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1 Introduction

In the last decades there is growing interest in the effects of nonlinearity in the
classical and quantum field theories, scattering and coupled states of solitons and
soliton–like objects (for example kinks), and the processes of formation and collapse
of the domain walls. Such problems are studied in conventional and supersymmetric
field theories, in models with the potentials proportional to field in the fourth
degree. Topologically nontrivial U(1)–states with charge which are called Q–balls
were found in this context [1]. A good review of the development in this field
is given in Ref.[2]. The Q–balls are described as time–dependent nontopological
solutions of equations of motion for complex fields. As such they were defined in
the the pioneer paper by Anderson and Derrick [1]. It is shown that stable Q–ball
states are not possible for all values of defining parameters. A condition of stable
existence may be formulated in the following form. Let in a space of any dimension
there is a region where field satisfies the condition U(φ2) −m2φ2 < 0, where U is
a potential, m is a mass of field, then for ω2

min ≤ ω2 ≤ m2 there are nontopological
stable solutions of appropriate equations of motion. The value ωmin is determined
by condition imposed on the functions U(φ2) and ω2φ2. The problem of stability
of the Q–balls under large and small perturbations is still open in a case of large
perturbations. For small perturbations the Q–balls are stable, however for large
perturbations there is no clear answer to the question of decay of the Q–ball into the
plane waves. In the σ–models there are also modifications of the Q–balls known as
Q–lumps. Such states are used to study the domain defects, ribbons and domain
walls in the supersymmetric models. In the paper [3] a model with two scalar
fields was considered. For this model the Witten mechanism allows the breaking
of a discrete symmetry. This results in the formation of energetically degenerate
domains separated by massive defects. A supersymmetrical model constructed from
the chiral superfields was studied in [4]. For this model a domain wall solution which
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interpolates between supersymmetric vacuum states is obtained.
Using the results of two previous papers there was constructed a model without

domain walls but with so called Fermi–balls [5]. In this model the Fermi–balls,
which are proposed as candidates for cold matter, arise in the natural way as a result
of the softly broken supersymmetry. Further study of such models is done with
the temperature and nested defects taken into account. In the paper [6] thermal
effects were introduced to study the domain walls hosting domain ribbons. Such
a system can be considered as the real bosonic sector of a supersymmetric theory
with two different critical temperatures in this model. Each of the two fields has
its own critical temperature that drives the symmetry breaking. A generalization
of this approach to the supersymmetric model was presented in the paper [7].
The generalized model contains two interacting chiral supersymmetric fields. This
allowed to construct string–like domain ribbon defects embedded in a domain wall.
The ribbon can support fermion zero modes. By using this results fermions trapped
within the ribbon can be described as excitations of these zero modes.

The solutions that describe the domain walls in (3+1)–dimensional supersym-
metric theory with distinct discrete vacua are considered in paper the [8]. Two cases
were studied: when the domain wall is the BPS–saturated state and when 1

2
super-

symmetry takes a place. The internal structure of the BPS–saturated domain walls
was studied in the paper [9]. It is shown that this structure can continuously vary
without a change of the wall tension. The shapes of domains in the supersymmetric
theory with several scalar superfields are studied in the paper [10]. It was shown
that depending on coupling between fields some of domains are unstable and decay
into multiple domain walls but others can form intersections in space. Some de-
generated domain wall configurations in the generalized Wess–Zumino model with
two scalar superfields were investigated in the paper [11]. In this paper the general
features inherent in the models with continuously degenerated domain walls were
described. In the paper [12] the domain walls in supersymmetric gluodynamics were
considered. The phenomenon of the string ending on the domain walls suggested
by Witten was described in the framework of the gauge theory. This interpretation
was discussed in the supersymmetric theories with the degenerated vacuum states.
An intersection of the two domain walls in a supersymmetric context has been con-
sidered in the paper [13]. A finite effective length of the intersection region and an
energy associated with this process were calculated. A breaking of supersymmetry
without the messenger fields was studied in the paper [14]. Under assumption that
our world is located on a domain wall and supersymmetry is broken only by other
wall which is placed at some distance, the overlap of the wave functions takes the
place on our wall. This overlap leads to the mass splitting of physical fields in our
world. The domain wall junction in the 1

