUS EQUILIBRIUM EQUATION

The solution to (4) includes the solution to the homogeneous equation w1(x)
and the particular solution to the equation w2(x), which show the amount of
change in the straw radius along the X axis. The solution to the homogeneous
equation is given in [12]:

d4w

d4x
+ 4β4w = 0, (5)

w1(x) =
e−βx[βMx(sin βx − cos βx) − Q0 cos βx]

2β3D
. (6)

The bending moment Mx and the transverse force Q0 at the ends of the straw
tube are deˇned by the relations

Mx = −D

(
d2w

dx2

)
x=0,L

= M0 = P/2β2,

Q0 = −D

(
d3w

dx3

)
x=0, L

= −P/β.

According to the moment theory of shells, the action of forces on the shell gives
rise to not only the moment Mx but also the moment Mθ = μMx [6, 8]. The
action of the moment Mθ on the straw with unˇxed ends causes its rotation. This
effect will manifest itself in detectors based on self-supporting straw tubes [13].
The moments Mx and Mθ and the transverse force Q are shown in Fig. 1. It
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follows from (6) that the maximum change in the radius is at the straw attachment
points x = 0 and x = L,

(w1)x=0,L = − 1
2β3D

(βM0 + Q0) = 28.7 μm. (7)

The solution to the homogeneous equation involves a factor e−βx, and its ampli-
tude therefore quickly decays along the X axis. When βx > 3, its contribution
is ignored. The condition βx > 3 is fulˇlled for them at the straw length
x > 2 mm. Thus, the edge effect is observed at the attachment points. Below the
straws under consideration were made of polyethylene terephthalate and measured
r = 4.95 mm, h = 36 μm and L = 2 m. Their mechanical properties were char-
acterized by Poisson's ratio μ = 0.31 and the elastic modulus E = 3 · 109 N/m2.
According to (3), β = 3.04 · 103 m−1. The moments M0, Mθ like the transverse
force act only at the ends of the straw.

THE PARTICULAR SOLUTION TO EQUILIBRIUM EQUATION

For the equilibrium state of the straw, the particular solution w1(x) is of
interest. It should be borne in mind that the straw radius variation along the X
coordinate is a smooth, slowly varying function of small amplitude. Therefore,
the term d4w/d4x can be ignored in the search for the particular solution. In this
case, the particular solution will have the form

w2(x) =
1

4β4D

(
P − μ

2πr2
T0

)
. (8)

It follows from (8) that the radius variation is constant over the straw length and
depends on the properties of the material of the straw, its size, tension T0, and
pressure difference P . Pressure causes an increase in the straw diameter, while
tension leads to a decrease in the diameter. When there is no tension (T0 = 0),
the increase in the radius w2(x) of the straw with the above parameters under the
effect of the 1-atm pressure difference will be

w2(x) = 0.2252 · 10−9 · 9.81 · 104 ∼= 22.1 μm.

Experimental tests under these conditions revealed a change of 25 μm in the
radius. The change in the radius can also be estimated from the radial stress σr

deˇned by the relation [11]
σr = Pr/h.

Strain ε in the elastic region will be ε = σr/E. Considering the above relations,
the increase in the radius will be

w2(x) = εr = Pr2/hE = 22.26 μm.
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An insigniˇcant difference in the estimates of the transverse deformation w1(x)
arises from solving Eq. (4) while ignoring the term d4w/d4x, whose contribution
is less than 1%.

According to (8), the straw tension of 2 kg under the atmospheric pressure
(pressure difference P = 0) decreases the straw diameter by 8.9 μm. When the
straw operates in vacuum, the tension will partially compensate for the pressure
effect. The tension T0 = 2πr2P/μ = 5 kg fully compensates for the change in the
straw diameter under the effect of 1-atm pressure difference because, according
to (8), w2(x) = 0. In this case, the straw diameter will be equal to that under no
exposure to external forces, but the straw suffers stretching while being tensioned
and then under the effect of the pressure, which results in that it becomes thinner.

EFFECT OF PRESSURE IN THE LONGITUDINAL DIRECTION

Let us consider the effect of the internal pressure on the tension of a straw
with rigidly ˇxed ends. According to the theory of shells, the uniaxial tension σx

directed, for example, along the X axis causes the orthogonally directed stress
σy = μσx, where μ is Poisson's ratio. The longitudinal stress caused by the
straw tension is σT0 = T0/2πrh. Under the effect of pressure P the stress will
decrease down to

σm = σT0 − μP, (9)

where σm is the resultant stress over the cross section. Relation (9) is valid at
the constant thickness of the homogeneous straw material. Note that under these
conditions the stress along the X axis remains constant at each point of the cross
section. The pressure inside the straw is also constant. Therefore, relation (9)
can be expressed in terms of the measured forces

Tm = T0 − μFP . (10)

Here FP = 1 kg/atm is the force of the atmospheric pressure per cm2 over the
straw tube perimeter at a pressure of 1 atm, and Tm is the resultant tension of
the straw simultaneously affected by tension and pressure difference. It follows
from (10) that at the pressure FP = T0/μ the straw tension will be zero. Poisson's
ratio for a straw of polyethylene terephthalate is μ ≈ 0.31, and at the tension
T0 = 2 kg the internal pressure P = 6.45 atm will lead to complete loss of
tension. In vacuum the internal pressure of 1 atm will cause a decrease in the
tension of welded straws by μFP

∼= 310 g/atm. Measuring the straw tension
before and after supplying a known pressure into it, we can obtain Poisson's
ratio of the straw material with a good accuracy. The effect of the pressure was
experimentally tested. The straw was pre-tensioned with a force T0 = 1560 g, then
pressure was supplied into it at a step of 0.5 atm, and its tension was measured
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Fig. 2. Straw tension variation under the effect of the internal pressure

at each new pressure value. To eliminate the pressure valve play, measurements
were performed as the pressure was successively increased to 5 atm and then
decreased at the given step. The test results are shown in Fig. 2.

