P4-2017-40

Е. О. Сушенок, А. П. Северюхин, Н. Н. Арсеньев, И. Н. Борзов

ВЛИЯНИЕ УЧЕТА ЭФФЕКТИВНЫХ T = 0,1 ВЗАИМОДЕЙСТВИЙ В КАНАЛЕ ЧАСТИЦА–ЧАСТИЦА НА БЕТА-РАСПАДНЫЕ ХАРАКТЕРИСТИКИ И ВЕРОЯТНОСТЬ МУЛЬТИНЕЙТРОННОЙ ЭМИССИИ ПРИ БЕТА-РАСПАДЕ ^{126,128,130,132}Cd

Направлено в журнал «The European Physical Journal A»

Сушенок Е.О. и др. Влияние учета эффективных T = 0, 1 взаимодействий в канале частица–частица на бета-распадные характеристики и вероятность мультинейтронной эмиссии при бета-распаде 126,128,130,132 Cd

Для зарядово-обменных мод ядерных возбуждений сепарабельный подход, построенный на приближении случайных фаз для взаимодействия Скирма, обобщен на случай включения канала частица–частица с одновременным учетом тензорных корреляций и связи одно- и двухфононных конфигураций. Изучено влияние учета эффективных T = 0, 1 взаимодействий в канале частица–частица на бетараспадные характеристики, а также вероятность мультинейтронной эмиссии при бета-распаде 126,128,130,132 Cd.

Работа выполнена в Лаборатории теоретической физики им. Н. Н. Боголюбова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2017

Sushenok E. O. et al. P4-2017-40 Role of Effective T = 0, 1 Interactions in the Particle–Particle Channel: Beta-Decay Characteristics and the Multi-Neutron Emission Probabilities in the Beta Decay of 126,128,130,132 Cd

A finite rank separable approach (FRSA) based on the quasiparticle random phase approximation with Skyrme interactions has been extended to describe charge-exchange excitation modes. The central and tensor residual interaction in both the particle–hole and particle–particle channel and the coupling between one- and two-phonon configurations are taken into account in the framework of the FRSA model. We study the effect of taking into account effective interactions in the particle–particle channel on beta-decay characteristics and the multi-neutron emission probabilities in the beta decay of 126,128,130,132 Cd.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2017

P4-2017-40

Действующие (HRIBF в ORNL, ALTO в IPN, RIBF в RIKEN) и новые ускорительные установки (DRIBs в ЛЯР ОИЯИ, SPIRAL2 в GANIL, FAIR в GSI) позволяют исследовать *β*-распадные свойства в ядрах с высокой нейтрон-протонной асимметрией. Новые результаты по вероятностям мультинейтронной эмиссии дают важные ограничения на распределение силы гамовтеллеровских (ГТ) возбуждений в области непрерывного спектра дочерних ядер и свидетельствуют о различии с предсказаниями существующих моделей структуры ядра [1]. Для ядер с большим избытком нейтронов, недоступных пока для экспериментов на ускорителях радиоактивных ионов, вероятность эмиссии одного или нескольких нейтронов зачастую является единственным источником информации об их *β*-силовой функции. Информация по β-распадным характеристикам принципиально важна для исследований в области ядерной астрофизики, в частности, для изучения связи ядерных процессов с нуклеосинтезом элементов, сопровождающим коллапс массивных звезд. При теоретическом изучении короткоживущих ядер с аномально высоким числом нейтронов или протонов и нестабильных ядерных систем приходится экстраполировать в новую область параметры нуклон-нуклонных сил, которые определены на основе имеющихся данных о стабильных магических ядрах. Это стимулирует развитие новых теоретических исследований в рамках самосогласованных микроскопических моделей с высокой предсказательной силой.