4
BPS states was studied in the paper

[15]. It is shown that such solutions preserve a single Hermitian supercharge. A
study of regularization (renormalization) of (1+1)–supersymmetric solitons in the
presence of non-trivial background is given in Ref. [16]. It was shown that for a
consistent realization of the regularization (renormalization) it is necessary to find
a consistent relation for the cut-offs. The domain walls obtained by embedding the
(1+1)–dimensional φ4 kink in higher dimensions were studied in the paper [17]. It
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was shown that appropriate dimensional regularization allows to avoid intricacies
presented in the other regularization schemes. The anomaly in the central charge
of supersymmetrical kink that arises from dimensional regularization and reduction
was considered in paper [18].

The general mathematical theory of supersymmetric kinks was considered in
the papers [19, 20]. For kinks in the Wess–Zumino model with different poly-
nomial superpotentials the explicit forms of vacuum orbits, real algebraic curves,
kink curves, energies and conserved supersymmetric charges were presented. The
quantum corrections to mass and central charge of kink were calculated and impor-
tant influence of boundary effects on the mode number cut-off regularization were
shown. By using the topologically non-trivial solutions like kinks from bosonic
sector of supersymmetric model, the U(1)–charged domain wall was described in
papers [21, 22]. This charge may be large enough to be important in the problem
of the scattering particles by the domain wall. The Q–balls of different types being
candidates for the self-interacting dark matter were studied in the paper [23]. It is
shown that Q–balls should not evaporate which requires them to have very large
charge.

The models with potentials of other type then φ4 are studied in a less degree.
The properties of the models with potentials proportional to field in the sixth
degree are the most close to the properties of models mentioned above [24]. In
most cases such models were investigated using numerical methods. However, for
the (1+1)–dimensional problem in the case of the symmetry with the potential

U(A,A∗) = m2|A|2 − λ2

2
|A|4 +

µ

3
|A|6 , (1)

an analytic solution has been constructed [25] (see also [2]). Here A is a complex
scalar field, m, λ, µ are the real parameters. If, for the model with potential (1)
we look for a solution in the form

A(x, t) = a(x)eiωt , (2)

then we get the equation for a(x) in the following form

∂2
xa+ ω2a− a

dU(|a|2)
d|a|2 = 0 , (3)

where ω is a fixed frequency of field. This equation has a solution

a(x) =
m

λ
(1 −$2)1/2ap(ξ) , (4)

where $ =
ω

m
, 0 ≤ $ ≤ 1, ξ = kx(1 −$2)1/2. Moreover

ap(ξ) = 2
√

3
(

p ch2 ξ − q sh2 ξ
)−1/2

, p = 3 + (9 − 48B)1/2, q = 3 − (9 − 48B)1/2,

B =
µm2

λ
(1 −$2)1/2 , B <

3

16
.

(5)
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There exists for this solution a fixed value of frequency 0 < $cr < 1 for which
under the condition $ > $cr the soliton–like solution (2) is stable under the small
perturbations. In the nonrelativistic limit $ → 1 the discrete mode of the spec-
trum for such solution corresponds to the coupled soliton–like state for nonlinear
Schrödinger equation as it was pointed out in [26]. The non-renormalized potential
(1) has been used for numerical investigation of a possible construction of a spin-
ning Q–ball solution [27]. Such Q–balls should have a non-zero component of the
angular momentum along the z–axis. In Ref. [24] a potential proportional to the
field in the sixth degree has been used for the construction of a supersymmetrical
model of kinks inside the domain ribbon. In this paper two coupled real scalar fields
were considered. For the first of them the potential proportional to the field in the
sixth degree was used and for the second: the potential proportional to field in the
forth degree. That is why it is interesting to consider a supersymmetric model of
charged Q–balls with the potential (1) which contains not real but complex scalar
fields in the bosonic sector. We will discuss this problem below.