The experimental data are well described by the linear dependence. The
straight line 1 presents the data obtained at successively increasing pressure, and
line 2 shows the data obtained at decreasing pressure. The change in pressure
direction is shown by arrows. The slope of the dependences corresponds to
Poisson's ratio, which was μ = 0.315 at increasing pressure and μ = 0.313 at
decreasing pressure. The average of Poisson's ratio found in this way is 0.314.
The error in the determination of Poisson's ratio is ±0.32%. This value of μ falls
within the acceptable range 0.2 � μ < 0.5 [14] and agrees with the tabulated
value measured by other methods. At the internal pressure of 4.95 and 4.92 atm
the measurements show nonzero straw tension. In both cases the measured tension
was 10 g. The deviation of the data from the linear dependence might be caused
by the instrumental error and the nonlinear deformation in the region of zero
tension.

The zero straw tension means that the straw tube elongation due to the
internal pressure is equal to its pre-elongation under tensioning. Further increase
in pressure leads to the elongation of the straw that causes its sagging in a
horizontal arrangement or bending in a vertical arrangement. Note that for a
2-m-long straw tube a change in its length L by 10 μm at the zero tension leads
to its center sagging H by 4.5 mm:

H =
√

(L/2 + ΔL)2 − (L/2)2 ∼= 4.5 mm.
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Fig. 3. Dependence of Poisson's ratio on the straw tube tension

The estimation is based on the linear dependence of the sagging over the tube
length. It shows that even a small change in the straw length leads to its consid-
erable sagging, which can be avoided by tensioning.

Measurement of Poisson's ratio requires pre-tensioning the tube. Tension
affects molecular bonds in the plastic material and ultimately Poisson's ratio.
This effect was studied. The results of measuring Poisson's ratio at different
tension are shown in Fig. 3.

At low tensions T0 < 500 g, the ratio is seen to increase rapidly with
increasing tension, mainly due to the orientation of the transverse ˇbers in the
plastic. The rate of Poisson's ratio change relative to the magnitude of tension is
μT ≈ 0.1 kg−1. At tensions of 0.5 to 1 kg the rate of μ increase slows down to
μT ≈ 0.03 kg−1. At tensions of 1 to 2.7 kg the behavior of μ can be described
as μΔT = 0.305 + 0.012 · ΔT , where ΔT = (T − 1) is the excess of the tension
over the value T = 1 kg. At these tensions the transverse deformation of the
ˇbers decreases, and the dependence on tension becomes linear. Poisson's ratio
is determined using the atmospheric pressure force per cm2. This value is not
constant in time and depends on the location. Therefore, the value FP should be
corrected for barometer readings to obtain the real value of μ. Measurement of μ
at elevated pressure using the constant FP = 1 kg/atm will yield an overestimated
value for Poisson's ratio.

In [15] the authors report the results of investigating the temperature and
deformation rate effect on Poisson's ratio for a polybutylene terephthalate ˇlm
(Fig. 4) and the temperature effect on its elastic properties (Young's modulus)
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Fig. 4. Dependence of Poisson's ratio on the temperature and deformation rate: • Å
deformation rate 0.003 s−1, ◦ Å deformation rate 0.05 s−1

Fig. 5. Dependence of Young's modulus on temperature

(Fig. 5). The dependences obtained in that work also apply to the behavior of
a polyethylene terephthalate straw. The difference in properties between these
materials is higher strength of polyethylene terephthalate. As a consequence,
it has higher Young's modulus and lower Poisson's ratio, which is shown in
Figs. 3 and 4. The temperature dependence of the deformation for various ma-
terials is also considered in [9]. High-rate deformation of a material leads to its
strengthening [16] manifested in decreasing Poisson's ratio.

The increase in temperature causes softening of the material, which increases
its plasticity, and an increase in μ. The most stable behavior of Poisson's ratio is
observed in the temperature range of −10 to +10◦‘, where it is almost constant.
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Young's modulus is an important characteristic of mechanical properties of
a material. In the elastic region it governs the amount of strain ε in a body
affected by stress, ε = σ/E. In the range of temperatures from −20 to +20◦C
Young's modulus changes by less than 10%. The next is the interval of 20
to 60◦‘, in which elasticity decreases several times. For operating of straw
detectors in experiment it is possible to recommend the temperature operating
mode +18 ± 3◦‘, where mechanical properties of tubes are stable.

CONCLUSIONS

Deformation of a straw tube affected by tension and internal pressure has
been analyzed. It is revealed why self-supporting straws rotate. Rotation of a
straw will lead to its shape deformation causing accuracy loss in the detection of
the charged particle coordinate and shortening its service life in the experiment.
It is shown that the straw tension depends on the pressure difference. This
allows highly accurate determination of Poisson's ratio for thin-walled cylindrical
shells. The effect of the straw tension on the determination of Poisson's ratio
is investigated. The in�uence of temperature is considered, and the range is
determined in which the mechanical properties of the straw (Young's modulus
and Poisson's ratio) are optimal for its operation in the experiment. The results
of the investigations are illustrated by experimental dependences, which can be
helpful for development of straw detectors.
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