Одним из основных подходов при описании зарядово-обменных мод ядерных возбуждений является квазичастичное приближение случайных фаз (ПСФ) с эффективными силами Скирма [2–5]. Такие расчеты не требуют введения новых параметров, так как остаточное взаимодействие получено самосогласованным образом с тем же самым функционалом плотности энергии, как и среднее поле. Изучение процесса мультинейтронной эмиссии, сопровождающего β -распад атомных ядер, требует учета связи простых частичнодырочных конфигураций с более сложными (двухфононными) конфигурациями [6]. Это делает необходимым расчет в большом конфигурационном пространстве. Сепарабелизация остаточного взаимодействия Скирма позволяет обойти эту трудность и проводить вычисления независимо от конфигурационного пространства [7–9]. Подход был применен к описанию зарядовообменных возбуждений [10]. При этом учитывалось как центральное [8], так и тензорное [9] остаточное взаимодействие в канале частица–дырка. В общем случае эффективный ядерный гамильтониан должен включать и силы в канале частица–частица с отличным от нуля моментом [11,12]. Важность данного канала при описании свойств коллективных возбуждений показана в работе [13]. В данной работе обсуждается влияние канала частица–частица при учете сложных конфигураций на свойства β -распада нейтронно-избыточных изотопов Cd.

Детальное изложение метода для описания фрагментации силы ГТ-переходов β -распада нейтронно-избыточного ядра можно найти в работах [6,10,14].

Среднее поле определяется путем решения уравнений Хартри–Фока (ХФ) с силами Скирма. Спаривание учитывается в приближении Бардина–Купера–Шриффера (БКШ) [15–17]. Одночастичный континуум дискретизируется посредством диагонализации гамильтониана ХФ на базисе гармонического осциллятора [18]. Гамильтониан включает взаимодействие Скирма в канале частица–дырка (ph) и зависящие от плотности контактные силы в канале частица–частица (pp):

$$V_{T=1}^{(pp)}(\vec{r_1}, \vec{r_2}) = V_0 \left(\frac{1 - P_\sigma}{2}\right) \left(1 - \eta \frac{\rho(r_1)}{\rho_0}\right) \delta(\vec{r_1} - \vec{r_2}),$$

$$V_{T=0}^{(pp)}(\vec{r_1}, \vec{r_2}) = f V_0 \left(\frac{1 + P_\sigma}{2}\right) \left(1 - \eta \frac{\rho(r_1)}{\rho_0}\right) \delta(\vec{r_1} - \vec{r_2}),$$
(1)

где P_{σ} — спиново-обменный оператор; $\rho(r_1)$ — плотность ядерной материи; ρ_0 — плотность ядерной материи в случае сил Скирма. Параметр η варьируется от 0 для объемного спаривания до 1 в случае поверхностного типа спаривания. Величина f определяет отношение силовых параметров T = 1 и T = 0 взаимодействий в канале частица–частица. В этой работе f = 1, что соответствует реализации SU(4)-симметрии [19]. Также было выбрано поверхностное спаривание, т. е. $\eta = 1$. Параметр $V_0 = -870$ МэВ фм³ фиксируется так, чтобы воспроизвести разницу масс соседних нечетных и четно-четных ядер в области около ¹³²Sn [6, 13]. В канале частица–дырка используется взаимодействие Скирма T43 с учетом тензорных членов [17].

Остаточное взаимодействие получено как вторая производная функционала плотности энергии по нормальной и парной плотности. Мы представляем остаточное взаимодействие в форме сил Ландау–Мигдала и сохраняем только члены с l = 0:

$$V_{\rm res}^{(a)}(\vec{r}_1, \vec{r}_2) = N_0^{-1} \left[F_0^{(a)}(r_1) + G_0^{(a)}(r_1)\sigma_1\sigma_2 + \left(F_0^{\prime(a)}(r_1) + G_0^{\prime(a)}(r_1)\sigma_1\sigma_2 \right) \vec{\tau}_1 \cdot \vec{\tau}_2 \right] \delta(\vec{r}_1 - \vec{r}_2), \quad (2)$$

где $N_0 = 2k_F m^* / \pi^2 \hbar^2$, а k_F и m^* определяют импульс Ферми и эффективную массу нуклона; $a = \{ph, pp\}$ — индекс канала; σ_i и τ_i — операторы спина и изоспина.