2 The model

Consider complex chiral superfields

Φ+ → eiαΦ+ , Φ− → e−iαΦ− , (6)

where [28]:

Φ+(y, θ) = A+ +
√

2θψ+ + θ2F+ , (7)

Φ−(y, θ) = A− +
√

2θψ− + θ2F− . (8)

Here yµ = xµ +iθσµθ. F± are auxiliary complex bosonic fields. The complex scalar
bosonic fields are as follows

A± = φ± iχ , (9)

where φ and χ are the real functions. The metrics gµν has a signature (+ −−−).
Let us write the action in the form

S =

∫

dx d2θ d2θ̄(Φ+Φ∗

+) +

∫

dx d2θW (Φ+Φ−) +

∫

d2θ̄W (Φ̄+Φ̄−) , (10)

S =

∫

dxL . (11)

Let

W (A) = m2
1Φ+Φ− + µ2

1Φ
2
+Φ2

− , (12)

where m1 and µ1 are the masses of bosonic fields A+ and A− respectively. The
Lagrangian of the system described by above action can be written in the form

L = L1 + L2 + L3 − V , (13)
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where

L1 = −∂A+∂A
∗

+ − ∂A−∂A
∗

− , (14)

L2 = i

2
(∂ψ+σψ̄+ − ψ+σ∂ψ̄+) + i

2
(∂ψ−σψ̄− − ψ−σ∂ψ̄−) , (15)

L3 = −1

2

(

∂2W

∂A2
+

ψ+ψ+ +
∂2W

∂A2
−

ψ−ψ− + 2
∂2W

∂A+∂A−

ψ+ψ−

)

, (16)

V =

∣

∣

∣

∣

∂W

∂A+

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂W

∂A−

∣

∣

∣

∣

2

. (17)

Using the equations (7),(8) (9), (12) and the conditions A+ = A∗
−, ψ+ = ψ̄−,

ψ− = ψ̄+ one can write the Lagrangian (13) as

L = −∂µA+∂µA
∗

+ − ∂µA−∂µA
∗

− + i∂µ(ψ̄+σ̄
µψ+) + i∂µ(ψ̄−σ̄

µψ−) + (18)

+2µ2
1A

2
+ψ̄+ψ̄+ + 2µ2

1A
∗2
+ ψ̄+ψ̄+ − (m2

1 − 4µ2
1|A+|2)(ψ+ψ̄+ + ψ̄+ψ+) −

−2m4
1|A+|2 + 8m2

1µ
2
1|A+|4 − 8µ4

1|A+|6 .

3 Bosonic sector

The Q–balls can exist in the bosonic sector of the model. Let us consider the
equations of motion restricted to this sector only. In the bosonic sector we make
the fermionic fields to vanish. The field equations take the following form

∂2A+ −m4
1A+ + 8m2

1µ
2
1A+|A+|2 − 12µ4

1A+|A+|4 = 0 . (19)

A soliton–like solution for this equation of a form A+(x, t) = a(x)eiωt in the case
of planar symmetry, for the (1+1)–dimensional problem was mentioned in the first
Section of this paper. The equation (19) is more interesting in the case of the
spherical symmetry. Here the solution depends on radius r only and equation (19)
takes the following form

d2a

dr2
+

2

r

da

dr
−

(

m2 − ω2
)

a+ λ2a3 − 3λ4

8m2
a5 = 0 . (20)

From the equation (17) one can see an analogy with potential (1) for m2 = m4
1,

λ2 = 8m2
1µ

2
1 and µ = 8µ2

1. In the equation (20) the transition from variables (r, a)
to variables (ξ, a0) can be performed similarly as it was done for the equation (4).
This will simplify the equation (20). It can be written as

d2a0

dξ2
+

2

ξ

da0

dξ
− a0 + a3

0 −Ba5
0 = 0 . (21)

The exact analytic explicit solution for equation (20) or (21) cannot be constructed.
Usually this solution is searched with the use of numerical methods. The analytic
representations for approximate solutions of this equation were studied in [29].
There were obtained expressions for the ξ → 0 and ξ → ∞ limits. But attempts
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to construct a particle–like solution by using these approximate expressions were
unsuccessful. It was shown that it cannot be done in principle. Therefore here we
use another way to construct an approximate solution for equation (21) in the case
of spherical symmetry.

Let us consider a thin–wall approximation. In such a case, in the equation (21)

a term
2

ξ

da0

dξ
may be dropped because of its small value in comparison to the other

terms. Denote the solution in this approximation by h0(ξ). Then the equation for
the spherically symmetric Q–ball may be written in the following form

d2h0

dξ2
− h0 + h3

0 −Bh5
0 = 0 . (22)

This equation has the similar form as for the case of the planar symmetry. Its
solution is known. The only difference here is that a variable ξ changes not along the
real axis but from zero to some fixed value that is determined by the approximation
of theory. Let us make the following ansatz for the solution of the equation (21)

a0(ξ) = h0(ξ) + η(ξ) , (23)

where η(ξ) is some function. The function h0 has the same form as the function ap

in the case of planar symmetry in the equation (5). Let us substitute expression (23)
into equation (21). Then the nonlinear inhomogeneous equation for the function
has the form

d2η

dξ2
+

2

ξ

dη

dξ
− η + 3h2

0η + 3h0η
2 + η3 +

2

ξ

dh0

dξ
−

−B
(

5h4
0η + 10h3

0η
2 + 10h2

0η
3 + 5hη4 + η5

)

= 0 .

This equation is difficult to be solved analytically. For simplicity consider its linear
approximation. Additionally, to be able to study the problem analytically, we will
drop the terms 3h2

0η and 5Bh4
0η (note that B < 1). Using the explicit form of the

function h0 we get

d2η

dξ2
+

2

ξ

dη

dξ
− η =

4
√

3(p− q) ch ξ sh ξ

ξ(p ch2 ξ − q sh2 ξ)3/2
. (24)

The right-hand side of equation (24) grows for ξ → ∞, therefore our analysis is
valid for small values of ξ only. This description of expansion of the Q–ball should
work at the stage when the radius of Q–ball is not very large and at the same time
the thin–wall approximation is valid. It means that the Q–ball has been formed
and some time from the beginning of its expansion passed.

4 Approximate solution

To find a general solution η of the inhomogeneous equation (24), let us assume
that it is a sum of general solution η0 for appropriate homogeneous equation and a
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specific solution ηs of the inhomogeneous equation (24). The solution has the form
[30]

η0 = C1η1 + C2η2 , (25)

where C1 and C2 are constants determined by boundary conditions, η1 = exp(−ξ)/ξ,
η2 = exp(ξ)/ξ. A particular solution can be found by the Lagrange method

ηs = η1

∫

η2f

W
dξ − η2

∫

η1f

W
dξ , (26)

where f is a right-hand side of equation (24), W =
2

ξ2
is the Wronskian of functions

η1 and η2. Finally, ηs may be written in the following form

ηs =
4
√

3(p− q) exp(−ξ)
2ξ

∫

exp(ξ) ch ξ sh ξ

(p ch2 ξ − q sh2 ξ)3/2
dξ−

−4
√

3(p− q) exp(ξ)

2ξ

∫

exp(−ξ) ch ξ sh ξ

(p ch2 ξ − q sh2 ξ)3/2
dξ .

(27)

The integrals in equation (27) cannot be calculated explicitly. They can be
evaluated in the main order of the series of exponential function for small values of
ξ. Finally, in the considered approximation, the function η can be written in the
following form

η(ξ) =
C1 exp(−ξ)

ξ
+
C2 exp(ξ)

ξ
+

4
√

3 sh ξ

ξ(p ch2 ξ − q sh2 ξ)1/2
(28)

0

1

2

3

4

1 2 3 4ξ

Fig. 1. Dependence of the state amplitude on the variable ξ. Lower curved line — planar
symmetry. Upper curved line — spherical symmetry.

For the illustration plots of the functions ap(ξ) for the planar symmetry and
a0 the spherical symmetry are given in Fig. 1., for B = 1

16
. The shape of the

plots very weakly depends on the value of B. The constants C1 and C2 we put to
zero because of the reasons explained in Ref. [29]. The evaluation of the function
a0(ξ) in the case of the spherical symmetry is very rough. However, the presence
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of the tendency of the formation Q–ball in comparison to the planar symmetry is
noticeable. These solutions, despite different approach, agree with results obtained
in Refs. [31, 32].

M. A. K. wishes to thank Prof. J. Lukierski and the Institute of Theoretical Physics at

the University of Wroc law, were this work was done, for the warm hospitality.
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