Для учета двухфононных конфигураций волновые функции 1^+ -состояний дочернего ядра (N - 1, Z + 1) записываются в виде суперпозиции членов с различным числом фононных операторов [10]:

$$\Psi_{\nu}(\lambda\mu) = \left(\sum_{i} R_{i}(\lambda\nu)Q_{\lambda\mu i}^{+} + \sum_{\lambda_{1}i_{1}\lambda_{2}i_{2}} P_{\lambda_{2}i_{2}}^{\lambda_{1}i_{1}}(\lambda\nu) \left[Q_{\lambda_{1}\mu_{1}i_{1}}^{+}\bar{Q}_{\lambda_{2}\mu_{2}i_{2}}^{+}\right]_{\lambda\mu}\right)|0\rangle.$$
(3)

ГТ-возбуждения, имеющие энергию ω , генерируются оператором $Q^+_{\lambda\mu i}|0\rangle$, тогда как $\bar{Q}^+_{\lambda\mu i}|0\rangle$ отвечают однофононным возбуждениям родительского ядра, имеющим энергию $\bar{\omega}_{\lambda i}$ [13]. Используя вариационный принцип, можно получить систему линейных уравнений относительно амплитуд $R_i(\lambda\nu)$ и $P^{\lambda_1 i_1}_{\lambda_2 i_2}(\lambda\nu)$:

$$(\omega_{\lambda i} - \Omega_{\nu})R_i(\lambda\nu) + \sum_{\lambda_1 i_1\lambda_2 i_2} U^{\lambda_1 i_1}_{\lambda_2 i_2}(\lambda i)P^{\lambda_1 i_1}_{\lambda_2 i_2}(\lambda\nu) = 0,$$
(4)

$$(\omega_{\lambda_1 i_1} + \bar{\omega}_{\lambda_2 i_2} - \Omega_{\nu}) P^{\lambda_1 i_1}_{\lambda_2 i_2}(\lambda\nu) + \sum_i U^{\lambda_1 i_1}_{\lambda_2 i_2}(\lambda i) R_i(\lambda\nu) = 0.$$
 (5)

Матричные элементы $U_{\lambda_2 i_2}^{\lambda_1 i_1}(\lambda i)$ соответствуют взаимодействию между однои двухфононными конфигурациями. При изучении влияния фрагментации состояний 1⁺ важно учесть двухфононные конфигурации $[1_i^+ \otimes 2_{i'}^+]$, т. е. построенные с квадрупольными возбуждениями родительского ядра [6, 10].

В приближении разрешенных переходов период β^- -распада вычисляется как сумма вероятностей (в единицах $G_A^2/4\pi$) энергетически разрешенных переходов ($E_k^{\text{GT}} \leq Q_\beta$) с весом в виде функции Ферми:

$$T_{1/2}^{-1} = \sum_{k} \lambda_{if}^{k} = D^{-1} \left(\frac{G_A}{G_V}\right)^2 \sum_{k} f_0(Z+1, A, E_k^{GT}) B(GT)_k,$$
(6)

где λ_{if}^k — парциальная скорость β^- -распада; $G_A/G_V = 1,25$ — отношение констант аксиально-векторного и векторного взаимодействий; константа D=6147 с [20]. Здесь, следуя [21], энергию ГТ-перехода можно записать как

$$E_k^{\rm GT} = Q_\beta - E_{1_k^+}.$$
 (7)

Энергию возбуждения $E_{1_{t}}^{+}$ можно представить в виде

$$E_{1_k^+} \approx E_k - E_{2\text{QP,lowest}},\tag{8}$$

где E_k — собственные значения системы линейных уравнений (4), (5); $E_{2\text{QP},\text{lowest}}$ — нижайшая двухквазичастичная энергия. Стоит отметить, что угловой момент и четность нижайшей двухквазичастичной конфигурации в общем случае отличается от 1⁺. Волновые функции позволяют определить вероятности ГТ-переходов в случае оператора $\hat{O}_- = \sum_{i=m} t_-(i)\sigma_m(i)$:

$$B(\text{GT})_{k} = \left| \langle N - 1, Z + 1; 1_{k}^{+} | \hat{O}^{-} | N, Z; 0_{\text{gs}}^{+} \rangle \right|^{2}.$$
 (9)

Одновременный учет тензорных корреляций и эффектов связи 1p-1h- и 2p-2h-конфигураций позволяет нам не использовать эффективный фактор подавления силы ГТ-переходов [22].

В силу различных характерных временных масштабов β -распада и последующей эмиссии нейтронов мы пользуемся предположением о статистической независимости этих двух процессов. Вероятность эмиссии запаздывающих нейтронов P_{xn} , сопутствующей β -распаду на возбужденные состояния в дочернем ядре, может быть рассчитана следующим образом [23]:

$$P_{xn} = T_{1/2} D^{-1} \left(\frac{G_A}{G_V}\right)^2 \sum_{k'} f_0(Z+1, A, E_{k'}^{\text{GT}}) B(\text{GT})_{k'},$$
(10)

где энергия перехода относительно основного состояния в родительском ядре находится в интервале значений $Q_{\beta xn} \equiv Q_{\beta} - S_{xn}$: в случае P_{1n} $Q_{\beta 2n} \leqslant E_{k'}^{\text{GT}} \leqslant Q_{\beta n}$, тогда как для $P_{2n} E_{k'}^{\text{GT}} \leqslant Q_{\beta 2n}$.

Наш анализ показал, что основной вклад в период *β*-распада дает конфигурация $[1^+_1 \otimes 2^+_1]$, так как состояние 2^+_1 родительского ядра (N, Z) является нижайшим коллективным возбуждением, которое приводит к наибольшему значению энергии ГТ-перехода на двухфононные состояния 1⁺ [6]. Обсудим свойства нижайших состояний 2⁺ в нейтронно-избыточных изотопах ¹²⁶⁻¹³⁴Cd. Результаты расчетов энергии и вероятности E2-переходов на состояния 2⁺ представлены на рис. 1. В случае ¹³⁰Сd энергия достигает максимального значения, что соответствует изменению энергии вблизи замкнутых оболочек. Поведение $B(E2; 0_{gs}^+ \rightarrow 2_1^+)$ связано с соотношением между нейтронными и протонными фононными амплитудами. Протонные фононные амплитуды доминируют во всех рассмотренных изотопах кадмия, при этом основной вклад дает конфигурация $\{1g\frac{1}{2}1g\frac{3}{2}\}_{\pi}$ (> 73%). Заполнение нейтронной оболочки $\nu 1h \frac{11}{2}$ приводит к уменьшению приведенной вероятности E2-перехода в ¹³⁰Cd. Включение остаточного взаимодействия в канале частица–частица приводит к уменьшению энергии $E_{2^+_\iota},$ в то время как значение $B(E2; 0_{gs}^+ \rightarrow 2_1^+)$ практически остается неизменным. Это означает, что коллективность состояний 2⁺ уменьшается. Как видно из рис. 1, результаты вычислений согласуются с имеющимися экспериментальными данными [24-26] и качественно описывают зависимость от массового числа.

Рис. 1. Энергии $E_{2_1^+}$ (*a*) и приведенные вероятности $B(E2; 0_{gs}^+ \rightarrow 2_1^+)$ (*б*) для 126,128,130,132,134 Cd, рассчитанные в однофононном случае без остаточного взаимодействия (Δ) и с остаточным взаимодействием (\blacktriangle) в канале частица–частица; • — экспериментальные значения [24–26]

Обсудим влияние остаточного взаимодействия в канале частица-частица на скорости β -распада на примере ¹³⁰Cd и ¹³²Cd. Результаты расчетов в модели, учитывающей связь с квадрупольными фононами, представлены на рис. 2. Как видно, учет взаимодействия в канале частица-частица мало влияет на распределение скоростей β -распада ¹³⁰Cd по сравнению с тем, какое влияние это взаимодействие оказывает на распределение скоростей при увеличении нейтронного избытка (¹³²Cd). Рис. 2 наглядно демонстрирует важность канала частица-частица в случае ядер с открытыми нейтронными оболочками. Стоит обратить внимание на то, что, несмотря на различное влияние остаточного взаимодействия в канале частица-частица на распределение скоростей β -распада ¹³⁰Cd и ¹³²Cd, рассчитанные периоды β -распада обоих изотопов кадмия заметно сокращаются (> 35%). Как видно из таблицы, включение остаточного взаимодействия в канале частица-частица также оказывает сильное влияние на период β -распада в случае ¹²⁶Cd. Показано, что представленные исследования на качественном уровне описывают экспериментальную эволюцию периодов *β*-распада нейтронно-избыточных изотопов кадмия [27].

Особый интерес представляет анализ вероятностей эмиссии нескольких запаздывающих нейтронов. В таблице представлены вероятности эмиссии од-

Рис. 2. Влияние учета канала частица–частица на скорости β -распада в ¹³⁰Cd (*a* и δ) и ¹³²Cd (*в* и *г*). Все расчеты выполнены в модели, учитывающей связь между однои двухфононными конфигурациями: *a*, *в* соответствуют расчетам без остаточного взаимодействия, а δ , *г* — с остаточным взаимодействием в канале частица–частица. Рассчитанные значения $Q_{\beta 1n}$ и $Q_{\beta 2n}$ обозначены сплошной и пунктирной стрелками соответственно

ного (P_{1n}) и двух (P_{2n}) запаздывающих нейтронов. Стоит отметить, что включение остаточного взаимодействия в канале частица–частица незначительно сокращает P_{1n} в случае $^{126-130}$ Cd. Наши расчеты предсказывают высокую вероятность эмиссии нескольких запаздывающих нейтронов в 132 Cd как без учета остаточного взаимодействия, так и с учетом остаточного взаимодействия в канале частица–частица. Включение остаточного взаимодействия в канале частица–частица существенно уменьшает вероятность двухнейтронной эмиссии. Как можно видеть из рис. 2, такие изменения связаны с перераспределением силы ГТ-переходов около энергий отрыва одного и двух нейтронов.

Эффект учета канала частица–частица на периоды β -распада $(T_{1/2})$ и вероятности эмиссии запаздывающих нейтронов (P_{1n}, P_{2n}) в изотопах кадмия. Расчеты I и II выполнены в модели, включающей двухфононные конфигурации, без остаточного взаимодействия и с остаточным взаимодействием в канале частица–частица соответственно. Экспериментальные значения полной вероятности эмиссии в 130 Cd — $P_{n_{tot}} = (3,5 \pm 1,0) \%$ [28] и 132 Cd — $P_{n_{tot}} = (60 \pm 15) \%$ [29]

Изотоп	Ι			II			$T_{1/2}$, мс
	$T_{1/2}$, мс	$P_{1n}, \%$	$P_{2n}, \%$	$T_{1/2}$, мс	$P_{1n}, \%$	$P_{2n}, \%$	(эксперимент [27])
¹²⁶ Cd	265	< 0,1	_	166	< 0,1	_	513 ± 6
¹²⁸ Cd	181	7,1	_	123	3,7	_	245 ± 5
¹³⁰ Cd	121	13,5	-	88	10,5	_	127 ± 2
¹³² Cd	38	74,8	25,2	29	82,0	18,0	82 ± 4

В данной работе с использованием сил Скирма приведена схема расчета вероятности мультинейтронной эмиссии запаздывающих нейтронов, сопровождающих β -распад нейтронно-избыточных ядер. Связь со сложными конфигурациями учитывается одновременно с центральным и тензорным остаточным взаимодействием в каналах частица–дырка и частица–частица. В качестве примера исследованы свойства нейтронно-избыточных изотопов Cd. Показано, что подключение остаточного взаимодействия в канале частица–частица приводит к перераспределению силы ГТ-переходов и сокращает период β -распада.

Работа выполнена при поддержке гранта Российского научного фонда № 16-12-10161.

ЛИТЕРАТУРА

- 1. Caballero-Folch R. et al. // Phys. Rev. Lett. 2016. V. 117. P. 012501.
- 2. Bender M. et al. // Phys. Rev. C. 2002. V. 65. P. 054322.
- 3. Fracasso S., Colò G. // Phys. Rev. C. 2007. V. 76. P. 044307.
- 4. Bai C. L. et al. // Phys. Lett. B. 2009. V. 675. P. 28.
- 5. Bai C. L. et al. // Phys. Rev. C. 2011. V. 83. P. 054316.
- 6. Severyukhin A. P. et al. // Phys. Rev. C. 2017. V. 95. P. 034314.
- 7. Nguyen Van Giai, Stoyanov Ch., Voronov V. V. // Phys. Rev. C. 1998. V. 57. P. 1204.
- Severyukhin A. P., Voronov V. V., Nguyen Van Giai // Prog. Theor. Phys. 2012. V. 128. P. 489.
- 9. Severyukhin A. P., Sagawa H. // Prog. Theor. Exp. Phys. 2013. V. 2013. P. 103D03.
- 10. Severyukhin A. P. et al. // Phys. Rev. C. 2014. V. 90. P. 044320.
- 11. Беляев С. Т. // ЯФ. 1966. Т. 4. С. 936.

- 12. Соловьев В. Г. Теория сложных ядер. М.: Наука, 1971.
- 13. Severyukhin A. P., Voronov V. V., Nguyen Van Giai // Phys. Rev. C. 2008. V.77. P.024322.
- 14. Сушенок Е. О. и др. Препринт ОИЯИ Р4-2016-77. Дубна, 2016.
- 15. Stancu F., Brink D. M., Flocard H. // Phys. Lett. B. 1977. V. 68. P. 108.
- Colò G. et al. // Phys. Lett. B. 2007. V. 646. P. 227; Phys. Lett. B. 2008. V. 668. P. 457(E).
- 17. Lesinski T. et al. // Phys. Rev. C. 2007. V. 76. P. 014312.
- 18. Blaizot J. P., Gogny D. // Nucl. Phys. A. 1977. V. 284. P. 429.
- 19. Гапонов Ю. В., Лютостанский Ю. С. // ЭЧАЯ. 1981. Т. 12. С. 1324.
- 20. Suhonen J. From Nucleons to Nucleus. Berlin: Springer-Verlag, 2007.
- 21. Engel J. et al. // Phys. Rev. C. 1999. V. 60. P. 014302.
- 22. Bertsch G. F., Hamamoto I. // Phys. Rev. C. 1982. V. 26. P. 1323.
- 23. Pappas A. C., Sverdrup T. // Nucl. Phys. A. 1972. V. 188. P. 48.
- 24. Jungclaus A. et al. // Phys. Rev. Lett. 2007. V.99. P.132501.
- 25. Ilieva S. et al. // Phys. Rev. C. 2014. V.89. P.014313.
- 26. Kautzsch T. et al. // Eur. Phys. J. A. 2000. V. 9. P. 201.
- 27. Lorusso G. et al. // Phys. Rev. Lett. 2015. V. 114. P. 192501.
- 28. Hannawald M. et al. // Nucl. Phys. A. 2001. V. 688. P. 578c.
- 29. Dillmann I. et al. // Phys. Rev. Lett. 2003. V.91. P. 162503.

Получено 29 июня 2017 г.

Редактор А. И. Петровская

Подписано в печать 27.09.2017. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,69. Уч.-изд. л. 0,85. Тираж 245 экз. Заказ № 59242.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/